Supporting Information

Gannoun et al. 10.1073/pnas.1017332108

SI Materials and Methods

Sample Selection and Dissolution. Enstatite chondrites consist of highly reduced mineral assemblages formed under very low oxygen fugacity (fO₂) conditions. They are classified into two subgroups on the basis of the Fe/Si bulk ratios: the high-Fe, high siderophile group (EH) and low Fe, low siderophile group (EL). Both EH and EL comprise a series of members from unequilibrated to highly equilibrated ones. The EL chondrites contain more highly equilibrated members than the EH chondrites. Thirteen enstatites chondrites belonging to both EH and EL subgroups were investigated during this study. This suite comprises eight unequilibrated samples (EH3, EL3) and five of other petrographic type (from type 4 to 6). Additionally, one ordinary chondrite (Jilin, H5) and one carbonaceous chondrite (Allende, CV3) were also analyzed during this study for the sake of comparison. Chondrite samples analyzed for Sm-Nd systematics and measured ¹⁴⁷Sm/¹⁴⁴Nd ratios are presented in Table S1. Different digestion techniques have been tested in the past to dissolve the carbonaceous chondrite Allende: (i) sealed beaker on hot plate using a mixture of HF:HNO₃ concentrated acid, (ii) again the same reagents but in bombs (higher pressure-temperature conditions), and (iii) fusion. Although this sample contains a large amount of both refractory inclusions and presolar grains, no difference has been found. In fact we measured each time very slightly different Sm and Nd isotope composition but this can be explained by the heterogeneity of the powder itself. The isotope heterogeneity at the bulk sample size (dissolution around 100 mg to 1 g) is also illustrated in Fig. S1. The large range of ¹⁴³Nd/ ¹⁴⁴Nd and ¹⁴⁷Sm/¹⁴⁴Nd ratios measured for different dissolution of Allende indicates that this sample is not homogeneous, even when a large quantity of powder is used for dissolution (about 1 g). But this range is not due to incomplete dissolution of refractory phases. Because of its low blank and reliable isotope data results we opt for steel-jacketed tetrafluoroethylene (TFE) Teflon lined Parr bombs for sample digestion.

About one gram of homogenized powdered samples were dissolved in a HF–HNO₃ mixture in the proportions of 9:3 in steel-jacketed TFE Teflon lined Parr bombs. Samples were digested in an oven at 150 °C for not less than 72 h. The solution is dried after the add of few mL of HClO₄ and the residue redissolved with the mixture of HCl and HNO₃ ultrapure acids in the proportions 1:2, transferred in Savillex perfluoroalkoxy 60 mL beakers. The beakers were placed in an oven at 150 °C for 48 h. Once a clear solution was obtained, a 5% aliquot was taken and spiked with ¹⁴⁹Sm–¹⁵⁰Nd tracer to measure Sm and Nd concentrations by isotope dilution. This spike was calibrated against standard solutions prepared from AMES and JNdi-1. Sm and Nd results on Allende using this spike are concordant with literature values (Fig. S1).

Chemical Separation and Purification of Sm and Nd. The full chemical procedure for the extraction and purification of Sm and Nd followed closely techniques described previously (1). The Sm and Nd fractions were separated with a two stage-chemistry procedure. In the first stage rare earth elements (REEs) as a group were separated by using cation resin and HCl. The REE split were then processed two times through a cation column using 2-Methylactic acid (0.2M and pH = 4.7) with a small amount of H₂O₂ to ensure perfect separation of Nd from Ce and Sm by reducing the effect of interferences on mass 142 (from Ce) and on mass 144, 148 and 150 from Sm. The last step consists on one pass trough Ln-spec resin in week HCl acid. Organic

Gannoun et al. www.pnas.org/cgi/doi/10.1073/pnas.1017332108

residues are then completely removed and the sample is ready to be loaded on Re filament. Unspiked Sm fraction from each chondrite sample was also purified using the same technique. Total procedural blanks for Sm and Nd were 1.5 and 8.3 pg, respectively. The percentage blank contribution to each sample was always less than 0.02%, so no blank correction has been applied. The spiked fractions have been separated using the method developed by Pin et al. (2). Ce and Sm interferences on masses 142 and 144 and expressed in ppm are indicated in Table S1. Sm interferences are negligible whereas for a few samples the Ce signal accounts for more than a few tens ppm on mass 142. The Ce signal decreases rapidly during the isotope measurement. Fig. S2 shows that there is no covariation between ¹⁴²Nd/¹⁴⁴Nd ratios and either ¹⁴²Ce/¹⁴²Nd or ¹⁴⁴Sm/¹⁴⁴Nd ratios.

As for Nd, the purified fractions of Sm obtained using 2-Methylactic acid were passed through Ln-spec resin and eluted in 0.5N HCl to discard all organic residues.

Mass Spectrometry. All the isotopic measurements presented in this study were obtained on the Thermo-Fisher Triton thermal ionization mass spectrometer at Laboratoire Magmas et Volcans. The purified Sm and Nd cuts were loaded in 2.5N HCl on outgassed zone-refined Re filaments. The Nd was measured in static mode by using the nine faraday cups, as positive metal ions following the configuration presented below. Nd isotope measurements using both dynamic and static modes have been compared. No significant difference has been observed for the measurement of 3.8 Ga old samples coming from the Isua supracrustal belt (SW Greenland) that present ¹⁴²Nd excesses of about 15 ppm (3). Because enstatite chondrites present the lowest Nd contents among chondrites, we have decided to use a static procedure for a better ion-counting statistic. The Farady cup configuration used for Nd isotope measurements (mass) as follows: L4, ¹⁴⁰Ce; L3, ¹⁴²Nd; L2, ¹⁴³Nd; L1, ¹⁴⁴Nd; C, ¹⁴⁵Nd; H1, ¹⁴⁶Nd; H2, ¹⁴⁷Sm; H3, ¹⁴⁸Nd; H4, ¹⁵⁰Nd.

To test the robustness of the Nd isotope data obtained by static mode, we have analyzed several fractions of JNdi-1 standard enriched artificially with known amount of ¹⁴²Nd spike. The results are plotted in Fig. S3 and show that even for low amount of Nd (100 ng), artificial excesses of ¹⁴²Nd as low as 17 ppm can be resolved.

All measured data were corrected for instrumental mass fractionation using the exponential law and ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219 (Table S1). Each measurement consists of 27 blocks of 20 ratios (approximately 8 s for integration time) using the amplifier rotation and taking the background before each block. Gain was taken before the beginning of each run. The ¹⁴²Nd signals range between 0.9 and 4.5×10^{-11} A for all chondrite samples. The ¹⁴²Nd/¹⁴⁴Nd data are expressed in ppm relative to the mean value obtained on the JNdi-1 standards measured during the same campaign. Our current mean value for ¹⁴²Nd/¹⁴⁴Nd in the JNdi-1 standard is 1.1418331 ± 0.0000066 ($2\sigma_m$). The external reproducibility on repeated standard analyses is always better than 6 ppm for the given campaign. No orrelation is observed between the different Nd ratios (Fig. S4).

The Sm was measured in static mode as Sm⁺ ions using double Re filaments following the cup configuration presented here: L4, ¹⁴⁴Sm; L3, ¹⁴⁶Nd; L2, ¹⁴⁷Sm; L1, ¹⁴⁸Sm; C, ¹⁴⁹Sm; H1, ¹⁵⁰Sm; H2, ¹⁵²Sm; H3, ¹⁵⁴Sm; H4, ¹⁵⁶Gd.

Each run consists of 9 blocks of 20 cycles using the amplifier rotation and taking the background before each block. The ¹⁵²Sm signals range between 0.3 and 1.9×10^{-11} A. Possible isobaric

interferences from Nd and Gd were monitored by measuring the intensity on ¹⁴⁶Nd and ¹⁵⁶Gd masses (Table S2). Sm data were corrected for instrumental mass fractionation using the exponential law and ¹⁴⁷Sm/¹⁵²Sm = 0.56081. Sm isotope compositions for both standards and samples are given in Table S2. Sm isotope compositions have been measured during two different periods. Internal errors are higher in the first sequence of measurement than in the second one. We have encountered a problem with the faraday cups during the first sequence of measurements. Then these samples have been measured twice and the Sm isotope composition presented in Table S2 for sequence 1 corresponds to the second run. Because most of samples have been measured at very low intensity (¹⁵²Sm < 0.4 V), ¹⁴⁴Sm/¹⁵²Sm ratios have large errors. This is the reason why these samples have not been represented in the diagram presented in Fig. S5.

We have also calculated the Sm isotope ratios relative to 154 Sm (100% r-process) and all data are fractionation corrected using the exponential law and 147 Sm/ 154 Sm = 0.65918. Using this normalization scheme (Table S2), the deviations expressed in μ -notation (ppm deviation relative to the ratio measured in terrestrial standard) are similar to those from previous calculation within the error bar.

Correction on ¹⁴²Nd/¹⁴⁴Nd Ratios. Exposure to galactic cosmic rays modifies a sample's Sm and Nd isotopic composition and its ¹⁴²Nd/¹⁴⁴Nd ratio. A long exposure age tends to decrease the ¹⁴²Nd/¹⁴⁴Nd ratio as observed in lunar samples (4). The second-

- Boyet M, Carlson RW (2005) ¹⁴²Nd evidence for early (>4.53 Ga) global differentiation of the silicate earth. *Science* 309:576–581.
- Pin C, Santos Zalduegui JF (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of cilicate rocks. *Anal Chim Acta* 339:79–89.
- Rizo Garza HL, Boyet MM, Blichert-Toft J, Rosing M, Gannoun A (2010) A coupled Nd and Hf isotopic study of Isua Archean rocks and the differentiation of the Hadean mantle. AGU Fall Meeting (American Geophysical Union, San Francisco).
- Boyet M, Carlson RW (2007) Early lunar differentiation and a non magma ocean origin for the lunar crust. *Earth Planet Sci Lett* 262:505–516.
- 5. Lingenfelter RE, Canfield EH, Hampel VE (1972) The lunar neutron flux revisited. *Earth Planet Sci Lett* 16:335–369.

ary neutron capture effect is currently quantified using Sm isotope measurements because ¹⁴⁹Sm has the largest thermal neutron capture cross section (e.g., ref. 5). The neutron capture effect is clearly seen in a negative correlation between ¹⁵⁰Sm/¹⁵²Sm and ¹⁴⁹Sm/¹⁵²Sm ratios (Fig. S5), but ¹⁴⁹Sm deficits are lower than -1.5 epilson-unit, which corresponds to a correction smaller than 1 ppm on the ¹⁴²Nd/¹⁴⁴Nd ratios following the method developed by Nyquist et al. (6) or Rankenburg et al. (7). As is clearly demonstrated in the ¹⁴⁹Sm-¹⁵⁰Sm isotope diagram, several samples do not plot on the correlation line and the observed scatter could reflect isotope heterogeneities in the solar nebula when chondrites were formed.

The ¹⁴²Nd/¹⁴⁴Nd ratios presented in Fig. 1*B* have been corrected for a common evolution considering a constant ¹⁴⁷Sm/¹⁴⁴Nd ratio [0.196 (8) from 4.568 Ga and an initial solar system ¹⁴⁶Sm/¹⁴⁴Sm ratio equal to 0.0085 (9). The ¹⁴⁷Sm/¹⁴⁴Nd ratio considered for each sample is not the ratio measured on the aliquot but this ratio has been recalculated using measured ¹⁴³Nd/¹⁴⁴Nd ratio and assuming that these samples have evolved from the same chondritic reservoir (present day values are 0.1960 and 0.512630 for ¹⁴⁷Sm/¹⁴⁴Nd ratio and ¹⁴³Nd/¹⁴⁴Nd ratios, respectively (8)]. Measured ¹⁴²Nd/¹⁴⁴Nd ratios are compared to corrected ¹⁴²Nd/¹⁴⁴Nd ratios in Table S3. The ¹⁴²Nd/¹⁴⁴Nd ratios reported in Fig. 1*A* are those from the first column whereas in all other diagrams we have plotted corrected ¹⁴²Nd/¹⁴⁴Nd ratios spresented in the last column of the Table S3.

- Nyquist LE, et al. (1995) ¹⁴⁶Sm-¹⁴²Nd formation interval for the lunar mantle material. Geochim Cosmochim Acta 59:2817–2837.
- Rankenburg K, Brandon AD, Neal CR (2006) Neodymium isotope evidence for a chondritic composition of the moon. *Science* 312:1369–1372.
- Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth Planet Sci Lett* 273:48–57.
- Boyet M, Carlson RW, Horan M (2010) Old Sm–Nd ages for cumulate eucrites and redetermination of the solars system initial ¹⁴⁶Sm/¹⁴⁴Sm ratio. *Earth Planet Sci Lett* 291:172–181.

Fig. S1. The ¹⁴⁷Sm/¹⁴⁴Nd/¹⁴⁴Nd ratios obtained on Allende (CV3). Comparison of different dissolutions made by different laboratories. Source of literature data (1–5).

- 1 Boyet M, Carlson RW (2005) ¹⁴²Nd evidence for early (>4.53 Ga) global differentiation of the silicate earth. Science 309:576–581.
- 2 Rankenburg K, Brandon AD, Neal CR (2006) Neodymium isotope evidence for a chondritic composition of the moon. Science 312:1369–1372.
- 3 Patchett PJ, Vervoort JD, Soderlund U, Salters VJM (2004) Lu–Hf and Sm–Nd isotopic systematics in chondrites and their constraints on the Lu–Hf properties of the Earth. Earth Planet Sc Lett 222:29–41.
- 4 Amelin Y, Rotenberg E (2004) Sm-Nd systematics of chondrites. Earth Planet Sc Lett 223:267-282.
- 5 Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilbrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57.

Fig. S2. The 142 Nd/ 144 Nd ratios corrected from isobaric interferences vs the Ce and Sm contribution for standards and samples measured in sequence 1 (*A* and *B*) and 2 (*C* and *D*). Interferences are expressed in ppm. The highest 142 Ce interference has been measured in Eagle and this sample has been measured only once. However the two measurements of St. Mark's have been realized during the first sequence of analyses. Although the Ce interference accounts for 20 ppm in the first measurement and is negligible in the second run, we have measured the same 142 Nd/ 144 Nd ratios. We conclude that Ce and Sm interferences, when they are present, are perfectly corrected.

Fig. S4. Nd isotope ratios measured for the JNdi-1 standard, BHVO-2 (terrestrial basalt) and meteorite samples. The 142 Nd/ 144 Nd, 145 Nd/ 144 Nd, 148 Nd/ 144 Nd, 145 Nd/ 144 Nd, 148 Nd/ 144 Nd, 150 Nd/ 144 Nd, ratios are corrected for instrumental mass fractionation (*A*, *B*, and *C*). In *D*, the raw 146 Nd/ 144 Nd ratios are plotted. Symbols as in Fig. S2.

Fig. S5. The ¹⁴⁹Sm/¹⁵²Sm vs. ¹⁵⁰Sm/¹⁵²Sm isotopic covariation for lunar samples and enstatite chondrites.

Table S1. The ¹⁴⁷ Sm	1/144 Nd ratios and concentration data for enstatite chondrites analy	zed in this study
---------------------------------	---	-------------------

Sample	Туре	Source	Weight (g)	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd
ALHA 77295	EH3	NASA	0.9135	0.1411	0.4330	0.1970
ALHA duplicate			0.9150	0.1143	0.3439	0.2009
Allende	CV3	Smith. Inst. *	1.0018	0.2406	0.7350	0.1979
Eagle 4739	EL6 Fall	AMNH [†]	0.9147	0.1078	0.3256	0.2001
Hvittis	EL6	dealers	0.9136	0.1199	0.3611	0.2007
Indarch	EH4	NHM [‡]	0.9577	0.1013	0.3050	0.2009
Jilin	H5 Fall	NHM	1.1489	0.1732	0.5500	0.1904
Khairpur	EL6 Fall	NHM	0.9696	0.1336	0.4111	0.1965
Kota-Kota	EH3	NHM	0.9290	0.1951	0.7040	0.1675
Kota-Kota duplicate			0.9011	0.2018	0.7309	0.1669
MAC 02837	EL3	NASA	0.9370	0.1634	0.4972	0.1987
MAC 02839	EL3	NASA	1.0544	0.1871	0.5723	0.1976
MAC 88180	EL3	NASA	0.9273	0.2673	0.8187	0.1974
Sahara 97072	EH3	dealers	0.9158	0.1533	0.4942	0.1875
Sahara 97096	EH3	dealers	1.1729	0.1396	0.4305	0.1961
Sahara 97158	EH3	dealers	0.9408	0.1383	0.4404	0.1899
St. Mark's 4804	EH5 Fall	AMNH	0.9572	0.1460	0.4519	0.1953

*Smithsonian Institution.

SANG SANG

[†]American Museum of Natural History.

^{*}Natural History Museum of London.

Table S2. Measured Nd isotope composition of standards and samples

_	Int ¹⁴² Nd	42 Co / 142 Not 1-	445m /144Nd	142 NA /144 NA	26	142 Nd	, - -	43 NA /144 NA	ž	145 N.d. /144 N.d	Уc	¹⁴⁵ N.d	م ۲	48 Nrd /144 Nr	۰ کو	μ 148 Nd	2c ¹⁵⁰ N	144 N.d	7c 150	اط کر ۱۸ط کر	146 N.H /144	ус Ли	
	ŝ	(mdd)	(mdd)		ì	(mqq)	(mdd)		ì	(ì	(mqq) ((mqq	í.	Ì	d) (mdd)	(md		dd)	mqq) (m			
Sequence 1																							1
JNDi-1 std.	3.8	1.5	0.4	1.141827	0.000005	-3.5	4.6	0.512103	0.00002	0.348412	0.000001	10.0	3.7	0.241590	0.000001	14.7 €	5.0 0	236464 0.0	000002 10	.9 8.2	0.72071	0.0011	17
JNDi-1 std.	4.6	0.8	0.5	1.141831	0.000005	0.3	4.4	0.512105	0.00002	0.348411	0.000001	7.7	3.2	0.241589	0.000001	11.0	5.6 0	236462 0.4	00002 3.	8 7.4	0.72240	5000.0	8
JNDi-1 std.	4.0	0.2	0.8	1.141834	0.000006	2.8	4.8	0.512104	0.00002	0.348411	0.000001	7.5	3.5	0.241588	0.000001	5.9 (5.0 0	236461 0.	00002 -2	.8 8.2	0.72185	0.0007	4
JNDi-1 std.	3.0	0.2	0.4	1.141833	0.000006	1.7	5.2	0.512104	0.00002	0.348407	0.000001	-5.8	4.0	0.241582	0.000002	-19.6	7.1 0	236460 0.	00002 -8	0.9.3	0.72078	0.0001	Ξ
JNDi-1 std.	3.5	0.1	0.4	1.141835	0.000005	3.3	4.8	0.512104	0.00002	0.348407	0.000001	-5.5	3.9	0.241581	0.000002	-21.7 (5.6 0	236459 0.1	00002 -1	2.6 9.1	0.72086	0.0000	ø
JNDi-1 std.	3.8	0.0	0.3	1.141828	0.000006	-2.4	4.9	0.512101	0.00002	0.348406	0.000001	-6.8	3.4	0.241583	0.000002	-14.1 €	5.5 0	236459 0.1	000028	.9 8.5	0.72110	0.0001	18
JNDi-1 std.	3.6	0.0	0.5	1.141829	0.000006	-1.4	4.9	0.512102	0.00002	0.348406	0.000001	-7.6	3.4	0.241581	0.000002	-22.2 (5.6 0	236458 0.0	00002 -1	4.7 8.5	0.72145	0.0002	2
JNDi-1 std.	4.5	0.1	0.5	1.141833	0.000005	1.6	4.4	0.512106	0.00002	0.348411	0.000001	6.9	3.4	0.241589	0.000001	12.3	5.7 0	236464 0.0	00002 8.	6 7.9	0.72212	0.000	õ
JNDi-1 std.	4.1	0.1	0.5	1.141832	0.000005	0.6	4.5	0.512107	0.00002	0.348411	0.000001	5.9	3.3	0.241589	0.000002	9.4 (5.3 0.	236462 0.1	00002 1.	0 8.4	0.72260	0.0001	18
JNDi-1 std.	2.9	3.2	0.5	1.141835	0.000006	3.7	5.2	0.512103	0.00002	0.348409	0.000002	1.6	4.3	0.241586	0.000002	-2.4	7.0 0.7	236464 0.0	00002 12	.1 9.4	0.72192	0.000	9
JNDi-1 std.	3.1	1.9	0.5	1.141830	0.000006	-1.2	5.2	0.512101	0.00002	0.348410	0.000001	3.3	4.0	0.241586	0.000002	-2.7	7.1 0	236463 0.0	00002 5.	2 9.1	0.72294	0000 t	00
JNDi-1 std.	2.7	1.9	0.5	1.141827	0.000007	-3.8	5.7	0.512103	0.00002	0.348410	0.000001	3.5	4.3	0.241591	0.000002	19.4	7.7 0	236467 0.0	00002 21	.2 9.9	0.72207	0.0002	56
JNDi-1 std.	3.4	0.8	9.0	1.141827	0.000006	-3.7	5.3	0.512106	0.00002	0.348412	0.000001	10.0	3.8	0.241590	0.000002	13.6 (5.7 0	236464 0.0	00002 12	.0 8.8	0.72319	0.0002	7
JNDi-1 std.	3.5	1.0	0.5	1.141831	0.000006	-0.1	5.2	0.512104	J.000002	0.348406	0.000001	-6.6	3.8	0.241586	0.000002	-3.2 (5.7 0	236459 0.0	00002 -1	2.0 9.6	0.72172	0.0006	6
JNDi-1 std.	4.0	0.4	0.5	1.141835	0.000005	3.4	4.5	0.512104	J.000002	0.348406	0.000001	-6.9	3.5	0.241586	0.000001	-1.4	5.0 0	236462 0.0	00002 3.	4 8.1	0.72220	0.0001	5
JNDi-1 std.	3.7	0.0	0.5	1.141829	0.000005	-1.5	4.7	0.512105	0.00002	0.348407	0.000001	-4.9	3.5	0.241586	0.000002	-4.1 (5.4 0	236460 0.1	00002 -7	.6 8.6	0.72280	0.0002	ß
JNDi-1 std.	3.9	0.0	0.5	1.141832	0.000006	0.7	4.9	0.512105	0.00002	0.348406	0.000001	-7.7	3.7	0.241587	0.000001	3.7 (5.1 0	236460 0.1	00002 -8	7 8.7	0.72317	0.0002	2
JNDi-1 std.	3.8	-0.1	0.7	1.141830	0.000007	-0.6	5.9	0.512105	J.000002	0.348407	0.000002	-4.7	4.4	0.241587	0.000002	1.5	7.1 0	236461 0.0	00002 -3	.0 9.8	0.72296	0.0010	5
Average ($n = 18$)				1.141831	0.000006	0.0	4.9	0.512104	0.00003	0.348409	0.000005	0.0	13.6	0.241587	0.000006	0.0 2	5.6 0.	236462 0.0	00005 0.	0 20.6	0.72205	0.0016	4
Allende run#1	3.1	8 0	00	1 141807	0 00006	-212	ی م	0 512667	200000	0 348405	0 00001	-104	9	0 241588	0,00002	5 7 5	0	236461 01	1- 20000	2 9 5	0 72373	0000	1
Allende run#2	26	с С	5.0 1 0	1 111805		200	0 1 1	0512666				90	i r	0.241580		117		736A6A 01		201	0 7735/		: 5
Allende run#3	0.7 8 C	5.0	- 0-	1 141806		-22.0	6 C	0.512670		0 348410		0.0 5 P	t r	0.241593		25.2 6		236469 0.	21 200000		70277.0		- x
Averado	2	2		1 111806		0 0	, с	0.51266				, r	15.1	0.241500		101		.0 COTOCS		1 22 1	10200) g
Average				1.141806	200000.0	8.12-	<u>.</u>	800216.0	0.00004	0.348408	c00000.0	<u>8</u> .	4.01	0.241920	500000.0	14.2	ע.ע 0.	.230405 U	100000	C.22 I.4	1627.0	0.000	No.
ALHA77295	2.2	7.8	0.1	1.141828	0.000008	-2.3	7.4	0.512607	0.00003	0.348410	0.000002	4.3	5.8	0.241590	0.000003	16.1 1	0.4 0.	236473 0.1	00003 46	.4 14.1	0.72320	0000	32
Eagle 4729	1.2	37.0	0.8	1.141819	0.000007	-10.9	6.0	0.512696	0.00003	0.348409	0.000002	1.9	4.7	0.241587	0.000002	1.5 8	3.3 0.	236462 0.4	0.00003	1 11.2	0.72292	0.0010	90
Indarch run#1	2.5	3.0	0.0	1.141814	0.000007	-15.1	5.9	0.512626	2.000007	0.348410	0.000002	4.3	4.3	0.241587	0.00002	0.7	3.2 0.	236460 0.(00003 -8	7 10.8	0.72313	0.0010	5
Indarch run#2	1.8	2.4	0.0	1.141808	0.00008	-20.4	7.3	0.512621	3.00008	0.348408	0.000002	-0.3	6.0	0.241587	0.000002	0.7	9.7 O	236466 0.1	00003 17	.2 13.9	0.7244/	E0000.0 t	õ
Average				1.141811	0.00008	-17.7	7.4	0.512624	0.00006	0.348409	0.000002	2.0	6.4	0.241587	0.00002	0.7 (0.1	236463 0.	00009 4.	3 36.6	0.72379	0.0018	52
Hvittis	2.9	3.4	0.1	1.141829	0.000006	-1.8	5.5	0.512750	0.00003	0.348414	0.000002	16.1	4.9	0.241591	0.000002	17.3 {	3.1 0	236490 0.	000002 119	9.8 10.2	0.72350	0.000	32
Khairpur	1.6	3.9	0.3	1.141816	0.000006	-13.2	5.1	0.512633	0.00002	0.348405	0.000001	-10.3	4.1	0.241582	0.000002	-18.5	7.2 0	236456 0.1	00002 -2	5.4 9.5	0.72277	0.0017	2
Kota-Kota run#1	1.5	2.9	0.0	1.141836	0.00000	4.0	7.8	0.512456).000003	0.348409	0.000002	1.2	5.8	0.241579	0.000003	-32.3 1	1.0 0.1	236448 0.(00003 -5	8.5 14.6	0.72198	3 0.0011	6
Kota-Kota run#2 Average	1.9	1.1	0.0	1.141832 1.141834	0.000008	0.9 2.4	6.6 4.4	0.512458	0.000003	0.348410 0.348409	0.000002 0.000001	3.3 2.2	5.0 2.9	0.241582 0.241581	0.000002	-17.1 { -24.7 2	3.9 0. 1.5 0.	.236455 0. 236451 0.0	00003 -2 000010 -4	9.5 12.8 4.0 40.9	0.72408 0.72303	8 0.0007	5 75
Mac 02837 run#1	1.0	12.6	0.1	1.141826	0.000012	-4.5	10.2	0.512653	0.000004	0.348406	0.000003	-7.0	7.5	0.241578	0.000004	-36.0 1	4.7 0.	236454 0.4	00005 -3	2.4 19.8	0.72140	0.0012	5
Mac 02837 run#2 Average	1.1	4.3	-0.3	1.141826 1.141826	0.0000011 0.000000	-4.3 -4.4	9.6 0.3	0.512653 0.512653	0.000004	0.348407 0.348407	0.000003 0.000002	-3.6 -5.3	7.3 4.8	0.241583 0.241580	0.000003	-15.6 1 -25.8 2	2.9 0.	236463 0. 236458 0.(000004 4. 000012 -1-	2 16.7 4.1 51.8	0.72326 0.72233	0.0006	4 m

<u>1</u>	t. ¹⁴² Nd ¹⁴	¹² Ce / ¹⁴² Nd ^{1,}	⁴⁴ Sm / ¹⁴⁴ Nd ¹	⁴² Nd / ¹⁴⁴ Nd	25	¹⁴² Nd	2s ^{14:}	³ Nd / ¹⁴⁴ Nd	25	⁴⁵ Nd / ¹⁴⁴ Nd	25	145Nd	25 ¹⁴	⁸ Nd / ¹⁴⁴ Nd	ž	н ¹⁴⁸ Nd	2s ¹⁵⁰ h	144 Nd	7s ¹⁵⁰ 1	Nd 2s	¹⁴⁶ Nd / ¹⁴	4 Nd	
	Ś	(mqq)	(mdd)			ł) (mdd	(mqo) (mqq)	(mdd)	d) (mqq	(md		dd)	mdd) (m	(
Mac 02839 run#1	0.9	12.9	-0.1	1.141826	0.000012	-4.4	10.5 (0.512640 (000005	0.348409 (0.00003	2.6	8.3	0.241581	0.000004 -	-22.4 1	4.5 0.	236458 0.1	000005 -11	5.1 19.5	0.7196	2 0.00	065
Mac 02839 run#2	3.4	1.1	-0.2	1.141825	0.000006	-5.1	5.0	0.512642 (000002	0.348407	0.00001	4.4	3.9	0.241586	0.000002	-1.9	5.6 0.	236463 0.	00002 6.	4 9.1	0.7238	10.00	100
Mac 02839 run#3	1.9	0.9	0.1	1.141827	0.00008	-3.1	7.2	0.512644 (000003	0.348408	0.000002	-2.1	6.1	0.241584	0.000003	-11.3 1	0.6 0.	236466 0.	00003 16	.7 13.5	0.7245	0.00	075
Average				1.141826	0.000002	-4.2	2.1	0.512642 (000003	0.348408	0.000002	-1.3	7.1	0.241584	0.000005	-11.9 2	0.5 0.	236462 0.	00008 2.	7 32.4	0.7226	57 0.00	532
Mac 88180 run#1	3.7	1.2	0.0	1.141831	0.000005	0.4	4.8	0.512730 (.000002	0.348411 (0.000001	6.1	3.7	0.241584	0.000002	-11.0	5.3 0.	236458 0.	00002 -13	3.2 8.6	0.7210	0.00	008
Mac 88180 run#2	4.0	0.3	0.0	1.141835	0.000005	3.7	4.1	0.512732 (.000002	0.348410 (0.000001	4.9	3.0	0.241585	0.000001	-6.6	5.4 0.	236460 0.	00002 -8	3 7.3	0.7229	00.0	024
Mac 88180 run#3	3.2	0.2	-0.1	1.141837	0.000005	5.1	4.8	0.512733 (0.00002	0.348411 (0.000001	6.4	3.7	0.241585	0.00002	-7.1	7.1 0.	236458 0.	1- 20000	4.1 9.3	0.7234	15 0.00	011
Average				1.141834	0.000005	3.1	4.8	0.512732 (000003	0.348411	0.000001	5.8	1.6	0.241585	0.000001	-8.2	4.8 0.	236459 0.	00001 -1	1.9 6.3	0.7225	0.00	251
Sahara 97072 run#1	2.9	4.8	0.0	1.141815	0.000006	-14.2	5.7 (0.512518 (.000002	0.348415 (0.00001	19.2	4.3	0.241592	0.000002	21.1	7.2 0.	236464 0.	00002 8.	7 10.3	0.7200	0.00	030
Sahara 97072 run#2	4.3	1.5	0.1	1.141812	0.000005 -	-16.7	4.5	0.512517 (0.00002	0.348413	0.000001	13.8	3.4	0.241590	0.000002	13.0	5.4 0.	236463 0.1	00002 5.	1 8.5	0.7207	8 0.00	023
Sahara 97072 run#3	4.2	0.3	0.0	1.141809	0.000005 -	-18.9	4.5	0.512518 (0.000002	0.348412	0.000001	9.4	3.2	0.241590	0.000001	12.5	5.7 0.	236463 0.	00002 5.	8 7.9	0.7226	8 0.00	061
Sahara 97072 run#4	4.1	0.1	0.1	1.141814	0.000005	-14.5	4.7	0.512519 (0.00002	0.348413	0.000001	11.7	3.3	0.241590	0.000001	12.4	5.2 0.	236463 0.	000002 6.	1 8.0	0.7237	1 0.00	054
Average				1.141813	0.000005	-16.1	4.3	0.512518	0.000002	0.348413	0.000003	13.5	8.4	0.241590	0.000002	14.7	3.4 0.	236463 0.1	000001 6.	4 3.1	0.7218	1 0.00	336
Sahara 97158	0.9	3.3	0.1	1.141815	0.000011	-13.9	9.6	0.512561 (0.000004	0.348412	0.00003	9.2	8.0	0.241587	0.000003	0.3	4.1 0.	236474 0.1	00004 53	.1 17.9	0.7219	3 0.00	018
St. Mark's run#1	1.6	21.9	0.0	1.141809	- 600000.0	-19.1	7.5 (0.512604 (0.00003	0.348410	0.000002	4.7	5.8	0.241591	0.000002	17.2	9.7 0.	236465 0.	00003 16	.1 13.6	0.7217	4 0.00	159
St. Mark's run#2	3.0	3.3	0.0	1.141814	0.000006 -	-14.9	5.2	0.512605 (0.00002	0.348412	0.000001	9.9	4.2	0.241591	0.000002	19.9	5.8 0.	236469 0.	00002 33	.4 9.6	0.7230	00.0 60	039
Average				1.141812	0.000007 -	-17.0	5.9	0.512604 (0.000002	0.348411	0.000003	7.3	7.3	0.241591	0.000001	18.6	3.8 0.	236467 0.1	000006 24	.8 24.4	0.7224	12 0.00	191
BHVO2	3.9	0.1	0.0	1.141837	0.00005	5.2	4.5	0.512983 (0.000002	0.348410	0.000001	5.4	3.5	0.241586	0.000001	-2.0	5.9 0.	236459 0.1	00002 -1.	1.2 8.1	0.7254	70 0.00	033
																							Ι
Sequence 2	0	г С	۲ ۵	CC011 1		Ċ	, , ,	0.11000				0	L L	0011100		c c			11 00000	;		000	
INDI-1 sta.	2.0 2.6	0.3	0.4	1 141823	0.00006	0.7- - 2.7	л. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.) 26021C.0		0.348409	0.000001	0.0 10.6	0.0	0.241590		5.5 10 3	- C	236468 0.1	11 200000	2.51 2.3 8 10.6	7222.0	0.00	041
JNDi-1 std.	2.0	0.3	1.7	1.141827	0.00000.0	0.3	7.8	0.512098 (000003	0.348407	0.000002	2.7		0.241587	0.00003	-0.6	0.7 0.	236459 0.	000003 -2.	1.6 14.2	0.7211	6 0.00	019
JNDi-1 std.	2.3	0.2	0.8	1.141831	0.000007	3.7	6.4	0.512102 (000003	0.348404 (0.000002	-6.0	4.5	0.241585	0.000002	-8.2	3.5 0.	236465 0.1	00003 3.	5 11.2	0.7230	0.00	076
JNDi-1 std.	2.5	0.3	0.6	1.141830	0.000007	2.8	6.0	0.512096 (000003	0.348404	0.000002	-6.1	4.5	0.241586	0.000002	-4.6	7.8 0.	236463 0.1	00003 -5	.8 10.9	0.7212	0.00	032
JNDi-1 std.	3.1	0.2	0.1	1.141825	0.000006	-1.3	5.4	0.512095 (0.00002	0.348407	0.000001	1.2	3.9	0.241587	0.000002	-0.7	5.8 0.	236464 0.	2000022	.1 9.5	0.7216	0.00	038
Average ($n = 6$)				1.141826	0.00006	0.0	5.5	0.512097 (0.00005	0.348406	.000004	0.0	11.3	0.241587	0.00003	0.0	3.0 0.	236464 0.1	0 90000	0 26.3	0.7218	37 0.00	151
Allende run#1	1.5	3.8	0.9	1.141788	- 600000.0	-33.3	7.9	0.512674 (.000004	0.348405 (0.00002	-3.4	6.8	0.241589	0.00003	4.7	0.8 0.	236462 0.1	00003 -9	.7 14.5	0.7212	1 0.00	067
Allende run#3	2.7	1.4	3.4	1.141794	0.000007	-28.4	6.5	0.512672 (000003	0.348406	0.00002	-0.1	4.9	0.241590	0.000002	8.9	7.9 0.	236461 0.	00003 -12	2.0 10.9	0.7226	0.00	097
Average				1.141791	0.000008	-30.9	6.9	0.512673 (0.00002	0.348406	0.000002	-1.7	4.7	0.241589	0.000001	6.8	5.1 0.	236461 0.	00001 -10	0.9 3.2	0.7219	0.00	198
Jilin run#1	3.0	4.7	11.7	1.141801	0.000006 -	-22.4	5.3	0.512582 (0.00002	0.348407	0.00001	2.8	4.2	0.241587	0.000002	-3.3	5.9 0.	236460 0.	00002 -1	7.2 9.6	0.7212	00.0 6	091
Jilin run#2	2.6	0.8	11.3	1.141798	0.000006	-24.8	5.4	0.512580 (0.00002	0.348408	0.000001	4.3	4.2	0.241589	0.000002	4.8	7.7 0.	236460 0.1	000002 -10	5.1 9.9	0.7226	5 0.00	005
Jilin run#3	2.5	0.6	14.0	1.141804	0.000007	-19.9	5.7	0.512580 (0.00002	0.348407	0.000002	1.7	4.4	0.241590	0.000002	12.1	7.7 0.	236464 0.	0000020	.6 10.4	0.723	2 0.00	014
Average				1.141801	0.000006	-22.4	2.0	0.512581 (0.000003	0.348407	0.000001	2.9	2.6	0.241589	0.000004	4.5	5.5 0.	236461 0.	00004 -1	1.3 18.5	0.7223	8 0.00	197

DNAS

E	t. ¹⁴² Nd ¹⁴²	Ce/ ¹⁴² Nd ¹⁴	⁴ Sm/ ¹⁴⁴ Nd	¹⁴² Nd / ¹⁴⁴ Nd	2s	μ ¹⁴² Nd	25	¹⁴³ Nd / ¹⁴⁴ Nd	2s	¹⁴⁵ Nd / ¹⁴⁴ Nd	25	μ ¹⁴⁵ Nd	S	⁴⁸ Nd / ¹⁴⁴ Nd	25	¹⁴⁸ Nd	2s ¹⁵	0Nd/ ¹⁴⁴ Nd	2s	ри 20Nd	2s ¹⁴	¹⁶ Nd / ¹⁴⁴ Nd	2s
		(index)				(indd)																	
Sahara 97072 run1	4.6	1.0	4.8	1.141817	0.000005	-8.4	4.2	0.512550	0.000002	0.348406	0.00000	-0.7	3.3	0.241589	0.000001	7.1	5.6	0.236470 0	000002	27.2	8.0	0.72267	0.00065
Sahara 97072 run2 Averade	3.6	3.6	2.4	1.141810	0.000006	-14.0	4.9	0.512551	0.000002	0.348407	0.000001	0.7	3.7 2 1	0.241589 0.241589	0.000002	6.3	6.3	0.236471 0	000002	27.5 27.4	8.7	0.72241 0.72254	0.00048
													i										
Sahara 97096 run1	3.7	12.6	3.1	1.141805	0.000007	-18.8	5.8	0.512595	000003	0.348407	0.00002	1.4	4.4	0.241593	0.000002	23.1	7.7	0.236473 0	000002	36.4	10.5	0.72276	0.00076
Sahara 97096 run2	4.5	16.4	1.7	1.141801	0.000005	-22.6	4.9	0.512592	0.000002	0.348406	0.000001	0.4	3.2	0.241592	0.000001	18.5	80. 0 10. 0	0.236469 0	000002	21.8	7.5	0.72247	0.00022
Sahara 97096 run3 Sahara 97096 run4	3.2 C &	9 1	0.1	1.141803	0.000006	-20.6	0.c 0.d	0.512594	2000000	0.348409	100000	8. V	ν. α	0.241589	0.00000	6.2 15.3	6.9 0	0.236464 0 0.236468 0			9.3 C C	0.72383	0.00059
Average	į	ī	ł	1.141804	0.000005	-19.9	4.4 6.4	0.512594	000003	0.348407	0.00003	2.5	7.2	0.241591	0.000003	15.8	14.3	0.236468 0	00000	18.2	31.5	0.72302	0.00117
Sequence 3																							
JNDi-1 std.	7.1	0.7	0.5	1.141830	0.000004	-2.6	3.7	0.512102	0.000002	0.348401	0.00001	-0.4	2.7	0.241581	0.000001	-10.6	4.8	0.236452 0	000002 -	-22.7	9.9	0.72201	0.00032
JNDi-1 std.	6.4	0.7	0.4	1.141837	0.000004	3.1	3.7	0.512101	0.000002	0.348402	0.00001	0.4	2.9	0.241582	0.000001	-6.4	5.2	0.236458 0	000002	1.4	6.9	0.72191	0.00006
JNDi-1 std.	5.2	0.7	0.6	1.141837	0.000004	3.1	3.7	0.512101	0.000002	0.348402	0.000001	0.5	2.9	0.241582	0.000001	-6.6	5.0	0.236458 0	000002	1.5	6.8	0.72207	0.00031
JNDi-1 std.	8.4	0.2	0.3	1.141836	0.000004	2.8	3.3	0.512104	0.000001	0.348400	0.000001	-3.1	2.6	0.241581	0.000001	-9.6	4.3	0.236454 0	- 100000	-15.3	6.1	0.72259	0.00045
JNDi-1 std.	7.3	0.3	0.5	1.141836	0.00000	2.3	8.1	0.512104	0.00003	0.348400	0.00002	-3.6	6.4	0.241584	0.000003	1.0	10.8	0.236461 0	000003	12.6	14.0	0.72241	0.00023
JNDi-1 std.	6.1	0.2	0.5	1.141834	0.00008	1.0	6.9	0.512102	0.00003	0.348399	0.00002	-6.5	4.5	0.241581	0.000002	-9.0	9.3	0.236456 0	000003	-6.1	13.6	0.72266	0.00021
JNDi-1 std.	5.6	0.4	0.3	1.141828	0.000004	-4.4	3.9	0.512098	0.000002	0.348401	0.00000	-1.9	3.0	0.241586	0.000001	11.2	5.5	0.236461 0	000002	14.0	7.4	0.72329	0.00039
JNDi-1 std.	4.2	0.6	0.6	1.141833	0.000005	-0.4	4.4	0.512099	0.000002	0.348402	0.000001	2.1	3.5	0.241583	0.000001	-0.9	5.9	0.236455 0	- 200000	-13.0	8.1	0.72123	0.00055
JNDi-1 std.	8.0	0.0	0.6	1.141832	0.000004	-1.2	3.4	0.512098	0.000001	0.348402	0.00000	0.9	2.5	0.241584	0.000001	0.1	4.3	0.236459 0	000001	5.1	6.1	0.72339	0.00085
JNDi-1 std.	4.6	0.2	1.0	1.141836	0.000005	2.5	4.8	0.512103	0.000002	0.348403	0.00002	5.4	5.0	0.241585	0.000002	5.3	7.0	0.236460 0	000003	11.0	11.0	0.72231	0.00021
JNDi-1 std.	6.5	0.7	0.9	1.141835	0.000004	1.5	3.5	0.512099	0.000002	0.348403	0.000001	4.9	3.5	0.241586	0.000001	10.4	6.1	0.236459 0	000002	5.6	7.8	0.72191	0.00006
JNDi-1 std.	3.6	0.7	0.2	1.141828	0.000005	-4.9	4.1	0.512095	0.000002	0.348402	0.00000	2.5	3.7	0.241587	0.000002	15.1	6.5	0.236462 0	000002	16.4	8.3	0.72195	0.00011
JNDi-1 std.	4.2	0.5	0.7	1.141830	0.000004	-2.8	3.8	0.512096	0.000002	0.348401	0.00000	-1.2	3.6	0.241584	0.000002	0.1	6.2	0.236455 0	000002 -	-10.5	8.5	0.72193	0.00007
Average ($n = 13$)				1.141833	0.000007	0.0	5.8	0.512100	0.00006	0.348401	0.00002	0.0	6.7	0.241584	0.000004	0.0	16.9	0.236458 0	000000	0.0	25.0	0.72228	0.00119
LaJolla std	6.8	0.8	0.7	1.141830	0.00007	-2.8	6.2	0.511843	000003	0.348401	0.00002	-1.2	4.3	0.241584	0.000002	1.7	7.9	0.236461 0	000003	5.2	11.2	0.7229	0.00024
LaJolla std	5.8	1.3	0.3	1.141838	0.000005	3.9	4.0	0.511845	0.000002	0.348399	0.00001	-6.5	2.9	0.241585	0.000001	4.5	5.2	0.236461 0	000002	3.2	7.3	0.72305	0.00036
LaJolla std	7.0	1.1	0.3	1.141837	0.000005	3.0	4.4	0.511846	0.000002	0.348401	0.000001	-0.5	3.5	0.241583	0.000002	-0.8	6.5	0.236461 0	000002	2.4	8.1	0.72275	0.00039
LaJolla std	7.3	1.4	0.3	1.141831	0.000004	-2.1	3.5	0.511846	0.000002	0.348401	0.000001	-0.2	2.8	0.241583	0.000001	-2.1	4.5	0.236458 0	- 100000	-10.8	6.2	0.72245	0.00022
Average (n=4)				1.141834	0.00008	0.5	6.9	0.511845	000003	0.348401	0.00002	-2.1	5.9	0.241584	0.000001	0.8	5.8	0.236460 0	000004	0.0	14.6	0.72279	0.00051
AMES std	9.1	0.5	0.0	1.141832	0.000004	-0.6	3.2	0.511959	0.000001	0.348403	0.00001	3.4	2.3	0.241584	0.000001	-0.3	4.3	0.236457 0	00000	6.8	5.5	0.72265	0.00069
AMES std	8.5	1.2	0.0	1.141835	0.000004	1.4	з.1	0.511961	0.000001	0.348402	0.000001	1.2	2.5	0.241583	0.000001	-2.8	4.3	0.236457 0	000001	6.4	5.6	0.72207	0.00039
AMES std	7.8	1.0	-0.2	1.141830	0.000004	-2.6	3.3	0.511959	0.000002	0.348402	0.000001	1.8	2.5	0.241582	0.000001	-6.5	4.6	0.236455 0	000001	-5.1	6.1	0.72022	0.00055
AMES std	6.3	1.7	-0.1	1.141826	0.000004	-6.1	3.7	0.511958	0.000002	0.348401	0.00000	-0.7	3.0	0.241581	0.000001	-9.3	5.1	0.236454 0	000002	-6.3	9.9	0.71986	0.00047
AMES std	5.7	0.9	-0.2	1.141837	0.000005	3.6	4.0	0.511959	0.000002	0.348401	0.00000	-0.7	2.9	0.241582	0.000001	-4.8	5.3	0.236458 0	000002	7.7	7.0	0.72152	0.00045
AMES std	4.2	0.9	0.0	1.141831	0.000004	-1.6	3.2	0.511959	0.000001	0.348402	0.000001	2.1	2.5	0.241582	0.000001	-6.2	4.4	0.236457 0	000001	3.4	5.9	0.72187	0.00037
AMES std	5.2	2.0	-0.1	1.141832	0.000005	-1.1	4.0	0.511960	0.000002	0.348400	0.000001	-3.9	2.8	0.241580	0.000001	-15.2	5.0	0.236453 0	000002 -	-12.9	7.5	0.71964	0.00011
Average ($n = 8$)				1.141832	0.000007	-1.0	6.1	0.511959	0.000002	0.348402	0.00002	0.4	4.9	0.241582	0.000002	-6.4	9.6	0.236456 0	000004	0.0	16.1	0.72112	0.00239

Sm isotope ratios n	ormalized to ¹⁴	47 Sm/ 152 Sm = 0.	56081										
	Int. 152Sm	¹⁴⁶ Nd / ¹⁵² Sm	¹⁵⁶ Gd/ ¹⁵² Sm	144 Sm $/^{152}$ Sm	2 s	¹⁴⁸ Sm/ ¹⁵² Sm	2 s	¹⁴⁹ Sm / ¹⁵² Sm	2 s	¹⁵⁰ Sm/ ¹⁵² Sm	2 s	¹⁵⁴ Sm / ¹⁵² Sm	2 s
Sequence 1	ŝ	mqq	mdd										
Standard Sm	2.96	0.48	7.35	0.114975	0.000001	0.420437	0.000002	0.516856	0.000002	0.275985	0.000001	0.850761	0.000004
Standard Sm	4.55	0.19	2.14	0.114976	0.000001	0.420438	0.000002	0.516859	0.000002	0.275985	0.000001	0.850760	0.000003
Standard Sm	4.71	0.12	1.85	0.114976	0.000001	0.420436	0.000002	0.516856	0.000002	0.275984	0.000001	0.850765	0.000003
Standard Sm	4.88	-0.90	1.45	0.114979	0.000001	0.420435	0.000002	0.516854	0.000002	0.275984	0.000001	0.850770	0.00003
Standard Sm	5.64	-0.14	0.62	0.114980	0.000001	0.420434	0.000001	0.516853	0.000001	0.275983	0.000001	0.850777	0.000003
Average ($n = 5$)				0.114977	0.000004	0.420436	0.00003	0.516856	0.000005	0.275984	0.000002	0.850767	0.000014
2 s ppm				35.9		7.3		9.2		7.6		16.9	
Eagle	0.34	28.60	-4.90	0.114982	0.000014	0.420417	0.000014	0.516836	0.000015	0.275994	0.000011	0.850792	0.000021
Indarch	1.84	33.30	2.79	0.114979	0.00003	0.420431	0.000006	0.516833	0.00006	0.276008	0.00003	0.850781	0.000010
Kairpur	0.63	38.30	-3.12	0.114982	0.000011	0.420440	0.000011	0.516805	0.000012	0.276009	0.000010	0.850790	0.000018
Kota-Kota	0.77	35.40	1.62	0.114977	0.000005	0.420422	0.00008	0.516883	0.00008	0.275979	0.00006	0.850751	0.000015
MAC 02839	0.31	11.90	58.60	0.114991	0.000013	0.420434	0.000016	0.516820	0.000017	0.276012	0.000012	0.850833	0.000024
St. Mark's	0.36	30.90	11.10	0.114997	0.000014	0.420454	0.000015	0.516856	0.000018	0.275977	0.000012	0.850766	0.000030
Sahara 97096	0.36	20.80	9.88	0.114980	0.000014	0.420422	0.000012	0.516797	0.000012	0.276041	0.000011	0.850825	0.000020
Sequence 2													
Standard Sm	1.92	1.82	11.20	0.114978	0.000001	0.420428	0.00003	0.516856	0.00003	0.275982	0.000002	0.850769	0.000005
Standard Sm	2.65	0.60	1.42	0.114979	0.000001	0.420427	0.000002	0.516855	0.000002	0.275984	0.000001	0.850769	0.00003
Standard Sm	3.20	0.56	8.25	0.114978	0.000001	0.420428	0.000001	0.516855	0.000002	0.275982	0.000001	0.850756	0.00003
Standard Sm	07. 6	0 74	6.36	0 114978	0 000001	0 420428	0 000001	0 516855	0 00001	0 275983	0 000002	0 850765	0 000016
$\Delta verade (n = 5)$			0	0 114978	0.00000	0.420428	0.00000	0 516855	0.00000	0.275983	2000000	0.850765	0.000013
2 c nnm				с С С С С		16		1 9		7 1	1000000	15.0	00000
Hvittic	1 38	78 90	8 68	0 11/082		0.420425		0 516821		0 276047		0.850782	
	02.1	5 01	0.00	200411.0	20000000			0.51600		0.75095	0,00000	0.050757	
Sahara 97158	0.10	16.6	1.00 51 70	0.114304 0 114975	0.00000	0.420445 0.420444	0.00000	0 516838	0.00005	0.276018		0.850805	
		147 - 154 -					100000		CO00000	0100170	1000000		0,000,0
Sm isotope ratio:	s normalized	to ¹⁴ /Sm/ ¹³⁴ S	m = 0.65918										
				¹⁴⁴ Sm/ ¹⁵⁴ Sm	2 S	¹⁴⁸ Sm/ ¹⁵⁴ Sm	2 S	149 Sm $/^{154}$ Sm	2 s	$^{150} Sm/^{154} Sm$	2 S	$^{152}Sm/^{154}Sm$	25
Sequence 1													
Standard Sm				0.135142	0.000001	0.494185	0.000002	0.607518	0.000003	0.324396	0.000002	1.175415	0.000004
Standard Sm				0.135143	0.000001	0.494186	0.000002	0.607522	0.000002	0.324396	0.000001	1.175416	0.000003
Standard Sm				0.135143	0.000001	0.494184	0.000002	0.607517	0.000002	0.324394	0.000001	1.175411	0.000003
Standard Sm				0.135147	0.000001	0.494182	0.000002	0.607514	0.000002	0.324394	0.000001	1.175406	0.000003
Standard Sm				0.135149	0.000001	0.494180	0.000002	0.607511	0.000002	0.324391	0.000001	1.175399	0.000003
Average ($n = 5$)				0.135145	0.000006	0.494183	0.000005	0.607516	0.000008	0.324394	0.000005	1.175410	0.000014
2s ppm				42.4		9.4		13.0		14.2		12.2	
Eagle				0.135155	0.000016	0.494159	0.000017	0.607483	0.000019	0.324400	0.000013	1.175384	0.000021
Indarch				0.135147	0.000004	0.494176	0.000007	0.607486	0.000007	0.324419	0.000004	1.175395	0.000010
Kairpur				0.135153	0.000012	0.494186	0.000013	0.607450	0.000016	0.324424	0.000011	1.175387	0.000018
Kota-Kota				0.135144	0.000006	0.494169	0.00000	0.607551	0.000010	0.324391	0.000007	1.175425	0.000014
MAC 02839				0.135164	0.000015	0.494176	0.000019	0.607450	0.000021	0.324414	0.000014	1.175343	0.000024
St. Mark's				0.135171	0.000016	0.494202	0.000017	0.607521	0.000019	0.324393	0.000014	1.175410	0.000030
Sahara 97096				0.135150	0.000016	0.494165	0.000015	0.607438	0.000016	0.324460	0.000014	1.175352	0.000020
Sequence 2													
Standard Sm				0.135145	0.000002	0.494174	0.000003	0.607517	0.000003	0.324391	0.000002	1.175407	0.000005
Standard Sm				0.135146	0.000001	0.494174	0.000002	0.607516	0.000002	0.324394	0.000001	1.175408	0.000003
Standard Sm				0.135146	0.000001	0.494175	0.000002	0.607518	0.000002	0.324394	0.000001	1.175421	0.000003
Standard Sm				0.135146	0.000001	0.494175	0.000002	0.607518	0.000002	0.324394	0.000001	1.175421	0.000003
Average ($n = 5$)				0.135146	0.00000.0	0.494175	0.000002	0.60/51/	0.00002	0.324393	0.000003	1.1/5414	100000.0

Table S3. Measured Sm isotope composition of standards and samples

$^{147}\rm{Sm}/^{154}\rm{Sm}=0.65918$
9
normalized
ratios
isotope
Sm

	¹⁴⁴ Sm/ ¹⁵⁴ Sm	2 S	¹⁴⁸ Sm/ ¹⁵⁴ Sm	2 S	¹⁴⁹ Sm/ ¹⁵⁴ Sm	2 s	¹⁵⁰ Sm/ ¹⁵⁴ Sm	2 S	¹⁵² Sm/ ¹⁵⁴ Sm	2s
2 s ppm	6.0		3.9		3.0		9.8		13.1	
Hvittis	0.135151	0.000002	0.494170	0.000004	0.607473	0.000004	0.324463	0.000003	1.175392	0.000006
MAC 88180	0.135152	0.000001	0.494181	0.000003	0.607550	0.000003	0.324397	0.000002	1.175419	0.000004
Sahara 97158	0.135147	0.000005	0.494187	0.000006	0.607491	0.000007	0.324427	0.000005	1.175363	0.000010

Table S4. The ¹⁴²Nd/¹⁴⁴Nd ratios are expressed in ppm deviation from the value obtained for the JNdi-1 terrestrial standard

	¹⁴² Nd/ ¹⁴⁴ Nd		¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴² Nd/ ¹⁴⁴ Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴² Nd/ ¹⁴⁴ Nd	
Sample name	measured *	2σm †	measured [‡]	corr. §	cal. 1	corr. II	Reference
Abee	-43.6	17.1	0.1903	-35.4	0.1946	-41.5	(1)
ALHA77295	-2.3	7.4	0.1970	-3.6	0.1952	-1.2	this study
Eagle	-10.9	6.0	0.2001	-16.8	0.1982	-14.1	this study
Hvittis	-1.8	5.5	0.2007	-8.6	0.2000	-7.5	this study
Indarch	-14.6	5.0	0.1934	-10.9	0.1958	-14.3	(2)
Indarch	-17.7	7.4	0.2009	-24.8	0.1958	-17.4	this study
Khairpur	-13.2	5.1	0.1965	-13.9	0.1961	-13.4	this study
Kota-Kota	2.4	4.4	0.1675	43.3	0.1903	10.6	this study
MAC 02837	-4.4	0.3	0.1987	-8.2	0.1967	-5.4	this study
MAC 02839	-4.2	2.1	0.1976	-6.5	0.1964	-4.7	this study
MAC 88180	3.1	4.8	0.1974	1.1	0.1993	-1.7	this study
Sahara 97072	-16.1	4.3	0.1875	-3.9	0.1923	-10.8	this study
Sahara 97096	-19.9	4.3	0.1961	-20.0	0.1948	-18.2	this study
Sahara 97158	-13.9	9.9	0.1899	-5.1	0.1937	-10.7	this study
St. Mark's	-17.0	5.9	0.1953	-16.0	0.1951	-15.7	this study

*The ¹⁴²Nd/¹⁴⁴Nd ratios corrected for isobaric interferences and mass fractionation.

[†]Internal errors.

PNAS PNAS

^{*}Measured ¹⁴⁷Sm/¹⁴⁴Nd ratios.

⁵The ¹⁴²Nd/¹⁴⁴Nd ratios corrected for a common evolution considering a constant ¹⁴⁷Sm/¹⁴⁴Nd ratio [0.196, (3)] from 4.568 Ga and an initial solar system ¹⁴⁶Sm/¹⁴⁴Sm ratio equal to 0.0085 (4). We have used the measured ¹⁴⁷Sm/¹⁴⁴Nd ratios.

¹¹The ¹⁴⁷Sm/¹⁴⁴Nd ratios calculated from measured ¹⁴³Nd/¹⁴⁴Nd ratios assuming that all meteorites evolve from the same chondritic reservoir since 4.568 Ga. ¹¹Corrected ¹⁴²Nd/¹⁴⁴Nd ratios following the method explained above but using calculated ¹⁴⁷Sm/¹⁴⁴Nd ratios instead of measured ratios. Note that the measured and calculated ¹⁴²Nd/¹⁴⁴Nd deviations are similar considering the analytical errors except for Kota-Kota, which is characterized by unusual low ¹⁴⁷Sm/¹⁴⁴Nd and ¹⁴³Nd/¹⁴⁴Nd ratios.

1 Boyet M, Carlson RW (2005) ¹⁴²Nd evidence for early (>4.53 Ga) global differentiation of the silicate earth. Science 309:576–581.

2 Carlson RW, Boyet M, Horan MF (2007) Chondrite barium, neodymium, and samarium isotopic heterogeneity and early earth differentiation. *Science* 316:1175–1178. 3 Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition

of terrestrial planets. Earth Planet Sci Lett 273:48–57.

4 Boyet M, Carlson RW, Horan M (2010) Old Sm-Nd ages for cumulate eucrites and redetermination of the solars system initial ¹⁴⁶Sm/¹⁴⁴Sm ratio. Earth Planet Sci Lett 291:172–181.