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Figure S3. Morphology change of THP-1 cells upon PMA/LPS activation and the cell viability test 

results. 
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Figure S5. PMA and LPS activation and kinetics of protein secretion from activated macrophage 

cells. 

Figure S6. Simulated histograms of average intensity from multiple DNA barcode loctions. 
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Figure S8. The dependence of the dominant eigenvalues of the covariance matrix on the number of 

cells in the sample. 
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Figure S9.  Heat map of the covariance matrix (left) and of the contributions to the first two tiers of 

the network (right) for measurements on chambers containing 3 cells. 

Figure S10. Heat map plots showing the secretion profiles of single cells when adding different 

neutralizing antibodies. 
 

Table S1. Sequences and terminal functionalization of oligonucleotides. 

Table S2. Summary of antibodies used for macrophage experiments. 

Table S3. Digital data for the fluctuation in protein copy numbers for experiments with 1 cell in the 

chamber.  

Table S4. Signal-to-noise ratio (S/N) for single cells in SCBC measurements. 

Table S5. Parameters utilized for the protein assay calibration curve. 

Table S6. Values of parameters used in simulation. 

Table S7. The coefficients of variation for each of the assayed proteins from single cell experiments.  

Table S8. Digital representation of the covariance matrix for 1 cell measurements. 
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Supplementary Experimental Methods (SI. I) 
I. Experimental Procedure 

Microchip Fabrication. The SCBCs were assembled from a DNA barcode microarray glass slide and 

a PDMS slab containing a microfluidic circuit (1, 2). The DNA barcode array was created with 

microchannel-guided flow patterning technique (2). Each barcode was comprised of thirteen stripes of 

uniquely designed ssDNA molecules. PDMS microfluidic chip was fabricated using a two-layer soft 

lithography approach (3). The control layer was molded from a SU8 2010 negative photoresist (~20 

µm in thickness) silicon master using a mixture of GE RTV 615 PDMS prepolymer part A and part B 

(5:1). The flow layer was fabricated by spin-casting the pre-polymer of GE RTV 615 PDMS part A 

and part B (20:1) onto a SPR 220 positive photoresist master at ~2000 rpm for 1minute. The SPR 220 

mold was ~18 µm in height after rounding via thermal treatment. The control layer PDMS chip was 

then carefully aligned and placed onto the flow layer, which was still situated on its silicon master 

mold, and an additional 60 min thermal treatment at 80 °C was performed to enable bonding. 

Afterward, this two-layer PDMS chip was cut off and access holes drilled. In order to improve the 

biocompatibility of PDMS, we performed a solvent extraction step, which removes uncrosslinked 

oligomers, solvent and residues of the curing agent through serial extractions/washes of PDMS with 

several solvents (4, 5). We noticed that this step significantly improves the biocompatibility and the 

reproducible protein detection. Finally, the microfluidic-containing PDMS slab was thermally bonded 

onto the barcode-patterned glass slide to give a fully assembled microchip.  

Barcode Arrays. The barcode array initially consists of 13 uniquely designed DNA strands 

labeled in order as A through M. Prior to loading cells, a cocktail containing all capture antibodies 

conjugated to different complementary DNA strands (A’-L’) is flowed through the chambers, thus 

transforming, via DNA-hybridization, the DNA barcode into an antibody array. These dozen proteins 

that comprised the panel used here were encoded by the DNA strands A through L, respectively. 

Calibration and cross reactivity curves for each protein assay are in Fig. S2, The DNA oligomer 

sequences and the antibody pairs used are listed in Tables S1 and S2.   

Culture and stimulation of THP-1 cells. We cultured human monocyte THP-1 cells (clone 

TIB 202) in RPMI-1640 (ATCC) medium supplemented with 10% fetal bovine serum and 10 μM 2-

mercaptoethanol. Cells grown close to the maximum density (0.8×106 cells/mL) were chosen for the 

experiment. Cells were first treated with 100 ng/mL phorbol 12-myristate 13-acetate (PMA) for 12 

hours during which a characteristic morphological change was noticed as an indication of the 

induction to the macrophages (Fig. S3). Cells were washed with fresh media and resuspended in 

media with PMA (100 ng/mL) and lipopolysaccharide (LPS, 200 ng/mL) at 0.5×106 cells/mL for the 

further differentiation and the TLR-4 activation.  

On-chip secretion profiling.  Prior to loading cells on chip, the DNA barcode array was 

http://www.alomone.com/system/UpLoadFiles/DGallery/Docs/P-800.pdf


Proteins Fluctuations from Single Cell 

 4 

transformed into an antibody microarray through the following steps. First, 1% bovine serum albumin 

(BSA) in phosphate buffered saline (PBS) was flowed and dead-end filled into the chip to block non-

specific binding. Second, a 200-µl cocktail containing all 12 DNA-antibody conjugates at 1.25 µg/mL 

in 1% BSA/PBS buffer was flowed through all microfluidic channels for a period of 1 h. Then, 100 µl 

of fresh buffer was flowed into the device to replace DNA conjugated primary antibody solutions. 

The chip is then ready for use. Cells stimulated with PMA/LPS were loaded into the SCBC chip 

within 10 min in order to minimize pre-loading secretion. Then, the pneumatic valves were pressed 

down by applying 15-20 psi constant pressure to divide 80 microfluidic channels into 960 isolated 

microchammbers. Next, the cells in every microchamber were imaged under a Nikon LV100 

microscope and their numbers were counted. Afterwards the chip was placed in a cell incubator 

(~37 °C and 5% CO2) for 24 hours to perform on chip secretion. The chip was removed from the 

incubator and a 200 µl cocktail containing all detection antibodies (each at 0.5 µg/mL concentration) 

tagged with biotin flowed through the microchannels by releasing the valves. Then, 200 µl of the 

fluorescent probe solution (1 µg/ml Cy5-labeled streptavidin and 25 nM Cy3-labeled M’ ssDNA) was 

flowed through to complete the immuno-sandwich assay. Finally, the PDMS slab was peeled off and 

the microarray slide was rinsed with 1×PBS, 0.5×PBS and DI water twice, sequentially, and spin-

dried.   

Bulk secretion profiling.  Bulk measurements on the same panel of secreted proteins as were 

assessed within the SCBC microchambers were also carried out for the THP-1 cells with no 

stimulation, PMA stimulation, and PMA+LPS stimulation. Cells were cultured at 0.3×106 cells/mL, a 

comparable density to a single cell in a chamber. The media were collected after 24 hours and the 

secreted proteins were detected as described below. For the PMA+LPS stimulation condition, the 

media were collected at multiple time points (2, 4, 6, 8, and 10 hours) for the time-dependent analysis 

as well. For the bulk test, SCBC chip was utilized without using valves for the microchannel to 

microchamber conversion. The same conditions as for the on-chip secretion profiling were applied 

except for the cell incubation step. Instead, the collected media was introduced to the channel sets and 

incubated for 3 hours in the incubator. 

Quantification and statistics.  All the barcode array slides used for quantification were scanned 

using an Axon Genepix 4400A two-color laser microarray scanner at the same instrumental settings—

50% and 15% for the laser power of 635 nm and 532 nm, respectively. Optical gains are 500 and 450 

for 635 nm and 532 nm fluorescence signals, respectively. The brightness and contrast were set at 90 

and 93. The averaged fluorescence intensities for all barcodes in each chamber were obtained and 

matched to the cell number by custom-developed MATLAB (The MathWorks, Natick, MA) codes. 

Heat maps were generated using Cluster 3.0 and Java treeview (http://rana.lbl.gov/EisenSoftware.htm).  

II. Experimental Data Analysis Methods 

http://rana.lbl.gov/EisenSoftware.htm
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Conversion to the number of molecules.  The collected raw data is based on the fluorescence. 

In order to convert the fluorescence to the number of protein molecules, we used the calibration 

curves (Fig. S2). We used the four parameter logistic model which is commonly used for fitting 

ELISA calibration curve. The fitting parameters can be found from the Table S5.  

 

 

Signal- to- Noise Calculations.  Since the signal range highly depends on the activities of the 

antibodies as well as the cell biology, it is required to decide if the signal is real and reliable. Certain 

assayed proteins were identified as positively detected from single cells based upon signal-to-noise 

ratio (S/N), which was measured as follows: For each microchamber, the averaged fluorescence from 

the two barcode stripes used to capture and detect a given protein and  the averaged fluorescence from 

the barcode stripes designed to capture and detect IL-2 were obtained. The ratio of the averaged 

values over all single cell experiments (specific protein to IL-2) yields a S/N value. An S/N of 4 was 

utilized as a minimum for positive detection. Eight secreted proteins were thus identified from the 

single cell measurements.  Those proteins were (with S/N included in the parenthesis after the protein 

name): MCP-1 (4.65), MIF (1381.13), IFN-γ (4.33), VEGF (77.32), IL-1β (94.70), IL-8 (2622.40), 

MMP9 (119.50), and TNF-α (410.74). 

Analysis of experimental and biological variation from SCBC-based single cell measurement.  One 

of the major characteristics of SCBC analysis is the heterogeneous cellular behavior at single cell 

level. The experimental variation of the SCBC platform which reflects the system error as well as the 

biological variation due to the cellular heterogeneity is contributing to the fluctuation of the total 

signal. Thus, we need to check if the heterogeneous signal responses are from the cells or the device 

itself.  

 The experimental error mainly includes the variation from non-uniform DNA barcode 

patterns and the variation due to the randomly distributed cell location in the chamber. The former 

one can be estimated by the histogram of the fluorescence intensity from the calibration experiment 

with recombinant proteins. Since the recombinant protein has fixed concentration over the entire 

channel, it represents a uniform protein level without any heterogeneity and location dependence. As 

a result, the distribution of the fluorescence intensity of a specific recombinant reflects the detection 

profile of the DNA barcode. 

 Fig. 1C shows a representative histogram of signal derived from recombinant MIF protein at 

5 ng/ml. The histogram shows a nice Gaussian distribution with a coefficient of variation (CV) around 

7%. In the calibration experiment, basically the intensities of all the recombinant proteins at 

detectable concentrations follow a Gaussian distribution with CVs typically lower than 10%. 
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 The cell location is another important factor for the system error. Even though the chamber 

size is small, it is still big for a single cell. So the protein signal is dependent on diffusion and that is 

why the cell location can be a source of the variation. In order to minimize this effect, we utilized two 

sets of barcodes in a chamber and used the averaged signal intensity from two barcodes as the final 

signal value. However, the barcode close to the cell will undergo a higher local protein concentration 

than its counterpart and the different intensities of two sets of barcodes are amplified during the long 

incubation time. The diffusion process will lead the system close to the equilibrium but the cell that 

keeps secreting proteins with different kinetics makes it difficult for the chamber to reach its full 

equilibrium. In that sense, the randomly located cells can add an extra uncertainty to the SCBC 

system.  

 Because it is difficult to isolate the system error (especially for the cell location effect) from 

the heterogeneous cell response experimentally, we performed a Monte Carlo simulation by R (R 

Foundation for Statistical Computing, version 2.10.1). First of all, we investigate the case of MIF as a 

representative case. We assumed one chamber has two sets of 13 barcodes such that all of them have 

MIF antibodies. By randomly positioning a cell with a fixed protein secretion rate and getting the 

protein concentration at specific barcode positions, we can find out what is the variation that purely 

depends on the cell location and barcode non-uniformity. The total amount of secreted MIF during 24 

hours was estimated based on our experimental result. The secretion rate was 4.84 pg/mL per min 

from the SCBC (used for the simulation) and 11 pg/mL per min from the bulk condition. The 

corresponding secretion rate of a single cell, back-calculated based on the chamber and cell size 

(10µm3), was 0.065 nM/min. Values of parameters used in simulation can be found from Table S6. 

5000 data sets for the protein concentration distributions from randomly located single cell were 

generated by solving a diffusion equation with a custom made MATLAB code and the results were 

analyzed with R. The parameters used in the simulation are exactly the same as our experimental 

environment. The chamber is 2000 µm in length and 100 µm in width with two sets of DNA barcodes 

M-A and A-M from left to right. Each barcode is 20 µm in width with 50 µm in pitch (30µm gap 

between barcodes). The detection variation of the MIF protein due to the DNA uniformity obtained 

from the histogram of the calibration data set was incorporated to the analysis. Fig. 1E shows the 

histogram of the average fluorescence intensity from DNA sequence E (corresponding to MIF in the 

actual experiment) for 5000 single cell cases. For the barcode variability, the actual value of 7.3% was 

used. The final system error was 5.1% which is a lot smaller than the assay error from the 

experimental data sets, 55.2 %. 

 In order to think of the worst case, we used the barcode variability of 10% for the rest of the 

analysis. If the cell location effect is significant, we are supposed to see different errors on different 

barcode positions. Fig. S6 illustrate the histograms of average intensities from multiple barcode 

locations. The blue curves are line profiles of Gaussian distribution fitted with the mean and the 

standard deviation obtained from the corresponding simulation. The nice fitting between the Gaussian 
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curves and the histogram indicates that the average intensity per chamber follows a Gaussian 

distribution with a predictable mean and CV. The CVs from this simulation represent the distribution 

of our measurements for single cell chambers without considering the cellular heterogeneity, i.e. the 

system error. The experimental CVs for different barcode locations based on the system error were 

quite similar to one another (~ 7%).    

 We can define CVsystem as the system error estimated by the simulation. We can also calculate 

the assay error from our experimental data set such that CVassay refers to the total CV of our 

experimental data. Consequently, the biological variation for single cell experiment can be 

quantitatively estimated by the formula below: 
2/1

biological
2

system
2

assay )( CVCVCV +=  

 An estimation of biological variations of proteins for different barcode locations are shown in 

Table S7. It can be noticed that the biological variation is dominant in the total error of the assay. This 

analysis verifies that the signal fluctuation that we can see from the single cell experiment is a good 

representation for the single cell heterogeneity rather than the systemic error from our platform. 

 

 Supplementary Theory Methods (SI.II) 
I. Introduction to theoretical supplementary methods 

We show how to characterize protein-protein interactions. Specifically we show (i) that the 

different tiers of a signaling network can be quantitatively determined from the measured 

fluctuations in the concentrations of signaling proteins and (ii) that the measured fluctuations in 

the concentrations of signaling proteins for the unperturbed cell can be used to predict the effect 

of introducing perturbations such as neutralizing antibodies. The approach is developed from an 

information theoretic perspective and it is related to the specification of the direction of change 

when a system responds to a perturbation, known as the principle of Le Chatelier. The 

corresponding result here is that we predict the sequence of tiers in the network, see Fig. 4 of the 

article. In addition we specify which signaling proteins are at a given tier of the network and their 

mutual influence including inhibition, see Fig. 5 of the article. Experimental measurements of the 

fluctuation of concentrations in samples with nanoliter volume containing n cells, n = 0,1,2,.. , 

see Fig. S8 below, are used to validate the signaling protein network. Finally we use the protein-

protein interaction as determined for the unperturbed cell to quantitatively predict, Fig. 6 of the 

article, the effect of perturbations. 

 The approach we propose provides an analogue and an extension of the statement that 

heat is transferred from a warmer to a colder body. We can understand this statement as a 

statement about the direction of a process between two equilibrium states, meaning that it is a 
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static principle. We can also think of it as a statement about the dynamics, meaning that it 

specifies the rate of change. We will here develop the formalism for the static interpretation. 

The explicit introduction of time is possible and we have the required formalism at hand but 

it requires a more elaborate theoretical foundation and so will be given elsewhere. 

II. The ensemble: a basis for making predictions 

The system we consider is many independent replicas of a compartment containing a single 

cell in a nutrient solution at thermal equilibrium. Because the system is not large, different 

replicas of it can differ in the number, iN , of secreted proteins of kind i. We seek to represent 

these fluctuations by taking the different replicas as different samples from an ensemble of 

single cell compartments where the mean number iN  of proteins of kind i over the ensemble 

is given. Another given quantity is the energy, (and volume that we do not indicate explicitly). 

We now seek the most probable distribution of protein numbers in different compartments. 

The solution is well known because if many compartments are measured then the required 

distribution is the one whose entropy is maximal. In textbooks of statistical mechanics this 

search for the most probable distribution is sometime called the Boltzmann approach. It is 

possible to show (6) that this approach does not require the system to be macroscopic in size. 

It is sufficient if we measure enough replicas so that the distribution of proteins does not 

significantly change as we add more measurements. If each replica is macroscopic the 

fluctuations will be small and rare. Repeated measurements will give the same results. If each 

replica is small we can observe the fluctuations, which is the experiment described in the 

main text. 

 The key point is that even if the fluctuations are not small it is possible to make 

predictions.  We discuss three types of predictions in the paper, with more details given in 

this section of the SI. We predict the distribution of fluctuations, we predict the tiers in the 

network and, in particular and as shown in Fig. 6 of the main text, we predict the response of 

a system to a perturbation. For these first and last predictions, we compare directly with 

experimental results. We emphasize that the prediction is made strictly independently of the 

experiment to which it is compared.  

The probability of a system in a particular composition can be shown to be given by 

( ) ( ){ }1 2, ,.. exp i iiP N N N Eβ µ= − Ξ∑      (S1) 
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This straightforward result is perhaps misleading in its simplicity. It is most directly derived 

by the method of Lagrange undetermined multipliers. The numerical value of these 

multipliers is determined at the final stage by imposing the condition that the distribution (Eq. 

S1) reproduces the given values of the means. There are as many multipliers as conditions. 

 β is the Lagrange multiplier that is determined by the mean value of the energy and, 

as usual, is related to the temperature T as 1 kTβ = where k is Boltzmann’s constant. The 

'siµ  are the chemical potentials as introduced in the thermodynamics of systems of more 

than one component (7, 8). The Lagrange multipliers that correspond to the given (mean) 

number of species i are known as the Planck potentials and denoted as iα . It is often more 

convenient to work with ,i i iµ α β µ= . If our system were macroscopic in size we would call 

iµ  ‘the chemical potential of protein i’. For convenience we retain the designation ‘potential’ 

because, as we shall show, iµ  retains essential properties of the chemical potential even 

when fluctuations are finite.  Ξ  is a function of all the Lagrange multipliers and its role is to 

insure that the sum of the probability over all possible compositions yields one.  

 There are at least two points where important details are not revealed by the notation 

used in Eq.  S1. Both are relevant in what follows. First is the condition that the numerical 

values of the chemical potentials are determined by the given mean numbers, the 'siN , of the 

proteins. Strictly speaking, we should write the chemical potentials as functions of the 'siN . 

The other point arises when we want to treat the actual numbers 'siN  of the different 

proteins as continuous variables. This is needed, for example, to compute averages, 

normalize the distribution (Eq. S1), etc. The integration for each protein is over !dN N  

where N!, the factorial of N, arises to account for the Gibb’s paradox. Therefore, as a function 

of the continuous variable N the distribution for, say, one protein is  

( )( ) ! exp( )NP N Q N Nβµ∝ −      (S2) 

Here Q is the factor that arises by summing over all the internal states of the protein that are 

occupied at the temperature T. This result is used in the main text to fit the observed 

distribution for a single protein (Fig. 3). 

III. Fluctuations describe the response to small perturbations. 
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We show that by measuring the fluctuations in the unperturbed system we can predict how 

the system responds to small perturbations (7). Proof: Say that we make a small change in the 

value of the chemical potential iµ  from its current equilibrium value to some new value 

i iµ δ µ+ . We do so isothermally. This change in µi potentially changes the equilibrium mean 

concentration of all species from jN  to j jN Nδ+ , for all j. To compute the change in 

concentrations we need to consider the change in the ensemble as represented by Eq. S1. In 

the algebraic developments in Eq. S4 below we make use of the definition of the mean 

concentration  

  ( )1 2, ,..j jN N P N N= ∑       (S3) 

The summation in Eq. S3 is over all the possible compositions, each weighted by its 

probability ( )1 2, ,..P N N  computed as the distribution of maximal entropy. The same 

meaning for the summation is used also in Eq. S4 below. We denote this averaging by an 

over bar. From Eq. S1, the variation of the distribution that occurs when a particular chemical 

potential is changed by a small amount is ( ) ( )1 2 1 2, ,.. , ,..iiP N N N P N Nδ β δ µ= . Note that 

it is in using this lowest term in the Taylor series that we assume that the change is small. It 

follows that on the average the proteins respond to the change as: 

( )

( ) ( )

( ) ( )

( )( ) ( )

( )( )

1 2

1 2

1 2

1 2

, ,..

, ,..

, ,..

, ,..

j j

j j

j j ii

j j i ii

j j i ii

N N P N N

N N P N N

N N N P N N

N N N N P N N

N N N N

δ δ

δ

β δ µ

β δ µ

β δ µ

= ∑

= −∑

= −∑

= − −∑

= − −

    (S4) 

Note that the conservation of normalization implies that the average change in the probability 

must be zero, ( )1 20 , ,..P N Nδ= ∑  and we have used this result in the derivation above. In 

the last line in Eq. S4 we have avoided writing the summation over all compositions by the 

use of the over bar to designate an average over the probability ( )1 2, ,..P N N , which is the 

notation introduced in Eq. S3. 

 Taylor theorem states that, in the leading order, the change of a function is the sum of 

the changes. Therefore the expression for an isothermal variation in all the chemical 

potentials leads to a change of the distribution of the form:  
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 ( ) ( )1 2 1 2, ,.. , ,..ii iP N N N P N Nδ β δ µ= ∑      (S5) 

The summation in Eq. S5 is an ordinary sum over the finite number S of signaling proteins, 

1, 2,..,i S= . Then we have the general equation of change that is an extended form of Eq. S4 

valid for all possible small isothermal changes in the chemical potentials 

 ( )( )j j j i i iiN N N N Nδ β δ µ= − −∑      (S6) 

This is the result that we use in this paper. 

IV. The principle of Le Chatelier 

The principle in its simplistic statement claims that the system responds to a perturbation in a 

direction that restores equilibrium. For example, when the temperature of a heat bath is 

increased the mean energy of an immersed system goes up so that the distribution remains 

canonical. The proof for our case starts from Eq. S3. When the chemical potential of protein i 

is changed, for an ensemble at maximal entropy the mean value of protein j changes by 

  ( )1 2, ,..j
j

i i

N P N N
N

µ µ
=

∂ ∂
∑

∂ ∂
      (S7) 

where, as emphasized in Eq. S3, the distribution ( )1 2, ,..P N N  is not arbitrary but is the one 

of maximal entropy as exhibited in Eq. S1. Eq. S4 is recovered when the derivative in Eq. S7 

is evaluated. The reader may feel that this is a triviality but it is not without meaning. What 

we have proven is that computing a small change in the distribution ( )1 2, ,..P N N  when a 

particular chemical potential is changed from the value iµ  to a new value i iµ δµ+  is the 

same as computing the derivative of the distribution ( )1 2, ,..P N N  at the point where the 

value of the chemical potential is iµ . Then the change in the distribution is 

( )( )1 2, ,.. i iP N N µ δµ∂ ∂ . Of course, this is what differential calculus is about. Yet the result 

is not pure mathematics. It shows that the new distribution is a distribution of maximal 

entropy of the functional form Eq. S1 as otherwise the result will not hold. It says that a small 

change in the chemical potential iµ , and no other change, leads to a new distribution which 

is also one of maximal entropy. 

 Typically we do not see the theorem of Le Chatelier stated as in Eq. S6. This is 

because of the practical point that the number fluctuations are typically not easy to observe in 
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a macroscopic system. Here however we deal with secretion of proteins by a single cell and, 

as shown in the main text and particularly in the histogram in Fig. 3, the distribution is clearly 

observed and the covariance can be computed from the experimental data as long as that the 

number of replicas is not small. 

V. The equation for the direction of change 

The (symmetric) square matrix ( )( )j j i iN N N N− −  is the covariance matrix of the 

(equilibrium) fluctuations in the (equilibrium) concentrations, the 'sjN . It is an equilibrium 

average because, as explicitly shown in Eq. S4, it is an expectation over the equilibrium 

distribution as given in Eq. S3. The covariance matrix has the dimensions of S by S where S 

is the number of signaling molecules that take part. In practice we have to compromise on 

this definition meaning that S is the number of signaling molecules that can be detected. If an 

important protein is not detected then the network that we infer will be incomplete.  

 A covariance matrix can be shown to be a non-negative matrix, also called 

semipositive definite, meaning that its eigenvalues are zero or positive. If the concentrations 

of the signaling proteins can in principle be varied independently, which is definitely not 

necessarily the case, then the covariance matrix ( )( )j j i iN N N N− −  is a positive matrix 

with positive eigenvalues. We will discuss below why it will often be the case that for 

reasons of both principle and practice (e.g., experimental noise) there will be eigenvalues that 

are effectively zero. In that case, technically, the covariance matrix is positive semidefinite 

(9). 

 Eq. S6 specifies how the concentration of the j’th signaling molecule varies when the 

i’th chemical potential is changed. In general the correlation coefficient ( )( )j j i iN N N N− −  

between the signaling molecules i and j can be either positive or negative. Therefore, in 

general the change j iNδ δ µ  is not necessarily of the same direction for all proteins j. This 

obvious result will be important for us below. Using the observation that the covariance 

matrix is semipositive definite, it is however possible to determine the direction of change by 

first diagonalizing the covariance matrix. This means that we can determine S distinct linear 

combinations of signaling molecules, where (a) each such set of molecules changes in a 

given direction and (b) we can order the different sets in terms of the extent of their response 

such that the first set is the most changing, the second set changes to a lesser extent, etc. In 
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the time dependent formalism, not presented here, we can outright say that the first set is the 

fastest changing and therefore it is the first to change. Then there follow changes in the 

second set, etc. It is clearly our intention to identify each set of signaling molecules as the set 

of molecules in a given tier in the network. 

VI. Tiers of the network are eigenvectors of the correlation matrix 

Our next purpose is to define the tiers of the network. The set of proteins that participate in 

the m’th tier is determined as follows. Let mS  designate the m’th eigenvector of the 

covariance matrix where the eigenvectors are listed in order of decreasing magnitude of the 

corresponding eigenvalue. The largest eigenvalue is m =1. Each eigenvector mS  is a 

(column) vector of S components and it is determined by the matrix equation 

 2 , 1, 2,.m m m mσ= =S SΣ        (S8) 

where Σ  is the S by S symmetric covariance matrix whose elements are 

( )( )ij j j i iN N N N= − −Σ  and we explicitly indicated that the eigenvalues are positive or 

zero but not negative (which defines a positive semidefinite matrix). The eigenvectors of the 

symmetric covariance matrix are orthogonal to one another and can be chosen to be 

normalized 

 '
0, '
1, '

T
m m

m m
m m

≠
⋅ =  =

S S         (S9) 

Here the superscript T designates the transpose so that '
T
mS is a row vector and Eq. S9 is the 

scalar product. 

 For each value of the number of cells, n, in the compartment the eigenvalues are 

arranged in the order of decreasing magnitude the largest eigenvalue being labeled as m =1 

and the smallest as m =12 and the results are shown for n =1 in Fig. S7. See Fig. S8 for the 

dependence of the largest eigenvalues vs. cell number. 

VII. The spectral representation of the covariance matrix. 

Fig. 5 of the text shows the covariance matrix computed for experiments with one cell in the 

compartment. Table S8 is a digital representation of the same matrix. 

Also shown in Fig. 5 is the resolution of the covariance matrix into tiers defined as follows. 

From each eigenvector mS we can define an S by S symmetric matrix mP as follows 
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 T
m m m= ⋅P S S          (S10) 

The spectral theorem (10) is the result that the covariance matrix Σ can be resolved into tiers 

as 

 2
m mmσ∑ PΣ =         (S11) 

The eigenvalues 2
mσ  are arranged in a decreasing order so that each subsequent tier makes a 

smaller contribution. Fig. S7 shows that the eigenvalues decrease quite rapidly with 

increasing value of m. The very dominant contribution is from m =1 The leading eigenvalue 

= tier 1, is only about 30% bigger than the second one, m =2. The third eigenvalue is smaller 

by almost two orders of magnitude. Fig. S8 is a plot on a logarithmic scale of all non zero 

eigenvalues. There are only two eigenvectors that, judging by the value of their 

corresponding eigenvalues are definitely above the noise. The dominant (m=1) and the m = 2 

eigenvectors for 1 cell measurements are shown in Fig. 5 of the text and for three cells in Fig. 

S9 below. 

VIII. The role of the number of cells in the sample 

It was possible to make repeated measurements of the protein concentrations for different 

values of the number of cells in the sample. In this section we argue that the direction of 

increasing n can be semi-quantitatively regarded as a direction of increasing time. Therefore 

by examining how the eigenvectors of the covariance matrix change with n we have an 

independent determination of the direction of the dynamic response of the system. 

Fig. S8 shows are the largest eigenvalues for n = 0, 1, 2, 3 and 4 cells. 

 To interpret Fig. S8 within the point of view as used in this paper we argue as follows. 

A single cell secretes a number of different signaling proteins and therefore even the data 

measured for a single cell can show the role of protein-protein interactions. If two cells are in 

the sample these interactions increase in importance. If we think of n as a measure of 

concentrations of proteins then N n∝  but to compute the covariance we need to divide by 

the number of protein molecules. So for both paracrine and endocrine signaling we expect the 

covariance to increase with n. When n becomes high there may be three or more cells 

interacting and the simple considerations break down. 

IX. Antibody perturbations 
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Fig. 6 shows a quantitative comparison of the measured results as compared to the purely 

theoretical prediction when neutralizing antibodies for specific proteins are added. We 

emphasize that it is a prediction because the results shown are based on using Eq. S4 that we 

repeat here:  

 ( )( )j j j i i jii iN N N N Nδ β δ µ β δ µ= − − = Σ  

The addition of a neutralizing antibody for protein i means that iδ µ is negative. The entries 

for the matrix Σ are given in Table S3. This matrix is computed for the unperturbed data. It is 

the matrix given in the table above that gives rise to the theoretical results shown in Fig. 6. 

We emphasize that the experimental results shown in Fig. 6 are for single cells in the 

compartment. This means, see Fig. S8 that the largest eigenvalue, 2
1mσ = , of the covariance 

matrix is large indeed. Then, from Eq. S11, the contribution from the first tier dominates. It is 

the two proteins in this tier that are shown in the panel. There are bigger discrepancies 

between theory and experiment for tiers 2 or 3 for which the experimental signal is weak. 

Supplementary Figures  

 
Figure S1. Design of integrated microchip for single cell protein secretome analysis. (A) CAD design 
of a microchip in which flow channels are shown in red and the control channels are shown in green. 
(B) Schematic drawing of cells loaded in the microchambers and compartmentalized with the valves 
pressurized. (C) Schematic illustration of the antibody barcode array used for multiplexed 
immunoassay of single cell secreted proteins. 
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Figure S2. Cross-reactivity check and calibration curves. (A) Scanned image showing cross-reactivity 
check for all 12 proteins. The green bars represent the reference stripe, sequence M. Each protein 
can be readily identified by its distance from the reference. In each channel, a standard protein 
(indicated on the left) was added to the buffer solution and assayed using the DEAL barcode method. 
For GMCSF, MIF, IFN-γ, IL-10, MMP9, and TNF-α, biotin-labeled 2° anti IL-2 antibody conjugated to 
DNA sequence A’ was used as a control. (B) Quantitation of fluorescence intensity vs. concentration 
for all 12 proteins. Error bars: 1SD. The variability (defined as the standard deviation divided by the 
average in percentage) is less than 10% for the signals in detectable range. (C). Plot of the same 
VEGF calibration data as in (B), but presented as a log / log scale, which may be more familar to 
some readers.  
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Figure S3. Morphology change of THP-1 cells upon PMA/LPS activation for 24 hours, and on-chip 
cell viability assay. (A) monocytic THP-1 cells without induction, (B) macrophage-like THP-1 cells after 
PMA/LPS treatment. The morphological change from non-adherent to adherent phenotypes was 
observed upon PMA/LPS treatment. (C) Schematic illustration of the device for cell viability test. The 
device has two parallel channels connected through three interconnecting channels. One channel is 
used for cell loading and the other channel is filled with trypan blue. Valve set V1 separates the cell 
loading channel and the trypan blue channel. Valve set V2 is for converting channels into chambers. 
After 24 hours of incubation, valve set V1 opens and trypan blue mixes with the cell media by 
diffusion. The cell viability is checked by the color change of the cells. (D) A representative picture of 
the cell viability test result. 5 min (sufficient time for diffusion mixing) after valve opening, a cell still 
doesn’t get stained, which indicates cells can survive for 24 hours in the microfluidic device. After long 
exposure (15 min) to the trypan blue, cell color changes into dark blue due to the toxicity of trypan 
blue.  
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Figure S4. Comparison of two data sets from two experiments performed in parallel. All the 
conditions such as barcode patterning, PDMS-based microfluidic device fabrication, and cell 
preparation etc for the two devices were the same. (A) Heat maps of the single cell data sets from two 
devices. Based on the same S/N ratio (4), 9 proteins were detected. It should be noted that the 
protein profiles are different from the data set used in the main text, which was originated from the 
non-extracted PDMS device. PDMS is known to leach out toxic material to the solution and this can 
affect to the cell condition or protein secretion because macrophages are, by nature, highly 
responsive to their environment. For the main experiment, solvent-extracted PDMS was used to avoid 
such effects. For some proteins, the signal values are multiplied by 10 (*) and 100 (**) for the 
visualization (B) Dot plots for three major proteins. Based on p-values, it can be found that both 
experimental data sets are statistically close to each other.   
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Figure S5. PMA and LPS activation and kinetics of protein secretion from activated macrophage cells. 
(A) Bulk secretion profiles from THP-1 cells under different conditions. PMA treatment induces THP-1 
cells to macrophages and LPS treatment emulates innate immune responses against Gram-negative 
bacteria (B) Quantitation of bulk secretion intensities for the eight selected proteins over 24 hours. 
The samples were collected at 2, 4, 6, 8, 10, and 24 hours after incubation of PMA/LPS treated cells. 
The cell density was 0.3×106 cells/mL, which is a comparable density to a single cell in a chamber of 
SCBC device. Note that the secretion levels of TNF-α and MIF are oscillatory and anti-correlated.  (C) 
MIF secretion rate based on the assumption of linear time dependence from (B). The secretion rate 
from the bulk experiment is about 11 pg/mL per min which is about two fold higher than the single cell 
secretion data from the SCBC device (4.84 pg/mL per min).    
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Figure S6. Simulated histograms of average intensity from multiple DNA barcode loctions. The signal 
intensities for 5000 single cell data set were obtained by solving a diffusion equation for a randomly 
located cell. For the barcode variability, the value of 10% was used. The blue curves are the 
Gaussian fitting of the histogram with sample mean and sample standard deviation from the 
simulation. 
 

 
 
Figure S7. The eigenvalues of the covariance matrix, for the experimental data of the main text, in 
order of decreasing magnitude for samples containing n =1 cells. 
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Figure S8. The dependence of the dominant eigenvalues of the covariance matrix on the number of 
cells in the sample. The result for n = 0, the backgound, is included to show the influence of the noise. 
The dashed lines, the fifth and higher eigenvalues are more corrupted by noise. 

 

 

Figure S9.  Heat map of the covariance matrix (left) and of the contributions to the first two tiers of the 
network (right) for measurements on chambers containing 3 cells. Similar to the single cell case (Fig. 
5), the entries in the tiers are scaled by the size of the eigenvalues. See the spectral representation of 
the covariance matrix, Eq. S11. The plot at left is the covariance matrix computed from the observed 
fluctuations in the 3-cell data. The color code is -8e+10 (red) to 0 (white) to +8e+10 (blue). The range 
is fixed so as to attenuate the effect of the self terms in the covariance matrix. For tier 1 and tier 2, the 
ranges are [-4.3e-12, 4.3e+12] and [-7e+10,7e+10] respectively. Note that when the numbers of cells 
per chamber increases, anti-correlations can get washed out. 
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Figure S10.  Heat map plots showing the secretion profiles of single cells when adding different 
neutralizing antibodies. For visualization, signals are decreased and amplified 10× for * and **, 
respectively.
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Supplementary Tables 
 
Table S1. Sequences and terminal functionalization of oligonucleotides*.  
 
Name            Sequence         

A 5'- AAA AAA AAA AAA AGT CCT CGC TTC GTC TAT GAG-3' 
A' 5' NH3-AAA AAA AAA ACT CAT AGA CGA AGC GAG GAC-3' 
B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 
B' 5' NH3-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 
C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 
C' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 
D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 
D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 
E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 
E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 
F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 
F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 
G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 
G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 
H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 
H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 
I 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 
I' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 
J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 
J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 
K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 
K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 
L 5'-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 
L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 
M 5'-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 
M' 5' Cy3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 

 
* all oligonucleotides were synthesized by Integrated DNA Technology (IDT) and purified via high 

performance liquid chromatography (HPLC).  

 
Table S2. Summary of antibodies used for macrophage experiments. 
 
DNA label primary antibody (vendor)   secondary antibody (vendor) 
A’  mouse anti-hu IL-2 (BD Biosciences)  biotin-labeled mouse anti-hu IL-2 (BD Biosciences) 
B’  mouse anti-hu MCP-1 (eBioscience)  biotin-labeled armenian hamster anti-hu MCP-1  
       (eBioscience) 
C’  rat anti-hu IL-6 (eBioscience )   biotin-labeled rat anti-hu IL-6 (eBioscience ) 
D’  rat anti-hu GMCSF (Biolegend )  biotin-labeled rat anti-hu GMCSF (Biolegend ) 
E’  goat anti-hu MIF(R&D systems)  biotin-labeled goat anti-hu MIF(R&D systems) 
F’  mouse anti-hu IFN-γ (eBioscience)  biotin-labeled mouse anti-hu IFN-γ (eBioscience) 
G’  mouse anti-hu VEGF (R&D systems)  biotin-labeled goat anti-hu VEGF (R&D systems) 
H’  mouse anti-hu IL-1β  (eBioscience)  biotin-labeled mouse anti-hu IL-1β  (eBioscience) 
I’  rat anti-hu IL-10 (eBioscience)   biotin-labeled rat anti-hu IL-10 (eBioscience)  
J’  mouse anti-hu IL-8 (R&D systems)  biotin-labeled mouse anti-hu IL-8 (R&D systems) 
K’ mouse anti-hu MMP9 (R&D systems)  biotin-labeled goat anti-hu MMP9 (R&D systems) 
L’  mouse anti-hu TNF-α (eBioscience)  biotin-labeled mouse anti-hu TNF-α (eBioscience) 
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Table S3. Digital data for the fluctuation in protein copy numbers for experiments with 1 cell 
in the chamber. 
 

IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

3735.412 217395.9 13953.23 557.1622 3809515 13624.74 201.4036 8376.421 0 1454177 3205.591 152586.1 

1665.362 27307.83 104.8926 1517.076 2820595 53647.16 22.99382 30393.38 2225.058 1549870 8513.336 139044.8 

0 0 5.688741 983.9779 2039581 51073.18 5.659558 397.6828 1712.567 1556202 75864.65 105209.4 

0 0 4.782456 0 442693.6 0 0.336728 0 0 341176.1 10460.81 39.82124 

0 0 4.782456 0 394608.6 7158.123 0.336728 83.72112 0 1049468 5786.696 112.4533 

0 9036.275 4.782456 315.5414 1182371 15521.45 2510.404 164.3377 0 2078531 530.3467 98.55574 

0 8562.464 22.67125 1973.092 2340711 50886.57 0 8659.165 386.6576 1825752 3484.746 225206 

972.853 5136.066 45.69175 0 2903862 30000.8 1.655758 1627.437 678.766 1357052 1609.678 487.7715 

0 4625.892 5.688741 162.2633 515603.5 12411.14 258.1623 2951.517 1069.252 2085364 18909.8 95984.22 

1115.354 5639.942 25.6359 0 3794851 59631.05 5.955249 75.74618 644.1138 829791.9 1197.849 9267.078 

367.32 8562.464 0.620442 0 404940.8 0 5342.374 170.0894 425.4534 4964304 181518.4 2001.962 

0 40152.21 47.5241 1517.076 3743529 8249.956 643.5375 2935.413 1281.727 5149720 38060.09 1084.421 

876.3752 20185.95 28.71536 1658.653 665589.7 17294.07 4591.031 732.1417 1221.906 4543300 36619.56 127154.3 

0 0 0 0 638485.4 0 0 2173.854 0 2932515 408789.6 64138.92 

1068.126 0 13.28018 632.2731 438114.6 0 119.5423 102.6353 0 1034324 592.5651 4161.334 

1575.52 19329.17 47.5241 961.4889 1217737 21180.92 2.07053 5.38982 813.5973 1055366 2244.563 1780.287 

827.633 26895.82 175.1502 2258.346 5831647 64318.4 2721.671 3362.146 4140.063 3606621 5461.672 75502.9 

0 4625.892 4.782456 256.7672 6562935 0 1.756733 8524.752 0 174775 2301.694 98.55574 

0 0 18.45094 286.4852 359371.4 0 572.8267 52.38082 0 3107306 65788.63 25235.97 

0 5136.066 0 371.9954 5772999 7715.093 0.919755 952.1023 125.4948 589949.5 3484.746 8.587119 

577.7165 27307.83 7.645797 256.7672 481179.4 11991.4 5.082496 91.7772 1221.906 954720.5 1434.076 159.007 

0 11362.51 218.9126 681.2702 3668936 35507.47 4.254203 3813.608 4117.263 2589890 42622.04 86305.23 

474.0248 21038.24 6.64407 505.8466 396657.3 7715.093 1.859546 205.0206 0 8685444 1667.948 155173.2 

0 0 336.0215 0 365278.4 0 0.606097 1608.84 174.4034 2065560 1138.365 3733.989 

0 0 0 0 328035.4 7715.093 159.1543 138.7292 425.4534 1067345 3484.746 95.81771 

0 0 58.9922 961.4889 300360.2 34353.44 0 54.93063 746.8858 1817495 2358.739 23134.31 

0 0 4.782456 0 425186.2 7715.093 613.1612 99.90882 386.6576 4683202 3037.413 46.89755 

0 0 3.928359 0 445991.3 7715.093 402.2585 0 975.2311 523909.4 6326.138 1054.297 

2236.04 33403.67 476.1208 870.3418 435981.4 74992.86 23.9095 3930.914 1986.093 11697012 9358.114 8317287 

0 8085.346 36.88775 453.3645 332604.1 11991.4 86.2306 113.6166 1370.279 1559706 7130.545 1958.179 

1620.52 9974.818 0 286.4852 362920.9 7158.123 0.336728 42.31677 713.014 1569342 22053.76 23001.06 

198.7022 28129.56 104.8926 582.4318 5431280 38632.32 0.534271 503.3473 746.8858 1414076 3818.009 82.34883 

0 0 13.28018 0 294489.8 0 278.2761 39.8375 0 96873.01 181570.6 0 

0 15851.76 13.28018 0 569708.6 11125.54 2369.121 328.8863 386.6576 1292647 23316.12 12607.48 

1843.259 8562.464 86.41712 194.848 775007.6 19615.08 0.336728 4396.839 0 2386454 56608.75 570.4367 

474.0248 16291.26 84.19013 870.3418 3567046 57034.26 44.96208 112244.6 1130.88 3238520 3707.119 85922.27 

0 12275.83 14.52122 681.2702 446942.7 8249.956 3059.87 44.81139 425.4534 3127064 270629.6 16913.92 

0 5639.942 65.01849 0 362459.2 0 0 16.1095 0 2971267 3429.024 115.2728 

0 34605.82 175.1502 286.4852 499008.3 18309.28 152.4368 184.5588 425.4534 1011213 135792.6 1097.382 

526.1976 584810 13.28018 0 308498.5 9264.625 483.3776 0 0 1509316 1052286 49352.54 

421.1059 4625.892 0 531.6397 277526.7 17636.16 295.7684 824.1178 1684.681 1979177 42077.15 14565.16 
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924.7744 12275.83 114.5543 479.7625 451511.5 25255.09 1990.09 196.223 573.4616 2977232 121849.1 29473.5 

0 0 5.688741 286.4852 1616413 24415.08 53.64644 21718.77 0 1961863 5948.816 16.0508 

0 1935.839 22.67125 162.2633 537180.3 0 1.556662 426.2234 678.766 1662376 3928.711 1846405 

4097.416 15410.74 6.64407 916.1621 627149.3 15153.07 950.0875 661.5037 911.38 4734071 15793.97 633893.1 

0 5639.942 18.45094 0 3734680 19933.81 71.75808 611.5641 1877.786 1963379 160882.2 12793.76 

0 0 45.69175 286.4852 472151 7715.093 188.2966 86.39776 0 2563383 70281.5 27115.65 

138.713 12729.29 27.16157 128.1625 510521.3 9748.657 0.534271 363.1055 713.014 7637057 22154.85 306664.8 

526.1976 14077.98 47.5241 753.3682 385982.2 17636.16 9497.397 81.05349 713.014 1650511 36569.86 69227.5 

0 0 3.928359 505.8466 4597800 21486.18 55.44104 378.7795 0 4705311 1492.748 4042.245 

474.0248 8562.464 13.28018 286.4852 415863.4 7158.123 0 304.2398 1656.69 6712149 124417.6 104764.8 

0 4625.892 49.37952 870.3418 3610659 11125.54 308.8587 335.0802 1543.606 1731368 67269.56 273.0328 

0 0 0 0 497690.4 12411.14 1.964157 57.49294 0 1609086 450905.5 109102.7 

2149.562 10439.91 5.688741 286.4852 493432.2 0 95.38698 800.1525 0 2319845 933080.9 468816.9 

0 2499.366 0 0 1938229 11563.1 15.08493 167.2109 1486.351 1882943 6809.424 1024.341 

421.1059 260961.8 27.16157 1028.626 631535.9 0 297.85 213.8589 537.3803 1335228 1018.815 12.21319 

0 7604.672 47.5241 194.848 414552.4 20562.75 3358.884 267.679 1656.69 4826026 12493.18 65787.75 

778.5221 27307.83 339.5008 1638.592 3964841 84043.16 10.19566 170693.7 3082.111 4250173 17635.86 346394 

0 4625.892 0 315.5414 480143.5 15521.45 401.1044 196.223 2225.058 3515798 580887 11928.38 

0 8562.464 18.45094 286.4852 658884.1 7158.123 1.179999 150.0535 537.3803 1652656 454906.5 113008.1 

474.0248 48688.48 15.79737 777.063 479056.9 15153.07 11.81997 621.5163 2039.74 4603005 201019.8 340191.5 

474.0248 20612.64 6.64407 286.4852 436080.6 0 1.859546 234.6332 2012.957 6917958 11296.85 215980.3 

0 0 768.0874 286.4852 373315 26079.52 1437.645 199.1509 678.766 2261670 2130.037 10466.12 

0 0 0 0 426020.1 7158.123 2.743952 161.4698 0 3933389 4369.751 49058.97 

0 0 189.3848 557.1622 494271.9 15521.45 494.498 127.5026 71.49773 3800164 477015.4 103268.1 

1068.126 42500.29 5.688741 0 443142.7 0 2610.429 135.9132 220.2761 2342101 688400.6 12.21319 

0 6631.472 19.82653 0 574020.6 12822.93 10.3724 175.8619 879.0676 4074696 105807.8 1513.189 

972.853 10439.91 10.90809 729.5097 284256.4 18640.59 2235.697 133.1033 0 1470217 53399.89 4002.718 

0 0 13.28018 0 597667.5 0 2019.485 264.6556 306.1297 1194410 29141.91 480.3807 

0 51365.65 145.1361 1246.065 405806.5 32699.9 856.1518 113.6166 1959.145 1258039 183346.9 1417.034 

0 729.7022 0 256.7672 602511.6 31733.5 0 234.6332 0 1122269 898.3988 400.546 

1485.024 41719.38 139.8782 453.3645 444591 7158.123 885.0224 138.7292 1628.589 2793823 3540.416 27481.96 

526.1976 6138.223 27.16157 0 465292.2 14400.48 1403.802 102.6353 746.8858 1844275 18451.63 97125.55 

2192.854 60050.81 285.2598 557.1622 3976269 52552.65 235.1851 12868.12 1486.351 2056078 6272.314 6856.5 

0 10439.91 0 128.1625 5629496 8249.956 0.399418 1762.11 678.766 813978.6 163717.2 92940.02 

2535.544 14523.91 114.5543 344.0223 1484329 26621.01 8678.123 8057.573 2661.458 1986914 525123.6 889781.5 

0 4108.532 0 557.1622 443841.6 7715.093 1.179999 216.8138 1281.727 1438747 72010.22 3496.753 

421.1059 4625.892 55.08115 453.3645 533679.1 45692.16 1450.532 385.0693 463.4456 1859549 8089.271 175397.8 

924.7744 0 27.16157 681.2702 2819971 22977.18 25.30396 258.6201 2836.369 2894811 40590.36 774.8536 

1439.516 5136.066 47.5241 0 2087753 52000.61 0.399418 7422.418 879.0676 3000134 5786.696 97961.85 

526.1976 0 0 162.2633 528450.2 11991.4 59.08624 22.98716 463.4456 1749215 3596.034 624.2794 

577.7165 9506.996 49.37952 0 503131.4 15521.45 116.0933 837.8488 220.2761 1903608 164594.6 2006.839 

577.7165 0 5.688741 453.3645 6660777 58080.71 120.3132 404.0062 0 1578115 1078.692 323.6175 

0 11362.51 0 128.1625 440302 9264.625 114.9509 273.7368 813.5973 1578115 12129.72 1040989 

1575.52 19329.17 325.6539 1638.592 4924300 64154.29 340.5053 1318.723 2861.155 2672000 23366.56 306.578 
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0 0 24.13892 0 6851805 53465.61 5.513485 638.1433 0 1028638 127948.9 12200.28 

474.0248 9036.275 221.941 286.4852 458783.7 20873.14 49.24328 322.7051 1850.488 2457942 22811.51 822556.8 

3613.793 57047.96 172.3469 938.885 406672.9 47264.38 865.9889 1690.864 2172.481 3502255 843555.9 353763.6 

0 22308.79 60.97992 0 369312.3 19933.81 814.9924 119.1506 975.2311 2229100 92908.36 75331.28 

2062.643 5639.942 0 194.848 828096.2 7715.093 3451.146 105.3695 463.4456 2062203 2529.389 49.30233 

0 4625.892 150.4565 194.848 606027.9 15521.45 48.08955 732.1417 644.1138 2205137 44305.43 112117.4 

876.3752 109736.4 15.79737 656.8714 4333366 13227.3 9.498279 3109.17 2910.581 1557792 40044.93 8399.296 

474.0248 14077.98 58.9922 1050.792 4158207 40779.49 0.837598 2139.122 713.014 1602325 18247.85 13988.05 

0 4625.892 9.77966 938.885 427984.9 28984.83 2539.309 133.1033 813.5973 3538045 6056.756 99712.96 

474.0248 15851.76 97.82923 315.5414 3058525 52552.65 5.224942 344.3945 678.766 1596288 1434.076 17010.92 

1620.52 30983.19 164.0253 2444.257 3783288 27421.74 8.150933 20591.01 713.014 1238515 126636.5 294604.8 

0 5639.942 6.64407 0 4829314 14779.51 0 438.9771 0 8394607 1375.257 12.21319 

0 9036.275 86.41712 1718.527 699222.5 0 0 8090.773 0 946538.8 1018.815 246.7378 

421.1059 29356.69 57.02586 656.8714 427051.1 49758.73 5895.509 7.430834 713.014 855150.1 715.8439 12943.31 

972.853 16729.29 124.4873 557.1622 3157311 24131.41 26.96196 2270.716 125.4948 1429803 10251.26 2675.917 

474.0248 0 27.16157 344.0223 421026.8 33885.67 0.336728 158.6074 813.5973 4493846 3205.591 4785.501 

0 0 4.782456 0 1735160 0 0 1064.458 1600.377 491041.6 56904.9 28.54088 

924.7744 21462.78 329.098 1797.669 10572470 36640.69 87.27182 951072.8 2012.957 717967.5 5786.696 50463.01 

1255.571 16729.29 36.88775 916.1621 387730.2 35507.47 12.37785 172.9731 943.4302 3107306 9305.439 99116.28 

0 3047.191 0 0 601108.5 0 1098.532 62.65337 346.9365 1429264 2015.138 0 

827.633 1935.839 22.67125 0 609026.5 16243.7 3776.053 49.844 644.1138 2839583 5948.816 10466.12 

0 0 45.69175 0 529102.3 7715.093 148.7002 164.3377 0 2739500 135792.6 454.6833 

0 5639.942 19.82653 800.6015 399905.3 11125.54 61.55719 99.90882 1069.252 3152475 3484.746 192.6131 

1975.261 17165.9 322.2216 1203.28 10565748 90563.8 9.155434 41511.63 2959.817 2157535 136249.1 5338.093 

0 0 18.45094 1246.065 476216.6 0 0.399418 1553.213 0 1844720 82939.55 2389.394 

0 0 17.10759 531.6397 3728800 39283.39 2566.026 1008.095 0 747662.7 1667.948 230.5624 

628.6544 9974.818 15.79737 426.6258 488669.7 30997.64 130.4801 65.2507 1038.132 4037787 39400.11 71229.18 

924.7744 0 5.688741 0 1560874 36640.69 4.801319 54.93063 0 1778135 8724.937 77056.37 

0 0 27.16157 0 382589.2 5961.002 1493.194 347.5054 0 1500979 607501.3 327.046 

972.853 0 0 226.2736 441546.9 7715.093 786.2589 110.8603 678.766 7130236 167126.3 55851.67 

526.1976 11362.51 3.130261 1203.28 1356636 21180.92 2759.997 3129.465 975.2311 2758719 3818.009 146319.6 

577.7165 6631.472 19.82653 2201.941 5878268 13624.74 3241.913 37543.28 1221.906 1173170 13477.1 220.957 

0 11362.51 0 315.5414 486844 27948.27 0 255.6081 463.4456 1388172 522389.9 78625.91 

0 635058.1 6.64407 0 545876.8 7715.093 1100.19 190.3813 0 1518652 28391.09 109.6469 

256.4187 46379.67 53.15834 729.5097 3301742 32699.9 4.389042 359.9795 1006.795 1864545 5353.088 227.3521 

577.7165 13630.28 14.52122 2107.237 3806473 22683.47 121.4725 96650.04 1543.606 1174095 9252.748 26620.53 

924.7744 10439.91 47.5241 453.3645 3281029 44088.98 0.016533 477.4821 346.9365 1063941 2812.305 447.3908 

5587.157 5136.066 24.13892 681.2702 3016496 29240.69 47.22998 5719.854 425.4534 105126.8 6056.756 0 

474.0248 8562.464 36.88775 1895.558 4112702 22683.47 3.224364 87695.31 644.1138 3622850 18094.94 112883.1 

2955.955 18035.05 57.02586 2088.188 3559334 27421.74 17.95405 37266.68 1656.69 2244932 5786.696 952.3013 

5355.51 8562.464 0 0 2892800 14015.67 128.5041 1271.685 0 1603673 9884.013 30912.89 

0 0 14.52122 52.05951 831973.3 8249.956 518.8942 141.5514 0 1042440 1609.678 306814.1 

0 4625.892 67.06888 557.1622 3166646 20249.67 2.288425 18257.35 71.49773 462439.1 2130.037 187929.7 

5970.693 18035.05 90.92703 1160.163 2856820 31244.01 23.67953 522.8445 1795.612 215604.4 14560.51 4241.145 
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Table S4. Signal-to-noise ratio (S/N) for single cells in SCBC measurements 
IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

1.0 4.7 3.6 1.4 1381.1 4.3 77.3 94.7 1.8 2622.4 119.5 410.7 

 
Table S5. Parameters utilized for the protein assay calibration curve 

  A1 A2 x0 p Statistics 
  Value Error Value Error Value Error Value Error Reduced 

Chi-Sqr 
Adj. R-
Square 

IL-2 0 0 256 0 7659.58168 973.0838 1.12824 0.16788 91.39131 0.99224 
MCP-1 0 0 256 0 65733.51686 4770.5 1.12607 0.09607 29.62623 0.99578 

IL-6 0 0 256 0 16231.59942 4515.94 0.67887 0.12265 243.09932 0.95697 
GMCSF 0 0 256 0 2451.99685 295.3281 1.2195 0.13013 72.59138 0.99458 

MIF 0 0 256 0 7892.74068 483.8218 1.14428 0.07578 20.31714 0.99821 
IFN-γ 0 0 256 0 14549.5316 2773.804 1.57222 0.26181 172.2368 0.98713 
VEGF 0 0 256 0 1687.9445 225.4782 0.69008 0.05631 58.49911 0.99513 
IL-1β 0 0 256 0 2137.44388 208.9672 0.89593 0.07185 41.21361 0.99694 
IL-10 0 0 256 0 3961.03661 328.4038 1.23209 0.08611 33.93572 0.99669 
IL-8 0 0 256 0 1255.89317 225.9207 1.23262 0.19534 161.8703 0.98686 

MMP9 0 0 256 0 70537.40022 1584.696 1.062 0.02495 2.60945 0.99961 
TNF-α 0 0 256 0 4126.15703 661.2747 0.81683 0.09483 99.72583 0.99185 

 

Table S6: Values of parameters used in simulation 

Chamber size 2000 µm×100 µm ×18 µm 

Cell diameter 10 µm 

Diffusion Coefficient(11) 10-6 cm2/sec 

Protein secretion rate (MIF) 0.065 nM/min 

Molecular weight 12500 Da 

 

Table S7: The coefficients of variation for each of the assayed proteins from single cell 
experiments. The experimental CVs are estimated from the Monte Carlo simulations. The 
biological CVs, which clearly dominate the experiment, are calculated from 

2/1
biological

2
system

2
assay )( CVCVCV += .  

Barcode/Protein Experimental CV (%)  Assay CV (%) Biological CV (%) 
B / MCP-1 7.12  380.4 380.3 

E / MIF 7.05  55.2 54.7 
F / IFN-γ 7.04  131.5 131.3 
G / VEGF 7.03  149.7 149.5 
H / IL-1β 7.02  300.6 300.5 
J / IL-8 7.00  14.4 12.6 

K / MMP9 6.98  192.6 192.5 
L / TNF-α 6.97  132.9 132.7 
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Table S8: Digital representation of the covariance matrix for 1 cell measurements 

COV IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

IL-2 1.18E+06 -27830 7966.7 1.34E+05 2.30E+08 4.10E+06 85756 1.27E+06 1.60E+05 -1.06E+08 1.50E+07 2.31E+07 

MCP-1 -27830 6.34E+09 -1.83E+05 -1.14E+06 -9.54E+09 -9.51E+07 6.10E+05 -3.31E+07 -2.52E+06 -8.51E+09 4.21E+09 -7.34E+08 

IL-6 7966.7 -1.83E+05 9050.5 11507 1.56E+07 5.89E+05 734.25 4.20E+05 24714 -81623 -7.38E+05 1.04E+06 

GMCSF 1.34E+05 -1.14E+06 11507 3.39E+05 3.75E+08 3.97E+06 53462 5.71E+06 2.07E+05 1.05E+07 -1.66E+07 1.75E+06 

MIF 2.30E+08 -9.54E+09 1.56E+07 3.75E+08 3.12E+12 1.48E+10 -4.32E+08 1.19E+10 3.35E+08 -4.33E+11 -7.53E+10 -5.22E+10 

IFN-γ 4.10E+06 -9.51E+07 5.89E+05 3.97E+06 1.48E+10 3.09E+08 -2.28E+05 1.40E+08 5.83E+06 -1.70E+09 -5.01E+08 -1.00E+08 

VEGF 85756 6.10E+05 734.25 53462 -4.32E+08 -2.28E+05 2.48E+06 -2.65E+06 1.04E+05 9.34E+07 2.92E+07 2.59E+07 

IL-1β 1.27E+06 -3.31E+07 4.20E+05 5.71E+06 1.19E+10 1.40E+08 -2.65E+06 4.78E+08 4.46E+06 1.86E+09 -4.08E+08 3.16E+08 

IL-10 1.60E+05 -2.52E+06 24714 2.07E+05 3.35E+08 5.83E+06 1.04E+05 4.46E+06 7.39E+05 2.20E+08 -5.64E+06 2.92E+07 

IL-8 -1.06E+08 -8.51E+09 -81623 1.05E+07 -4.33E+11 -1.70E+09 9.34E+07 1.86E+09 2.20E+08 2.73E+12 7.05E+09 3.56E+10 

MMP9 1.50E+07 4.21E+09 -7.38E+05 -1.66E+07 -7.53E+10 -5.01E+08 2.92E+07 -4.08E+08 -5.64E+06 7.05E+09 3.70E+10 5.25E+09 

TNF-α 2.31E+07 -7.34E+08 1.04E+06 1.75E+06 -5.22E+10 -1.00E+08 2.59E+07 3.16E+08 2.92E+07 3.56E+10 5.25E+09 5.26E+10 
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