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S1 Numerical implementation of the SMPNP equations

S1.1 The free energy functional is convex

We will first show that the free energy functional 24 of the SNHPsystem is
convex. Sincepis determined by the ion densities through the PE

p=Lq

we note the dependence @bn p as@[p] = L~*p, wherep = pf + A Yizenp is the
total charge density, arld= —[1- €[] is the partial differential operator correspond-
ing to the Poisson equation. By taking the first-order vamaof the functional 24
with respect tdp; we get
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The second order functional variation with respecdpg is
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It is known that that the elliptic operatbr(hencel—1) is definite positive because
€ Is piecewise constant. Lét be the Hessialg%[g. For any non-zero variation in

densitiesp (densities are always positiyg > 0), i.e. p— p+ op,
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Therefore H is symmetric, semi-positive definitive. It follows thiafp] is convex.
This guarantees a unique solution for the SMPNP equatidms.fact will be used
in the subsection 2.4 of the paper to make sure that the SMP8deintan be
obtained from the solution of the SMPNP equations at cedairditions.

S1.2 Finite element method for the NP equations

We write Eq. 34 in a brief form:

~0-d=-0- |y a(rp0)dp (N +BORI)| =0, (S4)
J
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tetrahedral finite elements. Functions in the space
Hg = {ve HY(Qs) :v=00n0Q,v=00nTp,}

satisfy the Dirichlet boundary condition on the exteriouhdaryoQ and the es-
sential or Dirichlet boundary condition on the molecularfacel if there is one.
We assume that the finite elements are regular and quasiFromifThe weak for-
mulation of the problem of the whole PNP system now is:

Find u= p € S such that

(F(u),v) =0, WwesS (S9)

The weak form of Eq. S4 is

-Ovidx (510)

F (P = [ (3-Owax= [ [zau(r, p)0p; +bip,
: |2

and the Newton-type iterations necessitate its bilineanfdefined by the Gateaux
derivativeDF (u)

(DE(p)W, V)i = — (F(p+1w),V)il|_g

d
“dl
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wherew is functions from the same basis\as
The derivatives (Gateaux) afj are:

da;  Dikidwal Dik piaya’

0m_1—z§m+u—2£nﬂ

(S12)

The first term in Eq. S11 leads to a symmetric stiffness malmi the latter two
will not.

S1.3 Treatment of singular charges in Poisson equation

Two common issues exist in the solution of biomoleculartetestatic governed by
either the PE 5 or the traditional PBE. These are (i) the pdiatrge singularity,
(i) the dielectric discontinuity across a molecular sagaFor a rigorous treatment
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of the singular charges we introduce the Green’s functioitie Laplace equation
and a harmonic function; the summation of these functionsumts to the zeroth
order approximation to the solution to solve the point ckasmgularity problem.
The potential is decomposed into three parts ¢*+ @'+ ¢ . It defines a singular
potentialg@® only in the domairQ,

¢=0inQ (513)

where the singular potenti& solves—e,AG = p' in ®3, and uses a harmonic
componentp” to compensate the discontinuity @fon T

A =0in Qn,
¢ =—¢onr.

Subtracting these two components from the PE 5, one obtaneduation for the
regular potentiaty':

(S14)

—0-(e0¢)—A% api=0inQ,

@1=0. [e32] = —en (32 + 287 onr. (515)

Similarly the regular part for the nonlinear PBE satisfies:
—0-(e0¢) +k2sinh(¢) =0in Q. (S16)

Numerical experiments illustrating the stable convergeare shown in%2.
The weak form, bilinear form, and more details of FEM solatif the PBE can
be seen in (44) an&Q.

S1.4 Relaxed Gummel iteration for the SMPNP equations

A standard Gummel iteration proceeds as following: given emitial solution
function¢® (or p%), solve the NP equations Egs. 34 (or the PE 35 ) to get a solutio
p° (¢°), then solve the PE (NPEs) with theg®(¢°) to get an updated solutiapt
(p), and withg' get an updated solution of NP3 (¢? of the PE), continue this
iteration until approaching a converged solutignq) of the PE and the NPEs.

It is found that the standard Gummel iteration convergewlgloand may di-
verge in some circumstances.yAteration procedure for the iteration between the
NP and PE as used in our former PNP solution (43) appears alpfuhin as-
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sisting convergence of solution for our SMPNP system. WHhgained a solution
(pn, @) of the SMPNP equations at timeth step during the iterations between so-
lutions of the PE and SM NPEs, we modify them for use in nexaiten step by a
y-relaxation

Pl =ypl+ (1—y)pM T, (S17)
¢ =y +(1-y)@ " (S18)

It is found that usually under-relaxation, i.§.< 1 is necessary for the SMPNP
system, while over-relaxation does not help the convergenc

S2 Substrate concentration dependency of the rate coeffi-
cient

We first perform simulations of the substrate diffusioneté&an process using the
PNP model that does not have the size effects. As shown pEyidS4 SH
the rate coefficient is dependent on substrate bulk deresign for a fixed ionic
strength (see Fig. S1 for the sphere case). In particularaticactive substrate,
increasing of substrate density can speed up the diffusiocegs and thus increase
the rate coefficient significantly. The sphere model showstme tendency of the
rate-concentration dependence as that in the enzyme m®Befof the similar
underlying physics.

11

x 10

4 :
—I1=1mM
~ S 2 — =10 mM
An 7 =
D ' 550 |: 50mM |
€ £ —1=133mM
A sl —1=300 mM
= = 4 I1=500 mM
— = 3 //
g 8 A
5 8 S
£ = e
] (] o
8 525 -
= 2 7
g § L
2,
2 1 1 1 1 L L L
0 100 200 300 400 500 0 100 200 300 400 500
lonic strength | (mMM) Substrate bulk density p, (mM)

@ (b)

Figure S1: Rate coefficients from PNP model for a sphericakca he bulk ion
densities and the substrate density keep charge neutral.
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