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S1 Numerical implementation of the SMPNP equations

S1.1 The free energy functional is convex

We will first show that the free energy functional 24 of the SMPNP system is
convex. Sinceφ is determined by the ion densities through the PE

ρ = Lφ,

we note the dependence ofφ on p asφ[p] = L−1ρ, whereρ = ρ f + λ∑i ziepi is the
total charge density, andL =−∇ ·ε∇ is the partial differential operator correspond-
ing to the Poisson equation. By taking the first-order variation of the functional 24
with respect toδpi we get
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The second order functional variation with respect toδp j is
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It is known that that the elliptic operatorL (henceL−1) is definite positive because

ε is piecewise constant. LetH be the Hessianδ
2F[p]

δpiδpj
. For any non-zero variation in

densitiesp (densities are always positivepi > 0), i.e. p→ p+ δp,
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Therefore,H is symmetric, semi-positive definitive. It follows thatF[p] is convex.
This guarantees a unique solution for the SMPNP equations. This fact will be used
in the subsection 2.4 of the paper to make sure that the SMPBE model can be
obtained from the solution of the SMPNP equations at certainconditions.

S1.2 Finite element method for the NP equations

We write Eq. 34 in a brief form:

−∇ ·Ji = −∇ ·

[

∑
j

ai j (r, p(r))∇p j (r)+bi(r)pi(r))

]

= 0, (S4)

wherep represents the vectorp p p . Here and in the sequel,J denotes the
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tetrahedral finite elements. Functions in the space

H1
0i

=
{

v∈ H1(Ωs) : v = 0 on ∂Ω,v = 0 on ΓDi

}

satisfy the Dirichlet boundary condition on the exterior boundary∂Ω and the es-
sential or Dirichlet boundary condition on the molecular surfaceΓ if there is one.
We assume that the finite elements are regular and quasi-uniform. The weak for-
mulation of the problem of the whole PNP system now is:
Find u= p∈ S such that

〈F(u),v〉 = 0, ∀v∈ S. (S9)

The weak form of Eq. S4 is

〈F(p),v〉|i =
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and the Newton-type iterations necessitate its bilinear form defined by the Gâteaux
derivativeDF(u)

〈DF(p)w,v〉i =
d
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〈F(p+ lw),v〉i |l=0
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wherew is functions from the same basis asv.
The derivatives (Gateaux) ofai j are:
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The first term in Eq. S11 leads to a symmetric stiffness matrix, but the latter two
will not.

S1.3 Treatment of singular charges in Poisson equation

Two common issues exist in the solution of biomolecular electrostatic governed by
either the PE 5 or the traditional PBE. These are (i) the pointcharge singularity,
(ii) the dielectric discontinuity across a molecular surface. For a rigorous treatment
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of the singular charges we introduce the Green’s function for the Laplace equation
and a harmonic function; the summation of these functions amounts to the zeroth
order approximation to the solution to solve the point charge singularity problem.
The potential is decomposed into three partsφ = φs+ φh + φr . It defines a singular
potentialφs only in the domainΩm,

φs = G|Ωm
in Ωm,

φs = 0 in Ωs,
(S13)

where the singular potentialG solves−εm∆G = ρ f in R 3, and uses a harmonic
componentφh to compensate the discontinuity ofφs on Γ

∆φh = 0 in Ωm,

φh = −φs on Γ.
(S14)

Subtracting these two components from the PE 5, one obtains the equation for the
regular potentialφr :

−∇ · (ε∇φr)−λ∑qi pi = 0 in Ω,

[φr ] = 0,

[
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Similarly the regular part for the nonlinear PBE satisfies:

−∇ · (ε∇φr)+ κ2sinh(φr) = 0 in Ω. (S16)

Numerical experiments illustrating the stable convergence are shown in (S2).
The weak form, bilinear form, and more details of FEM solution of the PBE can
be seen in (44) and (S3).

S1.4 Relaxed Gummel iteration for the SMPNP equations

A standard Gummel iteration proceeds as following: given any initial solution
functionφ0 (or p0), solve the NP equations Eqs. 34 (or the PE 35 ) to get a solution
p0 (φ0), then solve the PE (NPEs) with thesep0 (φ0) to get an updated solutionφ1

(p1), and withφ1 get an updated solution of NPEsp2 (φ2 of the PE), continue this
iteration until approaching a converged solution (p,φ) of the PE and the NPEs.

It is found that the standard Gummel iteration converges slowly, and may di-
verge in some circumstances. Aγ-iteration procedure for the iteration between the
NP and PE as used in our former PNP solution (43) appears also helpful in as-
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sisting convergence of solution for our SMPNP system. When obtained a solution
(pn,φn) of the SMPNP equations at then-th step during the iterations between so-
lutions of the PE and SM NPEs, we modify them for use in next iteration step by a
γ-relaxation

pn
i = γpn

i +(1− γ)pn−1
i , (S17)

φn = γφn +(1− γ)φn−1
. (S18)

It is found that usually under-relaxation, i.e.γ < 1 is necessary for the SMPNP
system, while over-relaxation does not help the convergence.

S2 Substrate concentration dependency of the rate coeffi-
cient

We first perform simulations of the substrate diffusion-reaction process using the
PNP model that does not have the size effects. As shown previously (S4, S5)
the rate coefficient is dependent on substrate bulk density,even for a fixed ionic
strength (see Fig. S1 for the sphere case). In particular, for attractive substrate,
increasing of substrate density can speed up the diffusion process and thus increase
the rate coefficient significantly. The sphere model shows the same tendency of the
rate-concentration dependence as that in the enzyme model (S5) for the similar
underlying physics.
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Figure S1: Rate coefficients from PNP model for a spherical case. The bulk ion
densities and the substrate density keep charge neutral.
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