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Supplemental Figure 1: Generation of a conditional Ncstn allele.

a, Targeting strategy of the Nicastrin (Ncstn) allele. Restriction sites used for targeting and screening are shown.
B: BamHI, Bs: BsrGlI, E: EcoRI. b, Southern Blot analysis of DNA isolated from targeted ES cells. Genomic
DNA was digested with BamHI restriction enzyme, separated in an agarose gel, and hybridized with a 32P-
labeled probe specific for the region indicated in a. Lane 2, untargeted control ES cell clone; lane 1, targeted ES
cell clone used for generation of the knock-out mice. ¢, Quantitative PCR for Ncstn on sorted LSK from Nestnf/f
Mx1-cre+ and WT littermate. d, Immuno-fluorescence for Ncstn protein on sorted LSK showing that Ncstn
deletion induces a complete loss of Ncstn protein. e, Western Blot analysis of total bone marrow from NcstnW/W
Mx1-cre+ and Nestnf/f Mx1-cre+ mice 2 weeks after polyl-polyC injections.
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Figure 2: Ncstn deficiency leads to CMML-like disease.

a-b, Massive enlargement of the spleen in Ncstn”- mice (right) compared to an age-matched littermate
controls (left). The absolute weight of the spleens is shown in b. ¢, relative percentages of white blood
cell populations in peripheral blood of the denoted animal genotypes (n=10 for each genotype). d, Flow
cytometric analysis of Gr1/CD11b myeloid cells from the spleen, and peripheral blood of control and
Nestn?f Vav-cre+ littermate animals.
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Supplemental Figure 3: Mx1cre-mediated Ncstn deletion leads to CMML-like disease and an expansion
of the GMP progenitor population.

a, Flow cytometric analysis of Gr1/CD11b myeloid cells from the spleen, and peripheral blood of 6-week-old
control and Nestnf/f Mx1-cre+ littermate animals. b, Detailed FACS analysis of bone marrow LSK and
myeloid progenitors (MP: Lin-/c-Kit+/Sca-1-/CD34/FcgRII/III populations of Nestnf/f Mx1-cre+ and Nestnf/f
Mx1-cre- littermates. Both bone marrow and spleen populations are shown. ¢, Wright-Giemsa staining of
peripheral blood smears showing expansion of mature-appearing monocytes and granulocytes in Ncstnf/f
Mx1-Cre+ mice compared to control littermates (Upper panel). H&E staining of spleen showing red pulp
expansion and signs of extramedullary hematopoiesis (middle panel). Myeloperoxydase (MPO) staining of
spleen sections shows massive invasion by myeloid cells (lower panel).
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Supplemental Figure 4: Effects of Ncstn deletion in the most primitive LSK subsets.

a, SLAM-marker (CD150, CD48) breakdown of the LSK compartment in Ncstn’f Mx1-cre+ and
control littermates. b, Percentages and ¢, absolute numbers of each of the indicated populations
demonstrating a specific increase of the CD150+48+ subset (mean+S.D., n=6) . d, Quantification of
FLT3hi LSK subset (LMPP) in Nestnf/f Mx1-cre+ and control littermates.
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Supplemental Figure 5: Ncstn deletion affects progenitor in vitro differentiation.

a, Culture of total bone marrow cells on methylcellulose. Colonies were counted and phenotypically
identified at day 10 after the beginning of the culture. b, Representative picture and cytospins of
CFU-M showing differences in size (upper panels) and macrophage-like morphology (lower panels) at
day 10 after the initiation of culture. ¢, An identical in vitro culture as in a is shown but the starting
population is sorted LSK cells from Nestnff Vav1-cre+, Nestn’Wt Vav1-cre+ and control littermate
mice. All experiments show averaging of counts of cells from 3 individual mice in each genotype.
Each plating was ralized in triplicate (mean+S.D., n=3)
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Supplemental Figure 6: Ncstn deletion increases the self-renewal potential of hematopoietic

progenitors.

Arhgap4

a, Plating of total bone marrow cells and 3 subsequent re-platings, using the same number of cells each
time(15000 cells). Note the persistent re-plating of the Nestnf/f vav1-cre+ cells compared to WT

littermates (mean+S.D of 3 individual mice plated in triplicate). b, Cytospin and Wright-Giemsa

staining of WT and Nestn/f Vav1-cre+ colonies after the 31d re-plating. Note the differentiated WT
cells and the undifferentiated, myeloblast-like morphology of the Ncstn/- cells. ¢, An identical experi-
ments as in a but the starting population is a sorted GMP (mean+S.D of 3 individual mice plated in
triplicate). d, Microarray analysis comparing freshly purified GMP from Ncstn”- and WT littermates.

GSEA analysis showing enrichment of several of the core “L-GMP self-renewal gene signature” as

defined by Krivtsov et al. Notice the upregulation of genes- members of the Hoxa family (arrows).
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Supplemental Figure 7: The Ncstn deletion phenotype is cell-autonomous.

a, Bone marrow transplant strategy: CD45.2 total bone marrow cells from Nestnf Mx1-cre+ or Nestnf’f Mx 1-cre- mice were
transplanted in CD45.1 lethally irradiated WT recipients. 4 weeks after transplantation, recipients were injected with polyl-polyC.
b, FACS analysis showing Myeloid Progenitors staining (upper panel) of bone marrow from representative mice transplanted with
Nestn’f Mx1-cre+ or Nestn’f Mx 1-cre- cells and bar graphs (lower panel) showing relative quantification of
Granulocyte/Monocyte Progenitors and Megakaryocyte/Erythrocyte Progenitors (mean+S.D., Nestn/f Mx1-cre- n=4; Nestnf/f
Mx1-cre+ n=0). ¢, Bar graphs showing relative percentage of CD11b+ cells in peripheral blood of transplanted mice. d, Reverse
bone marrow transplant strategy: CD45.1 WT total bone marrow cells were transplanted in CD45.2 lethally irradiated Nestnf’f
Mx1-cre+ or Nestn’f Mx1-cre- recipients. 4 weeks after transplantation, recipients were injected with polyl-polyC. e, FACS
analysis showing Myeloid Progenitors staining of bone marrow from representative Nestn’f Mx1-cre+ or Nestn’f Mx1-cre- mice
transplanted with WT bone marrow cells (mean=+S.D., Nestn?f Mx1-cre- n=3; Nestnf Mx1-cre+ n=3). f, Peripheral (spleen)
FACS analysis of myeloid cells in the transplanted hosts. g, Hematoxylin and Eosin staining of liver and spleen sections from
Nestnf/f Mx1-cre+ progenitors transplanted in WT hosts.
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Supplemental Figure 8: Ncstn deletion suppresses Notch signaling and thymic T cell development

a, Nestn’f Mx1-cre+ mice showed a marked reduction in thymus size. Freshly isolated thymi from

6-weeks old Nestnf/f Mx1-cre- (control) versus Nestnf/f Mx1-cre+ mice. b, Bar diagram representing the
average number of thymocytes in Ncstn’f Mx1-cre- (control) and Nestnf/f Mx 1-cre+ mice. (mean+S.D.,
Nestnff Mx1-cre- n=3; Nestn/f Mx1-cre+ n=3). ¢, Flow cytometric analysis of CD4/CD8 T cells and
IgM/B220 B cells from thymus of 6-weeks-old Nestn/f Mx1-cre- (control) and Nestnf/f Mx1-cre+ litter-
mates. d, Heat map showing down-regulation of specific Notch target genes and T cell differentiation

genes in LSK cells isolated from Nestnff Mx1-cre+ compared to control LSK.
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Supplemental Figure 9: The Notch pathway is a major y-secretase target and is responsible for

the Nestn/- phenotypes.

a, Myeloproliferative disease in N1¥f N2/f N3+/- Mx1-cre+ mice. Relative spleen size is shown. b,
H&E staining od spleen shows enlargement of red pulp and signs of extramedullary hematopoiesis
(upper panel), Myeloperoxydase (MPO) staining of spleen sections shows massive invasion by
myeloid cells (lower panel). ¢, Flow cytometric analysis of Gr1/CD11b myeloid cells from spleen
and peripheral blood of 6-weeks-old N17/f N2/ N3+~ Mx1-cre+ and WT littermate. d, Detailed
FACS analysis of bone marrow multipotent cells (MC: Lin-/c-Kit/Sca-1) and bone marrow myeloid
progenitors (MP: Lin-/c-Kit+/Sca-1-/CD34/FcgRII/III) populations of WT and N1¥/f N2/t N3+/-

Mx1-cre+ littermates.
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Supplemental Figure 10: Expression of Notch receptors by LSK cells.

RNA from LSK cells of WT mice were used to perform analysis of Notchl, Notch2, Notch3 and
Notch4 gene expression using quantitative RT-PCR. Expression is normalized to Notchl. Mean +
SD of triplicate experiments is represented.
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Supplemental Figure 11: Nsctn deficiency induces a de novo myeloid differentiation program in LSK cells.
a, RNA from LSK cells of WT, Nestn/f Mx1-cre+ and 1sI-N1-IC Mx1-cre+ mice were used to perform analysis
of Hes-1, Cebpa, Gata2, Pu.1 and Cebpd genes using quantitative RT-PCR. Expression is normalized to WT
cells. Mean £ SD of triplicate experiments is represented. b, cDNA from LSK CD150+ or LSK CD150- cells of
WT and Nestnff Mx1-cre+ littermates were used to perform analysis of Cebpa, Pu.1, Hes-1 and Ncstn genes
using quantitative RT-PCR. Expression is normalized to control WT expression level. Mean + SD of triplicate
experiments is represented. ¢, Heat map of genes significantly up or down regulated in Ncstn/- LSK, that follow
the same pattern of expression in WT GMP and the opposite pattern in LSK N1-IC. Expression level is normal-
ized to expression in LSK WT (upper panel). Venn diagram showing number of genes significantly up or down
regulated in Nestn/- LSK, that follow the same pattern of expression in WT GMP and the opposite pattern in
LSK N1-IC (lowe panel).
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Supplemental Figure 12: HES1 suppresses granulocyte/monocyte differentiation by binding Cebpa and Pu.1
promoters.

a, Selected Lineage negative cKit+ bone marrow cells from WT mice were transduced with retroviruses encoding
Hes-1 or empty vector and subsequently grown in liquid culture supplemented with cytokines. 48h after infections,
infected GFP+ cells were sorted and expression of genes was assessed by quantitative RT-PCR. Expression is
normalized to control infected cells. Mean + SD of three experiments is represented. b, Schematic representation of
mouse Pu.1, Cebpa and Hes1 promoters showing the presence of putative Hes1 binding sequences (N-Box). ¢,
HEK293T cells were transfected with pGL3prom empty vector or pGL3prom vector containing Pu.1, Cebpa or
Hes1 promoter sequence together with pcDNA3 empty vector or a vector allowing expression of HA-tagged HES1
and Renillia expressing vector. Luciferase and Renilla activities were examined 24 hours after transfection. To
compare HES1 repression on promoter constructs, promoter activities in HA-HES] transfected cells were
expressed as the percentage of those in pcDNA transfected cells. Luciferase activity is normalized over Renillia
activity. The data represent the averaging of three independent experiments performed in duplicates. d, Quantita-
tive RT-PCR analysis of Cebpa and Pu.1 genes in 32D cells infected by empty retroviral vector or retroviral vector
encoding HES1. e, ChIP assay for Hes1 binding on the promoters of Pu.1 and Cebpa in 32D cell line einfected by
empty retroviral vector or retroviral vector encoding HES1. Fold enrichment (IP/Ig control) is shown. In the lower
panel, location of the primer is shown. A representative of three identical experiments is shown.
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Supplemental Figure 13: Ectopic expression of Notch1IC is able to suppress CMML-like disease in
Nestn- mice.

a, Polyl-polyC-induced Notch1-IC expression in Nestnf/f Is1-N1-IC Mx1-Cre+ animals suppresses the
generation of myeloid cells in the bone marrow. Also the relative effects of the expression of Notch1-IC on
the peripheral T cell compartment (spleen) are shown (n=5 mice from each genotype). b, Unchanged cell
cycle status of GMP cells from polyl-polyC treated Necstnf/f 1sI-N1-IC Mx1-Cre+ or control littermate
animals,
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Supplemental Figure 14: Human myelopoiesis is suppressed by activation of Notch signaling.

a, Flow cytometric analysis of human CD45+ gated CD14/CD15 myeloid differentiation after OP9
co-culture of human bone marrow CD34+CD38-Lin- hematopoietic precursor cells in the absence or pres-
ence of different Notch ligands. b, Bar diagram of one representative experiment indicating the absolute
number of human CD14+CD15- monocytic cells (left diagram) and CD15+ granulocytic cells (right
diagram) from OP9 cocultures in a. ¢, Bar diagram of the average ratio of human CD14+CD15- monocytic
cells (left diagram) and CD15+ granulocytic cells (right diagram) generated in each OP9 co-culture condi-
tion versus the control co-culture (mean+S.D., n=4). d, Addition of y-secretase inhibitor inhibits the ability
of Notch ligands to suppress myelopoiesis (mean+S.D., n=4).
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Supplemental Figure 15. Notch pathway silencing through the expression of a mutated
MAMLI1 inhibits pathway ability to suppress differentiation of human monocytes.

a, FACS analysis showing the reversal of the monocytic inhibition by infecting the CD34+38-
cord blood stem and progenitor cells with a mutated dominant negative MAML1 (dnMAML1) or
an EGFP-only control. b, Quantification of the experiment showed in Panel A (mean£S.D., n=3).
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Supplemental figure 16: MAML1 Q345X and NCSTN A433T mutant have dominant negative

potential.

a, Notch luciferase reporter assay in 239T cells transfecting the cells with either empty vector, WT
MAMLI or MAMLI1 Q345X together with N1-IC and renillia expressing vector. Dual luciferase
intensities are measured 24h after transfection (mean+S.D., n=3).

b, OP9-DL1 co-culture of Nestn/- LSK cells (Nestnf/Wt vavil-cre+) infected with specified constructs.
Analysis of CD11b+ population was studied 14 days after the initiation of the culture. A representative
of 3 independant experiments is shown



Supplemental Table 1: GSEA on expression datasets of LSK from Ncstn

LSK from WT mice.

fIf

Mx1-cre™ mice versus

GeneSets | SIZE | ES NES p-value FDR | References
MYELOID_SIGNATURE 67 |078|271 |<0.001 | <0.001
LIAN_MYELOID_DIFF_GRANULE 39 | 071|221 | <0001 | <0.001 | (Lian etal., 2001)
LIAN_MYELOID_DIFF_RECEPTORS 64 | 057|195 | <0.001 | <0.001 | (Lian etal., 2001)
LIAN_MYELOID_DIFF_TF 75 | 045|156 | 0011 | 0023 | (Lianetal,2001)
MYELOID_LEUKOCYTE_DIFFERENTIATION| 38 047 | 143 | 0.067 | 0.056 (Z,gggt))umer et al,
MYELOID CELL_DIFFERENTIATION 81 034|121 | 0476 |o0479 | (Ashburner et al,

2000)

Genesets are defined from the indicated publications and available at http://www.broad.mit.edu/gsea

ES= Enrichment Score
NES= Normalized Enrichment Score
FDR= False Discovery Rate

Lian, Z et al. Genomic and proteomic analysis of myeloid differentiation program. Blood 98, 513-

524 (2001)

Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology

Consortium. Nat Genet 25, 25-29 (2000)




Supplemental Table 2: GSEA on expression datasets of LSK from N1-I1C* Mx1-cre” mice
versus LSK from WT mice

GeneSets FDR | References
MYELOID_SIGNATURE 67 | -0.77| -2.29 | <0.001 | <0.001
LIAN_MYELOID_DIFF_GRANULE 39 | -079] -2.10 | <0.001 | <0.001 | (Lian etal., 2001)
LIAN_MYELOID_DIFF_RECEPTORS 64 | -0.51 -1.49 | 0.018 | 0.036 | (Lian etal., 2001)
LIAN_MYELOID_DIFF_TF 75 | -040| -1.22 | 0.142 | 0210 | (Lianetal., 2001)
MYELOID_LEUKOCYTE_DIFFERENTIATION| 38 -0.38] -1.02 | 0.419 | 0.410 gg(s)g;)umer et al,

Genesets are defined from the indicated publications and available at http://www.broad.mit.edu/gsea
ES= Enrichment Score

NES= Normalized Enrichment Score

FDR= False Discovery Rate



Supplemental Table 3: Clinical characteristics of CMML patients.

Peripheral
WBC*
count

(x1079/uL)

Peripheral BM Blast BM

Monocytosis (%) Monocyte \CG Karyotype
(x1079/uL) 0 (%)

SAMPLE
ID

Sex| Age | Diagnosis

46, XX inv(3)(g21926.2) in 14
7 F 64 CMML-1 25.4 6.4 5 12 metaphases and 46 XX inv(3)(q21q26.2),
-7 in 6 metaphases
8 F 60 CMML-2 11.7 1.1 16 12 47, XX, +8 (in 17 metaphases)
AML 47, XY +21 (in 6 metaphases), 47, XY,
10 M 66 :transformed 129.4 9.1 22 9 +15 (in 1 metaphase)
rom CMML
19 F 55 CMML-1 30.4 7 4 13 46, XX
817 M 65 CMML-1 11.8 4.5 4 12 46, XY
1 M 61 CMML-1 9.4 51 1 9 ND
2 M | 50 CMML-1 5.2 1.2 1 3 (19)46XYDER(15)T(1;15)(Q11;P13)
3 M 76 CMML-1 43 7.3 2 15 (20)46XY
4 M 60 CMML-1 6.8 1.6 2 5.8 ND
5 M 66 CMML-1 41.4 5.8 2 4 46,XY,1(13;14)(q12;G32)[20]
6 M 62 CMML-1 24.8 4.2 2 4 46,XY,del(7)(p15){20}
9 M 55 CMML-1 5.1 2.1 3 7 46 XY [20]
11 M 69 CMML-1 3.9 1.7 4 8 (20)46XY
12 M 76 CMML-1 36.5 8.4 4 13 46,XY{20}
13 M 58 CMML-1 10 2 4 14 46,XY{20}
14 M 55 CMML-1 30.4 7 4 13 (20)46XY
15 F 73 CMML-1 28.9 6.1 5 5 27)46XX
16 M 67 CMML-1 28.8 29 5 1 46,XY{20}
17 M 77 CMML-1 7.6 3.1 5 8 46,XY,{20}
18 M | 33 CMML-1 74 17 5 12 (4)47XY,+10;(16)DIP
20 M | 73 CMML-1 6.7 3 5 16 14)45XY-7,DEL(12)(P11);6)DIP
21 M 58 CMML-1 25.7 5.7 5 12 20)46XY
22 M 64 CMML-1 59.5 13.7 5.2 14.2 (20)46XY
23 F 65 CMML-1 37.9 7.6 6 8 46,XX[20]
24 M 66 CMML-1 97.6 43.9 6 27 (20)46XY
25 F 49 CMML-1 99 14.9 6 6 46,XX {20}
26 M 70 CMML-1 90.7 47.2 7 42 (12)46XY
27 M 73 CMML-1 18.6 5 7.2 8.4 (18)45XY-7;(2)DIP
28 M | 71 CMML-1 48.9 2.4 8 15 3)46XYDEL(13)(Q12;Q14);17)DIP
29 M 75 CMML-1 30.8 5.5 8 13 (19)46XY
30 M 66 CMML-1 2.6 0.8 9 25 (20)46XY
31 F 68 CMML-2 48.9 22 10 21 (20)46XX




32 M 68 CMML-2 11.8 5.8 11 24 (20)45XY,-7,DEL12(P12.3)
33 F 62 CMML-2 40 9.2 11 18 20)47XX+8
34 M 68 CMML-2 40.2 10.5 13 28 46,XY{19}
35 M 54 CMML-2 87.3 40.2 13 40 (27)46XY

) 45,XY,-7[16]; 45,XY,ins(1;?) (p34;?),-7[3];
36 M 66 CMML-2 6.9 1.3 14 3 45.XY,-7,del(12)(p12)[1]
37 F 67 CMML-2 21.7 3.9 16 11 45 XX,-7{17};46 XX{3}
38 M 50 CMML-2 12.4 2.5 16 10 (30)46XY,INV9(P11Q12)
39 M 65 CMML-2 2.9 1.1 16 14 (21)46XY
40 M 75 CMML-2 19.1 6.1 19 10 46,XY [20]
41 M 31 CMML-2 34.4 175 missing missing 46,XY[20]

“WBC: White Blood Cells




Supplemental Table 4: Notch pathway mutations founf in CMML patients and co-occuring

mutations
Ade Diaanosis Notch pathway Co-occuring mutations
9 g mutations IDH2 TET2 ASXL1 FLT3 N/K-RAS
7 F 64 CMML-1 APH1A V1941 WT WT R1962H WT WT K-RASG12D | V617F
8 F 60 CMML-2 NOTCH2 S879F WT WT WT WT WT WT WT
AML
transformed | MAML1 R783W L1667fsX E322X;
10| M| 66 from NCSTNT3041 | WT | WT 23 | E635Rfsx14 | VT wr wT
CMML

19 F 55 CMML-1 NCSTN A433T WT WT C1877R H995QfsX2 WT N-RASG12D WT
817 M 65 CMML-1 MAML1 Q345X WT WT Q958X E635RfsX14 WT WT WT

All coding regions of IDH1, IDH2, TET2, ASXL1, APH1A, MAML1, PEN2, PRESENILIN1/2,
NICASTRIN, NOTCH1, and NOTCH2 were sequenced as well as regions of previously described
mutations in JAK2, KRAS, NRAS, and FLT3.



Supplemental Table 5: Single nucleotide variants found in CMML patients.

Gene Alteration
APH1A V255A
MAML1 N114S
MAML1 N501S
MAML1 S508F
MAML1 G950S
Nicastrin E109G

Notchl C74R
Notchl F345L
Notchl D388G
Notchl K581R
Notchl 1659V
Notchl G691S
Notchl S759F
Notchl S1274F
Notchl L1580Q
Notchl V1579M
Notch 2 T696A
Notch 2 A1108V

(They may represent somatic missense mutations or unannotated SNPs due to the fact that the variant was
seen in tumor DNA but no matched normal DNA was available).





