Table S1. Difference in neural tube, mz and vz size in E11.5 neural tubes from multiple sections from *Cux2* transgenic and *Cux2^{neo/neo}* mutants relative to control littermates

	VZ size	MZ size	Total NT size	NT height	NT width
Control versus Cux2 transgenic (% difference; n=7)	108%	114%	111%	107%	110%
Control versus Cux2 ^{neo/neo} (% difference; n=7)	87%*	51%*	72.2%*	98%	79.3%*
VZ, ventricular zone; MZ, marginal zone; NT, neural tube.					
*Statistical significance (P<0.05) by Student's t-test.					

Table S2. Effect of Cux2 loss- and gain-of-function on neuronal cell fate in the spinal cord

	Control E10.5	Cux2neo/neo mutants E10.5	<i>Cux2</i> Tg E10.5
Isl1	67.12±14.6*	88.7±14.5	53.7±16.1
P value (<i>t</i> -test) [†]		0.000003	0.053
Lhx1	101.1±21.2	85.2±30.7	144.6±38.1
P value (t-test)		0.0007	0.0058
	Cux2neo/Control (%)	Cux2 Tg/Control (%)	Cux2neo/neo/Cux2 Tg (%)
ls 1	32	-20 [‡]	61
P value (t-test)			0.000002
Lhx1	-16	43	-70
P value (t-test)			0.0007

Cux2^{neomeo} mutants display increased numbers of IsI1-positve cells and decreased Lhx1 numbers in the ventral neural tube at E10.5, relative to control littermates. Cux2 transgenics (Tg), however, display decreased numbers of IsI1-positive cells and increased numbers of Lhx1-positive cells relative to control embryos in E10.5 ventral neural tubes.

*Figures are represented as average values±s.d.

⁺P values were determined using a one-tailed Student's *t*-test with two samples, unequal variance.

*Negative sign denotes decrease.

Supplementary Figure S1. Cux2 and P27^{Kip1} protein levels in the developing spinal cord at E11.5. (A-C) Cux2 levels (A), P27^{Kip1} levels (B), and the merged image of Cux2 /P27^{Kip1} (yellow; C) in transverse sections of the ventral neural tube at the forelimb bud level of E11.5 embryos. (A) Little or no Cux2 levels were detected in the motor neuron domain in ventro-lateral mz. (C) Cux2 and P27^{Kip1} are co-expressed in the iz and fp, but not in post-mitotic motor neurons in the mz, which expresses p27^{Kip1} (red) but not Cux2 (green). Abbreviations: cn, commissural neurons; fp, floorplate; iz, intermediate zone; mz, marginal zone; vz, ventricular zone.

Supplementary Figure S2. The growth of the dorsal root ganglia (drg) is dependent on *Cux2* function. (A-C) Immunohistochemistry of NeuN in the drg of E11.5 wild type (A), $Cux2^{neo/neo}$ mutant (B), and *Nestin-Cux2-ires-EGFP* transgenic (C) embryos. (D-F) Immunohistochemistry of P27^{Kip1} in wild type (D), *Cux2* mutant (E) and transgenic (F) drg. (G-I) Immunohistochemistry of NeuroD showing greatly reduced staining in *Cux2* mutant (H), and enhanced staining in *Cux2* transgenics (I) relative to controls (G). All three post-mitotic neuronal markers show robust expression in *Cux2* mutants and transgenics, but the drg is smaller in the mutants and larger in the transgenics.

Supplementary Figure S3. Modulation of Cux2 protein expression in gain-of-function and loss-of-function experiments in the chick and mouse embryonic spinal cord.(A-C) Electroporation of HH12 chick neural tubes *in ovo* with *Cux2-IRES-nucEGFP* bicistronic

vector (A) and analysis of Cux2 expression using a mouse-specific polyclonal antibody 48 hours later (B) reveals GFP-positive cells express mCux2 protein (C). (D-F) Cux2 protein expression in a *Nestin-Cux2-ires-EGFP* transgenic neural tube at E11.5. (D) High GFP expression colabeling with ectopic Cux2 protein expression (E, F) in the vz. (G-H) Cux2 protein levels in the spinal cord at the forelimb level of control wild type (G) and $Cux2^{neo/neo}$ mutant (H) embryos at E10.5. (H) The *Cux2* mutation is hypomorphic and leads to a near complete loss of Cux2 expression in the ventral spinal cord at E10.5. Abbreviations: fp, floorplate.

Supplementary Figure S4. Dependence of expression of P27^{Kip1} and NeuroD on *Cux2* function in the developing spinal cord. (A-B) P27^{Kip1} (red) and NeuroD (green) immunohistochemistry on E9.5 trunk-level neural tubes from littermate control (A) and *Cux2^{neo/neo}* mutants (B). P27^{Kip1} is

localized in the maturing populations in the ventral-lateral neural tube, while NeuroD is localized in neuroblasts at lateral half of the vz. The occasional nuclei is positive for both P27^{Kip1} and NeuroD (arrow), but most expression remains mutually exclusion. (B) *Cux2* mutants showed a strong reduction of P27^{Kip1} levels at E9.5 and a less severe loss of NeuroD-positive nuclei at E9.5. (C-D) P27^{Kip1} (red) and NeuroD (green) levels in forelimb bud level spinal cords at E10.5 in a littermate control (C) and a *Cux2^{neo/neo}* mutant (D). At E10.5, P27^{Kip1} and NeuroD levels are largely non-overlapping except for a 2-4 cell layer thick zone in the ventral half of the neural tube (arrow in C-D), which identifies the iz, and in the drg. (D) *Cux2* mutants show a loss of NeuroD expression in the neural tube at E10.5 (but not drg). P27^{Kip1} levels were reduced in the mz of the medial neural tube, but enhanced in the mns, reflecting an increase in post-mitotic mns at the expense of in (Fig. 7).

NeuN

Control

Cux2neo/neo

P27Kip1

NeuroD

Control