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1 The model

The model is constructed as follows. Let the concentration of non-committed
slender cells of variant type v at time t be lv(t). The initial infection by variant
type 1 is at time t = 0. Switching between variants is sequential, i.e., variant
v switches to variant v + 1 and no other. This is different than other models
[3] where one variant may switch to a number of different variants. Although
this assumption was introduced to reduce the number of parameters associated
with the model, it was found to generate simultaneous expression of multiple
variants. Hence, although a simplified representation, a good match to biological
observation is generated.

Non-committed slender cells replicate at rate α (i.e., a cell-cycle time of ln 2

α
).

They are cleared by a time-dependent, variant-specific immune response at rate
rv(t). They become committed to differentiate at rate βf(t), where f(t) is SIF
concentration, and β a constant of proportionality. Switching from variant v to
variant v + 1 is at variant specific rate ωv. Thus the differential equations that
describe the dynamics of each non-committed slender variant are

d

dt
lv(t) = (α− ωv − βf(t) − rv(t))lv(t) +

{

0 if v = 1

ωv−1lv−1(t) if v = 2, . . . , ν
(1)

where ν is the total number of variant types that appear in a mouse during the
experiment. Let L(t) be the total concentration of non-committed slender cells;
it is given by the sum over all variant types

L(t) =
ν

∑

v=1

lv(t) (2)

Let the age of differentiated cells since becoming committed to differentiation
be a, and let dv(a, t) be the age distribution of differentiated cells of variant type
v at time t.

Differentiated cells fall into three classes: replicating, committed slender
cells, non-replicating intermediate cells and non-replicating stumpy cells. All
committed cells of variant type v are cleared by the immune system at a rate
proportional to the clearance rate of non-committed slender cells of the same
type, i.e., rv(t). Thus committed slender cells are cleared by the immune re-
sponse at rate δcrv(t). At age τc they become intermediate cells. Intermediate
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cells are cleared at rate δirv(t). They become stumpy cells at age τi. Stumpy
cells are cleared at rate δsrv(t). They die at age τs. Committed slender cells
replicate with rate α. Thus the partial differential equations that describe the
dynamics of the age distribution of each differentiated variant type v are

∂

∂t
dv(a, t) +

∂

∂a
dv(a, t) = −dv(a, t) ×











δcrv(t) − α if 0 ≤ a < τc

δirv(t) if τc ≤ a < τi

δsrv(t) if τi ≤ a < τs

(3)

The boundary conditions on these equations are determined by differentiation
of non-committed slender cells into age a = 0, i.e., dv(0, t) = βf(t)lv(t), and
stumpy death at age τs, i.e., dv(τs, t) = 0.

Let D(a, t) be the age distribution of differentiated cells of all variant types
at time t. It is given by the sum over all variants

D(a, t) =
ν

∑

v=1

dv(a, t) (4)

Let C(t) be the total concentration of committed slender cells, let I(t) be
the total concentration of intermediate cells, let S(t) be the total concentration
of stumpy cells, and let T (t) be the total concentration of cells. These are given
by

C(t) =

∫ τc

0

D(a, t)da (5)

I(t) =

∫ τi

τc

D(a, t)da (6)

S(t) =

∫ τs

τi

D(a, t)da (7)

T (t) = L(t) + C(t) + I(t) + S(t) (8)

SIF is produced by non-committed slender cells and committed cells up to
age τf at the rate of 1 unit of SIF per hour. SIF is lost at rate γ. Thus the
differential equation describing the dynamics of SIF concentration is

d

dt
f(t) = L(t) +

∫ τf

0

D(a, t)da − γf(t) (9)

PAD1 is only expressed in differentiated cells. It is scaled relative to the
PAD1 expression of mouse 5 on day 4. It rises linearly from 0 up to a level ρ1 in
cells from age 0 to age τp respectively. It then rises or falls linearly to a level ρ2

in cells just before they die at age τs. Let p(a) be the relative PAD1 expression
in a differentiated cell of age a, it is given by

p(a) =

{

ρ1
a
τp

if 0 ≤ a < τp

ρ1 + (ρ2 − ρ1)
a−τp

τs−τp
if τp ≤ a < τs

(10)

Let P (t) be the total relative PAD1 expression per ml of blood at time t. It is
found by multiplying the concentration of cells of age a by their relative PAD1
expression and then integrating over all ages, i.e.,

P (t) =

∫ τs

0

p(a)D(a, t)da (11)
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The immune response against trypanosomes is multifactorial and highly com-
plex, and only qualitatively understood at best. A detailed mathematical model
of the immune response is, therefore, of little use when no data is available to
fit to. Instead, we use a single variable rv(t), that determines the clearance rate
of each variant type v. We assume that the immune response against variant
type v is activated at a rate ψ by replicating slender cells of variant type v, and
self-enhances at rate φ. We also assume that the initial immune response to the
first variant is only activated after a certain time τr. The differential equations
that describe the immune-mediated clearance rates of each variant type v are

d

dt
rv(t) =

{

0 if t < τr

φrv(t) + ψlv(t) if t ≥ τr
(12)

Naive mice are infected with non-committed slender cells of variant type 1
at a concentration λ. Therefore the initial conditions are l1(0) = λ, lv(0) = 0
for v = 2, . . . , ν, dv(a, 0) = 0 for all v and a, rv(0) = 0 for all v, and f(0) = 0.
These imply L(0) = λ, D(a, 0) = 0 for all a and C(0) = I(0) = S(0) = T (0) =
P (0) = 0.

All variables, functions and parameters are listed in Table 1.

1.1 Cell-Concentration induced differentiation

Several papers [10, 11, 3] have suggested that differentiation is cell-concentration
induced rather than SIF induced. We tested this hypothesis by removing f(t)
from the model and replacing βf(t) by β′T (t) in Equation 1, i.e.,

d

dt
lv(t) = α− ωv − β′T (t) − rv(t))lv(t) +

{

0 if v = 1

ωv−1lv−1(t) if v = 2, . . . , ν
(13)

and by changing the boundary condition dv(0, t) = β′T (t)lv(t).

2 Model fitting, parameter estimation and hy-

pothesis testing

2.1 Likelihood

The measurement errors in the ZFP3 and PAD1 Ct values are assumed to be
normally distributed. In other studies, the standard deviation of the errors
in log10-transformed concentrations derived from qPCR is approximately 0.20
[5, 6]. This means that the standard errors in Ct values (which are on a log2

scale) are approximately 0.2 log2 10 which equals 0.66.
The model is fitted to each mouse’s log10-transformed parasite concentra-

tions and relative Ct-values for PAD1 expression. Let σL = 0.2 be the stan-
dard deviation in the normally distributed errors of log10-transformed parasite
concentrations, and let σP = 0.66 be the standard deviation in the normally
distributed errors of log2-transformed PAD1 expression.

For particular values of the model parameters, the model is solved numeri-
cally for each mouse using a discrete formulation of the model with a time-step
of 1h. In order to quantify the fit of the model with these parameters to the
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Independent variables

t time since infection h
a age of differentiated cells h

Dependent variables

lv(t) concentration of non-committed slender cells of variant type v cells ml−1

dv(a, t) age distribution of differentiated cells of variant type v cells ml−1h−1

rv(t) immune-mediated clearance rate of replicating slender cells of variant type v h−1

f(t) SIF concentration dimensionless
L(t) total concentration of non-committed slender cells cells ml−1

C(t) total concentration of committed slender cells cells ml−1

I(t) total concentration of intermediate cells cells ml−1

S(t) total concentration of stumpy cells cells ml−1

T (t) total concentration of all cells cells ml−1

D(a, t) age distribution of differentiated cells cells ml−1h−1

P (t) total relative PAD1 expression per ml of blood ml−1

Functions

p(a) relative PAD1 expression of cells of age a cells−1

Parameters

ν number of variant types dimensionless
α replication rate of slender cells h−1

β differentiation rate h−1

γ SIF removal rate h−1

δc proportionality constant for immune-mediated clearance of committed slender cells dimensionless
δi proportionality constant for immune-mediated clearance of intermediate cells dimensionless
δs proportionality constant for immune-mediated clearance of stumpy cells dimensionless
τc lifespan of committed slender cells h
τi lifespan of intermediate cells h
τs lifespan of stumpy cells h
τp duration of initial rise in PAD1 expression h
τf duration of SIF production of committed cells h
τr time until initial activation of immune response h
ρ1 relative PAD1 expression of cells age τp cells−1

ρ2 relative PAD1 expression of cells age τs cells−1

φ self-induced growth rate of immune response h−1

ψ committed slender cell-induced growth rate of immune response h−1

λ initial concentration of variant type 1 cells ml−1

ωv switch rate from variant type v to variant type v + 1 h−1

Table 1: Variables, functions and parameters used in the model
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data we proceed by calculating the log-likelihood of the model solution at each
data point. The value of the likelihood is given by the normal probability den-
sity function because the errors are normally distributed. So, for an observed
parasite concentration Ldata(t), at time t above the detection limit (about 106

parasites ml−1), the log-likelihood is proportional to

ln

(

φ

(

log10 Ldata(t) − log10 Lmodel(t)

σL

))

(14)

where φ(x) is the normal probability density function. For an observed parasite
concentration below the detection limit at time t the log-likelihood is propor-
tional to

ln

(

Φ

(

6 − log10 Lmodel(t)

σL

))

(15)

where Φ(x) is the normal cumulative distribution function. For an observed
relative PAD1 expression Pdata(t), at time t above the detection limit, the log-
likelihood is proportional to

ln

(

φ

(

log2 Pdata(t) − log2 Pmodel(t)

σP

))

(16)

The lowest log2 relative PAD1 expression is −7.52, we take this value as the
detection limit, although it may be smaller. For a relative PAD1 expression
below the detection limit at time t the log-likelihood is proportional to

ln

(

Φ

(

−7.52 − log2 Pmodel(t)

σP

))

(17)

The total log-likelihood for a mouse is the sum of the log-likelihoods over all the
data for that mouse.

The parameter posterior distribution is found by multiplying the likelihood
by the prior distributions, which are given in the next section. Samples from the
posterior are drawn using an adaptive population based Markov chain Monte
Carlo algorithm [7, 6].

2.2 Parameter Priors

The number of variant types ν that arose during the experiment is unknown.
On the one hand there must be more than one because of the multiple peaks
in parasite concentration, but on the other, we do not want the model to over-
fit the data with hundreds of variant types. We therefore chose a prior of
1 + NT (0, 5) which allows for tens of variant types but penalises the model for
having too many. (Note, NT (µ, σ) is a normal probability density function with
mean µ, standard deviation σ but truncated at 0.) Slender cell-cycle time has
been estimated to be around 4-5 hours [9, 12], although [8] estimated it around 2
hours. We therefore chose a prior on α as NT (0.1, 0.1) in order to incorporate
this uncertainty. [8] estimated the differentiation rate β to be between 0.5
and 3 × 10−9h−1, we therefore chose a prior of NT (10−9, 10−9). SIF removal
rate γ was estimated to be between 0.2 and 1.4h−1 [8], we therefore chose a
prior NT (0.5, 0.5). There is no quantitative prior information about immune-
mediated clearance of committed cells. It is thought, however, that the immune
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system is less effective at clearing stumpy cells than slender cells [4, 2]. We
therefore chose priors of U(0,1) for δc, δi and δs to reflect this uncertainty. [8]
estimated the committed slender cell lifespan τc, to be between 8 and 12h, we
therefore chose a prior of NT (10, 4). [12] estimated the time from cell-cycle exit
to the mitochondrion metabolic activity (when cells become morphologically
stumpy) to be between 8 and 10h. [8] estimated this to be between 3 and 8h.
We therefore chose a prior of NT (6, 6) on the lifespan of intermediate cells τi.
[1] estimated the lifespan of stumpy cells τs, to be between 24 and 36h. [10]
estimated it to be between 48 and 72h, and [8] around 58h but with very wide
confidence intervals. We therefore chose a prior of NT (48, 24) to cover this
uncertainty. The initial rise in PAD1 expression is thought to last until the end
of the intermediate stage. Given the priors on τc and τi we set a prior on τp of
NT (10+6,

√
42 + 62) = NT (16, 7). Peak total relative PAD1 expression is about

25. This occurs at a peak parasitaemia of around 108.5parasites ml−1 which
is composed of mainly stumpy cells. Therefore relative PAD1 expression per
stumpy cell is about 2

5

108.5 = 10−7. Therefore we chose a prior of NT (10−7, 10−7)
on ρ1 and ρ2. [8] suggested that committed slender cells produced SIF, we
therefore set the prior for the duration of SIF production of committed cells
τf as NT (10, 4). Mice were infected intra-peritoneally with about 103 slender
cells. We therefore have a prior of N(3, 0.5) on log10 λ. In [3] switch rates
between variants were allowed to vary over six orders of magnitude with an
average switch rate of 0.01 per population doubling, which is about 0.0014h−1

for a cell-cycle time of 7h. We therefore had a very broad prior on log10 ωv

of N(-6,2). The prior on the initial activation of the immune response τr, was
taken as NT (168, 24), i.e., around 7 days as is usual in acute infectious diseases
of naive animals. The growth of the immune responses against variants should
occur on the order of several days. We therefore take broad priors on φ and ψ
of NT (0.1, 0.1) and NT (10−8, 10−8) respectively.

3 Results

3.1 Adequacy of fit

The fit of the model to parasite concentration and relative PAD1 expression to
each mouse is shown in Fig. 4 in the main text. The dark and light grey regions
are, respectively, the 50 and 95% posterior predictive intervals of the dynamics
of these two variables. They represent our uncertainty in the dynamics of these
variables given the data and the model. Although the fits appear good, a better
assessment of adequacy of fit is to plot the standardised residuals; these are
shown as crosses in Supp. Fig. 4a. Poor fits to data exhibit outliers (larger than
about 3 standard deviations from 0). Systematic biases in fits across mice can
be seen by plotting the mean standardised residual at each time point. The
dashed lines represent the Bonferroni corrected 95% prediction interval of the
mean were the true model [7]. Mean standardised residuals that lie above or
below the interval suggest systematic under- and over-estimation of the data
across mice.
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3.2 SIF- or concentration-induced differentiation?

The standardised residuals of the model with concentration-induced differenti-
ation are shown in Supp. Fig. 4b. This model gives a poor fit to the data with
several outliers and systematic biases particularly around the first peak. The
ratio of the two model’s marginalised likelihoods tell us how much likely the
data are under one model compared to the other. The marginalised likelihoods
are products over all mice because we assume that the data from each mouse is
independent of the data from all the other mice, i.e.,

Prob(data | model) =
6

∏

i=1

Prob(data from mouse i | model) (18)

The marginalised likelihoods of the two models are calculated by the model
fitting algorithm: these are Prob(data | SIF model) = e−485 and Prob(data |
Conc. model) = e−624. Therefore the likelihood ratio is

Prob(data | SIF model)

Prob(data | Conc. model)
= e139 ≈ 1060 (19)

Thus the data are overwhelmingly more likely under the SIF-induced differen-
tiation model than the concentration-induced differentiation model.

3.3 Parameter estimates

Supplementary Figs. 5 and 6 display the marginalised parameter posterior dis-
tributions for each mouse. Some things to note

• Posterior distributions of intermediate cell lifespan contains 0. This means
that this data alone cannot resolve this parameter.

• Committed cell-lifespan equals τc + τi + τs.

• The number of committed slender cell replications equals τcα
ln 2

. They repli-
cate between 2 to 4 times before becoming cell-cycle arrested.

3.4 Variant dynamics

The median predicted dynamics of the variant types are shown in Supp. Fig. 8.
The first peak predominantly consists of one variant type. Notice that, even
though switching between variants is sequential, it is still possible to get multiple
variants arising simultaneously (mice 2 and 3, for example). For mouse 5 the
rate of decline of the variant dynamics is much slower than in the other mice.
This is because the immune-mediated clearance rates do not rise as high in this
mouse compared to the other mice. This explains why the parasite concentration
in this mouse remains high after the first peak (Fig. 4 in the main text).
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