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ABSTRACT

The chaos game representation (CGR) is a scatter plot
derived from a DNA sequence, with each point of the
plot corresponding to one base of the sequence. If the
DNA sequence were a random collection of bases, the
CGR would be a uniformly filled square; conversely,
any patterns visible in the CGR represent some pattern
(information) in the DNA sequence. In this paper,
patterns previously observed in a variety of DNA
sequences are explained solely in terms of nucleotide,
dinucleotide and trinucleotide frequencies.

INTRODUCTION

The chaos game representation (CGR) has been proposed as a
novel way of revealing patterns within nucleotide sequences [1].
The CGR consists of a square scatter plot, with each corner of
the plot representing one of the bases A, C, G and T (U). One
point is plotted for each site of the sequence, the first point plotted
halfway between the centre of the square and the corner
corresponding to the first nucleotide of the sequence and
successive points plotted halfway between the previous point and
the corner corresponding to the base of each successive sequence
site [1].

If successive bases are chosen at random and with equal
probabilities, the square eventually becomes uniformly filled with
dots. With unequal probabilities, a pattern of horizontal and
vertical bands appears [1, 2]. Jeffrey [1] has investigated the
patterns seen in CGRs when DNA sequences are used to provide
the sequence of bases A, C, G and T. The CGR for one sequence
he studied (human beta globin region, EMBL databank entry
HSHBB, 73326 base pairs) is shown in Figure 1. Recent work
has looked at ways of classifying and comparing CGRs of DNA
sequences [3].

For CGRs to be a useful tool for investigating DNA sequences,
it would be necessary to understand the patterns they exhibit and
to be able to interpret them in a biologically meaningful way.
In this paper, I describe simple features of DNA sequences that
give rise to previously-described patterns [1] in CGRs. These
are verified by the computer simulation of DNA sequences,

following simple rules readily derived from the original
sequences. These results indicate that it is unlikely that CGRs
can be more useful than simple evaluation of nucleotide,
dinucleotide and trinucleotide frequencies.

Biological meaning of the CGR

The point in a CGR corresponding to one base of a sequence
is plotted in the quadrant of the square labelled with that base.
This is because each quadrant comprises all points that are
halfway between one corner and any other point within the
square. Conversely, all points plotted within a quadrant must
correspond to subsequences of the DNA sequence that end with
the base labelling the corner of that quadrant [1]. For example,
any base G gives rise to a point in the G (upper-right) quadrant
of the square; and every point in that quadrant corresponds to
a base G in the DNA sequence. This correspondence between
points and subsequences continues recursively to sub-quadrants,
sub-sub-quadrants, etc. [4]: the dinucleotide subsequence AG
gives rise to a point in the A (lower-left) sub-quadrant of the
G quadrant, the trinucleotide TAG gives a point in the T (lower-
right) sub-sub-quadrant of the A sub-quadrant of the G quadrant
(Figure 2) and so on. By identifying regions of the CGR square
in this way, it is possible to identify features of DNA sequences
that correspond to patterns of the CGR.

The most obvious feature of the CGR of the human beta globin
region sequence (Figure 1) is the repeated (self-similar) pattern
of sparse ‘double scoop’ shaped regions, the largest of which
is at the top of the G quadrant. The major part of this region
is the upper-left sub-quadrant, corresponding to CG dinucleotides
(see Figure 2 and [1]): in other words, a relative rarity of CG
dinucleotides is indicated by the sparsely filled CG sub-quadrant.

Jeffrey [1] commented that to understand fully the ‘double
scoop’ pattern, it is necessary to characterize mathematically the
rare sequences (oligonucleotides) that produce the shape. This
is in fact easily done [2, 4]. The sparse CG sub-quadrant indicates
the rarity of CG dinucleotides; this in turn means that there are
few trinucleotides containing the dinucleotide CG—the ACG,
CCG, GCG, TCG, CGA, CGC, CGG and CGT sub-sub-
quadrants will be equally sparsely filled. The first four of these
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Figure 1. CGR of the human beta globin region sequence (HSHBB; 73326 bp).
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Figure 2. Explanation of the correspondence between oligonucleotides and areas
of the CGR of DNA sequences. Each base gives a point in the quadrant labelled
with that base; the su is determined by the preceding base, the sub-
sub-quadrant (e.g. “TAG’) by the base preceding that, etc. This correspondence
continues recursively, but is shown to a maximum of four bases in this figure
for clarity.

(XCG) are all within the CG sub-quadrant, and so are already
accounted for. The other four of these sub-sub-quadrants (CGX)
are distinct from the CG and can be seen in Figure 1
to be sparsely filled. Similarly, the 16 sub-sub-sub-quadrants
corresponding to subsequences CGXY will be sparsely filled,
as will the (increasingly small) 64 CGXYZ regions, 256
CGXZYW regions, etc. (where X, Y, Z and W each represent
any of the bases A, C, G, T). Figure 3 shows how these regions
combine to form precisely the pattern of repeated ‘double scoops’
evident in the beta globin region CGR.

Figure 3. Explanation of the ‘double scoop’ pattern as a consequence of CG-
dinucleotide rarity. a: The CGR square with the CG sub-quadrant left unfilled,
corresponding to absence of CG dinucleotides. b: The CGA, CGC, CGG and
CGT sub-sub-quadrants are also unfilled as a consequence of CG rarity. c: All
oligonucleotides containing CG will be absent, leading to increasingly-many, ever-
smaller, regions being blank. This figure shows the CGR square with regions
corresponding to all subsequences up to length 5 containing CG unfilled. The
pattern of repeats and complex outline of the *double scoop® appear as in Figure 1.

Also evident in Figure 1 is a division of the square into
horizontal and vertical bands. This is explained by the unequal
frequencies of the bases A, C, G and T in the beta globin region
sequence. As illustrated in Figure 4 of [1] and Figure 1 of [2],
if the selection of the next corner (base of the sequence) is at
random but with different corners assigned different probabilities
of selection, this banding appears as a consequence of the corner
regions of each quadrant, sub-quadrant, etc. being more densely
filled if their labels are selected with high probability.

A simple model which permits the simulation of these features
of DNA sequences is the four state, discrete time Markov Chain
[5]. In this model, a 4 X4 matrix P defines the probabilities with
which subsequent bases follow the current base in a DNA
sequence. If the base labels A, C, G and T are equated with the
numbers 1, 2, 3 and 4, then Py, the jth element of the ith row
of P, defines the probability that base j follows base i. The row-
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Figure 4. CGR of the first-order Markov Chain simulation of the human beta
globin region sequence.

Table 1a. Numbers of dinucleotide occurrences in the human beta globin region
sequence

Second base
A C G T totals
A 7239 3658 5227 5945 22069
First C 5166 3293 502 5207 14168
base G 4580 2839 3676 3694 14789
T

5087 4379 5383 7444 22293

Table 1b. Probability matrix of the first-order Markov Chain model for the human
beta globin region sequence

Second base

A C G T
A 0.328 0.166 0.237 0.269
First C 0.365 0.232 0.035 0.367
base G 0.310 0.192 0.249 0.250
T 0.228 0.196 0.241 0.334

Pyy = nyxy/(nxa+nxc+nxg+nxr), Where the nyy are given in Table la.

sums of P must equal 1. Using this matrix, a simulated DNA
sequence may be obtained by selecting a first base randomly,
according the frequencies of the bases in the DNA sequence under
study. If this is base i, then the probabilities P;;, P, P;; and
P;, are used to select the next base, and so on until the simulated
sequence is of the same length as the original DNA sequence.

This first-order Markov Chain model [6], in which successive
bases in a sequence depend only on the preceding base, has been
successfully used to describe human [7] and other vertebrate DNA
sequences [8]. The probabilities in the matrix P may be estimated
by direct calculation from the sequence’s dinucleotide

Figure 5. CGRs of the bacteriophage lambda genome. a: Original sequence
(LAMBDA; 48502 bp). b: Second-order Markov Chain simulation.

frequencies. If the dinucleotide XY is observed nyy times in the
sequence, then probability Pxy is estimated by nxy/
(nxa+nxc+nxg+nxr). This permits a DNA sequence to be
simulated with both individual base frequencies and dinucleotide
frequencies matching those of the original sequence. Dinucleotide
frequencies (nxy) and the Markov Chain probabilities (Pxy) for
the beta globin region sequence are given in Table 1.
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Table 2. Probability matrix of the second-order Markov Chain model for the bacteriophage lambda genome

Second base
A c G T
0.340 0.260 0.251 0.201 A
A 0.231 0.264 0.291 0.232 C
0.202 0.280 0.240 0.299 G
0227 0.19 0218 0.267 T
0217 0.270 0.202 0.113 A
c 0.181 0.165 0.258 0.188 c
0352 0.354 0.309 0.461 G
First 0.250 0210 0231 0.238 T
base 0.321 0.281 0.267 0.195 A
G 0.201 0.226 0.302 0211 C
0.19 0.257 0.196 0322 G
0.281 0.237 0.234 0272 T
0318 0.320 0.288 0.201 A
T 0222 0220 0.278 0.252 c
0.100 0217 0.246 0219 G
0.359 0.243 0.188 0.328 T

The four values in each cell of the table are for the third bases A, C, G, T respectively.

The CGR of Figure 1 also shows an increased density of points
on its A-G and C-T diagonals. These points are caused by runs
of sites containing just the bases that label the opposite ends of
the diagonals: runs of As and Gs give points near the A-G
diagonal, runs of Cs and Ts give points near the C-T diagonal.
Less visible in Figure 1, but easily seen if the CGR is drawn
with the vertices reordered A, C, T and G, is a similar increased
density on the A-T line. It appears that the human beta globin
region sequence, as well as having few CG dinucleotides, has
an abundance of runs of As and Gs, Cs and Ts, and As and Ts.
This is also modelled by the first-order Markov Chain, where
an abundance of runs of (for example) As and Gs is indicated
by raised probabilities of AA, AG, GG and GA dinucleotides
(Table 1b).

A sequence of length 73326 bp was simulated using the first-
order Markov Chain model of Table 1b, and its CGR is shown
in Figure 4. Notice that this CGR displays all the major features
evident in Figure 1, the CGR of the human beta globin region
sequence: the repeated ‘double scoop’ (due to rarity of CG
dinucleotides), vertical and horizontal banding (unequal base
frequencies) and denser filling of the A-G and C-T diagonals
(relative abundance of runs of As and Gs, and Cs and Ts).

Further examples

The first-order Markov Chain model successfully recreates other
CGR patterns that have been of interest [1], including those of
plants and slime molds, exemplified by the D. discoideum myosin
heavy chain gene, and of human viruses, exemplified by the
human T-cell lymphotropic virus (type IIl) genome (not shown).
I give just one further, more-complex, example here: the CGR
for the bacteriophage lambda genome (EMBL entry LAMBDA,
48502 bp), as shown in Figure 5a. An incomplete version of this
sequence was studied in [1].

There is little evidence of horizontal or vertical banding in this
CGR, but some evidence of sparse regions. The lack of banding
suggests approximate equality of the frequencies of the bases A,
C, G, T, confirmed by direct calculation from the sequence.
Unlike the human beta globin region CGR, where the largest
sparse area was one-sixteenth of the square and represented a
dinucleotide, the two largest sparse areas of the phage lambda

CGR are each 1/64 of the square and represent the trinucleotides
CTA and TAG. Other smaller sparse regions appear in the sub-
quadrants representing sequences CTAX and TAGX, as
expected. In this case, the first-order Markov Chain model will
not give the observed patterns, but a more complex second-order
Markov Chain, in which each base depends on the previous two,
does. Second-order Markov Chains have been used to describe
both coding and non-coding DNA sequences [9]. Pxyz, the
probability that base Z follows the dinucleotide XY, is estimated
directly from the DNA sequence trinucleotide frequencies nyy
using the formula nyz = nxyz/ (nXYA+nxyc +nxyg +nxy'r).
The 64 values Pyy; for the phage lambda sequence are given
in Table 2; the CGR of a sequence of 48502 bp simulated using
this model is shown in Figure 5b. This CGR shows all the
important features of Figure 5a, the CGR of the original phage
lambda sequence.

DISCUSSION

As previously noted [1], a DNA sequence consisting of
independent, random bases A, C, G and T (in equal proportions)
would exhibit a patternless (uniformly filled) CGR. Any structure
to the sequence dictates the patterns observed in the CGR; but
complex patterns in the CGR do not necessarily require complex
patterns in the sequence. In this paper, I have shown that simple
Markov Chain models based solely on dinucleotide and
trinucleotide frequencies can account for the complex patterns
exhibited in CGRs of DNA sequences. The probabilities defining
these models can be calculated directly and easily from the raw
DNA sequences, without reference to the CGR, implying that
the CGR gives no further insight into the structure of the DNA
sequence than is given by the dinucleotide and trinucleotide
frequencies. This is in contrast to the method of [2], which relies
on trial-and-error comparisons between CGRs.

Figure 3 confirms that the repeated ‘double scoop’ pattern,
reported in the CGRs of almost all vertebrate DNA sequences
and in the CGR of human T-cell lymphotropic virus (type III)
genome and other human viruses [1], is entirely attributable to
a scarcity of CG dinucleotides. The biological reasons for this
scarcity are well-understood, being the selective disadvantage of



CG dinucleotides which are prone to methylation and subsequent
mutation [10, 11]. All the other patterns previously described
in CGRs [1] have in this paper been attributed to simple
relationships between single base, dinucleotide and trinucleotide
frequencies which are readily calculated from DNA sequences
without recourse to chaos game representations. Even better
explanations might be derived from a trinucleotide model based
on measures of codon usage [12]. Unless more complex patterns
are found in CGRs, there is no justification for ascribing their
patterns to anything other than the effects described in this paper.
Indeed, it must be doubtful whether more-complex patterns of
information in DNA sequences will be visible in CGRs, since
simpler patterns will tend to obscure more complex ones.
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