Site-Specific Hydration Dynamics in the Nonpolar Core of a Molten Globule by Dynamic Nuclear Polarization of Water

Brandon D. Armstrong^{1,#}, Jennifer Choi^{2,†, ##}, Carlos López^{3,†}, Darryl A. Wesener^{,2, ###}, Wayne Hubbell³, Silvia Cavagnero^{2,*}, Songi Han^{4,*}

¹Department of Physics, University of California-Santa Barbara, Santa Barbara, CA. 93106-9530

²Department of Chemistry, University of Wisconsin-Madison, Madison, WI. 53706

³Department of Chemistry and Biochemistry and the Jules Stein Eye Institute, University of California-Los Angeles, CA. 90095-7008

⁴Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California-Santa Barbara, 93106-9510

[#]Present address: Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA. 02138

^{##}Present address: College of Pharmacy, University of Michigan, Ann Arbor, MI. 48109-1065

****Present address: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI. 53706

[†] These authors contributed equally to the work

* Co-corresponding authors

CORRESPONDING AUTHORS EMAIL: Songi Han, songi@chem.ucsb.edu and Silvia

Cavagnero, cavagnero@chem.wisc.edu

Supplementary Materials and Methods

EPR simulations. Single- and multiple- component EPR spectra were simulated with the NLSL program assuming a two-component MOMD (microscopic order, macroscopic disorder) model that described the anisotropic motion of the nitroxide (1); the software is available at ftp://ftp.ccmr.cornell.edu/pub/freed. For all simulations, the starting values of the A and g magnetic tensors were taken as $g_{xx} = 2.0078$, $g_{yy} = 2.0058$, $g_{zz} = 2.0022$, and Ax = 6.2, Ay = 5.9. The Az values (Az in the NLSL software is the same parameter as A_{zz} in the text) were obtained from spectra recorded in the absence of motion in frozen solutions at -50 °C. Az was kept constant during the fitting procedure. The log_{10} of the three components of the rotational diffusion tensor are given in a modified spherical form as $\langle R \rangle = \frac{1}{3}(R_x + R_y + R_z)$, N = Rz - $\frac{1}{2}(R_x+R_y)$, and $N_{xy} = (R_x-R_y)$, where R_x , R_y , and R_z are the principal components in Cartesian coordinates. The immobile states of E41R1, V66R1 (MG-state), and I142R1 were taken to have isotropic motion with $N=N_{xy}=0$, while the other states have axially symmetric (around the z-axis) anisotropic motion with tilt angles of the diffusion tensor $\alpha_D = 0^\circ, \beta_D = 36^\circ, \gamma_D = 0^\circ$, and subject to an ordering potential described by the coefficient C_{20} from which the order parameter is computed. Least-square fits were obtained with $\langle R \rangle$, N and C₂₀ as adjustable parameters. After these parameters were optimized, the principal values of the A and g magnetic tensor (except A_z) were allowed to vary slightly to obtain the final best fit. The effective rotational correlation time for the immobile (τ_i) and mobile (τ_m) components was calculated as $\tau = 1/6 < R >$, and the order parameter S was computed directly from C_{20} as described (1). A summary of all the above parameters from EPR data fitting is provided in Table S1.

Figure S1. EPR spectra of spin-labeled apoMb variants recorded in the absence of global motions at -50°C. For each mutant, the spectra of the native and molten globule states are superimposed. The splitting of the resolved hyperfine extrema $(2A_{zz'})$ is labeled in the figure.

Figure S2. Experimental EPR spectra (solid black lines) and matching curve fits (red dashed lines). All spectra were fit to a two-component model except for V66R1 in the native state, which was fit to a single component.

Sample	A_{zz}' (Gauss)	%i	$\tau_{l}(\mathrm{ns})$	%m	τ_m (ns)	$\mathbf{S}_{\mathbf{i}}$	Sm
M131R1-N	34.90	95	18.7	5	1.0	0.88	0.25
F138R1-N	34.38	95	14.0	5	1.0	0.85	0.22
I142R1-N	35.40	61	10.0	39	1.5		0.31
E41R1-N	36.40	58	5.9	42	1.6		0.35
V66R1-N	36.22			100	3.1		0.45
M131R1-MG	35.10	60	18.7	40	2.0	0.88	0.40
F138R1-MG	35.38	59	14.0	41	2.1	0.85	0.41
I142R1-MG	35.40	60	12.7	40	1.8		0.43
E41R1-MG	35.74	57	8.5	43	2.1		0.14
V66R1-MG	36.13	72	5.2	28	1.1		0.07

Table S1. Expanded summary EPR data and fit parameters. A_{zz}' is the effective hyperfine splitting obtained from the EPR spectra at -50°C (shown in Fig. S1). %i and %m are the relative percentages of immobile and mobile components, respectively, of the EPR spectra obtained from the fits. τ_i and τ_m are the effective rotational correlation times of the spin label immobile and mobile component, and are calculated from EPR data fitting as described above.

References

1. Budil DE, Lee S, Saxena S, & Freed JH (1996) Nonlinear-Least-Squares Analysis of Slow-Motion EPR Spectra in One and Two Dimensions Using a Modified Levenberg-Marquardt Algorithm. J. Magn. Reson. A 120(2):155-189.