Supporting Information for:

Mechanistic and Computational Studies of Oxidatively Induced Aryl–CF₃ Bond-Formation at Pd: Rational Design of Room Temperature Aryl Trifluoromethylation

Nicholas D. Ball, J. Brannon Gary, Yingda Ye, Melanie S. Sanford*

Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109

Table of Contents

General Procedures	S4
Materials and Methods	S4
Experimental Details	S5
General procedure for the synthesis of (dtbpy)Pd(Aryl)(I)	S5
General procedure for the synthesis of (tmeda)Pd(Aryl)(I)	S6
General procedure for the synthesis of (dtbpy)Pd(AryI)(CF ₃)	S8
General procedure for the synthesis of (tmeda)Pd(Aryl)(CF ₃), 11	S11
Synthesis of (dtbpy)Pd ^{IV} (4-CH ₃ C ₆ H ₅)(CF ₃)(F)(OTf), 5	S14
Synthesis of (dtbpy)Pd ^{IV} (4-CF ₃ C ₆ H ₅)(CF ₃)(F)(OTf), 6	S14
Procedure for the synthesis of $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{CF}_3)$ (11b) from $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{TFA})$.	S16
Procedure for the synthesis of $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{CF}_3)$ (11b) from $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{OAc})$.	S16
General procedure for oxidatively induced Aryl–CF ₃ coupling from 1a-1i , (dtbpy)Pd(o-tol)(CF ₃), 5), 10 and
11a-11i	S16
Procedure to determine rate of reductive elimination from Pd^{V} complex 4	S17
Figure S1.	S17
Figure S2.	S18
Table S1.	S18
Determining Order in Triflate with 4 at 50 °C in NO ₂ Ph- <i>d</i> ₅	S19
Table S2.	S19
Figure S3.	S20
Activation Parameters for Reductive Elimination from 4	S20
Table S3.	S20
Figure S4.	S21
Figure S5.	S21
Determining Initial Rates of Reductive Elimination from Complexes 5 and 6 at 50 °C in NO ₂ Ph-d	₅S21
Table S4.	S22
Figure S6.	S22
Figure S7.	S22
Computational Methods	S23
Table S5.	S24
Table S6.	S24
Table S7.	S24
Figure S8.	S25
Figure S9.	S25
Figure S10.	S26

Calculations – Optimized Atomic Coordinates	S27
References	S43
NMR Spectra	S44

General Procedures

NMR spectra were obtained on a Varian Inova 400 (399.96 MHz for ¹H; 376.34 MHz for ¹⁹F; 100.57 MHz for ¹³C), a vnmr500 (500.09 MHz for ¹H; 470.56 MHz for ¹⁹F; 125.75 MHz for ¹³C) spectrometer, or an MR400 (400.53 MHz for ¹H; 376.87 MHz for ¹⁹F; 100.71 MHz for ¹³C) spectrometer. ¹H, ¹⁹F and ¹³C chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. CDCl₃ was referenced to –77.00 ppm in ¹³C and 7.26 ppm in ¹H NMR spectra. ¹⁹F NMR spectra are referenced on a unified scale, where the single primary reference is the frequency of the residual solvent peak in the ¹H NMR spectrum.¹ ¹H and ¹⁹F multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), quartet (q), multiplet (m), and broad resonance (br). Elemental analyses were conducted by Atlantic Microlabs in Norcross, Georgia. Mass spectral data were obtained on a Micromass magnetic sector mass spectrometer or on a Micromass LCT mass spectrometer with an electrospray ionization mode.

Materials and Methods

The palladium(II) complexes Pd(dba)₂ [dba = dibenzylideneacetone],² (dtbpy)PdCl₂ [dtbpy = 4,4'-di-*tert*butyl-2,2'-bipyridyl],³ (dtbpy)Pdl₂, ⁴(bpy)Pd(Ph)(I) [bpy = 2,2'-bipyridyl],⁵ (dtbpy)Pd(Aryl)(CF₃) (Aryl = p- FC_6H_4 , p-CF₃C₆H₄ and p-MeOC₆H₄),⁶ (teeda)Pd(Ph)(I) [teeda = N,N,N',N'-tetraethylethylenediamine],⁷ (dpe)Pd(Ph)(I) [dpe =1,2-dipiperidinoethane],⁷ (tmeda)Pd(p-FC₆H₄)(CF₃)⁶ and (tmeda)Pd(Ph)(CF₃)⁶ were prepared according to literature procedures. (dtbpy)Pd^{IV}(p-FC₆H₄)(F)(CF₃)(OTf) was prepared according to the literature.⁶All arvl iodides were purchased from commercial sources. Authentic samples of all of the aryl-CF₃ reductive elimination products were purchased from commercial sources. Rupert's reagent (TMSCF₃) and 1-fluoro-4-benzotrifluoride were obtained from Matrix Chemicals. The ligands tmeda, teeda, and dtbpy were obtained from Aldrich, while 1,2-bispiperidinoethane was synthesized according to a literature procedure.⁸ 1-Fluoro-2,4,6-trimethylpyridinium triflate was obtained from TCI America. Unless otherwise noted, all reagents were used as received. Nitrobenzene- d_{5} , CD₂Cl₂, CD₃CN and CDCl₃ were obtained from Cambridge Isotope Laboratories. All other solvents were obtained from Fisher Chemicals. Tetrahydrofuran, toluene and pentane were purified using an Innovative Technologies (IT) solvent purification system consisting of a copper catalyst, activated alumina, and molecular sieves. Dichloroethane was distilled from CaH₂. Nitrobenzene-d₅ was distilled from P₂O₅ and then stored over 4 Å molecular sieves. All syntheses were conducted using standard Schlenk techniques or in an inert atmosphere glovebox unless otherwise stated.

Experimental Details

<u>General procedure for the synthesis of (dtbpy)Pd(Aryl)(I)</u>: Under nitrogen, Pd(dba)₂ (3.0 g, 5.23 mmol, 1 equiv) was weighed into a 250 mL round bottom flask and dissolved in THF (50 mL). The ligand dtbpy (3.7 g, 13.6 mmol, 2.6 equiv) was added, and the resulting mixture was stirred at 25 °C for 15 min. The aryl iodide (14.6 mmol, 2.8 equiv) was added, and the reaction was heated for 60 °C for 3 h. In air, the reaction mixture was filtered through a plug of Celite, and the solvent was removed under reduced pressure. The resulting solid was washed with hexanes (3 x 20 mL), 50:50 (v:v) mixture hexanes/diethyl ether (6 x 20 mL) and then diethyl ether (3 x 5 mL) to remove all residual dibenzylidene acetone (dba). The product was then dried *in vacuo*.

The product (dtbpy)Pd(*p*-PhC(O)C₆H₄)(I) was isolated as an orange solid (2.20 g, 62% yield). ¹H NMR (CDCl₃): δ 9.45 (d, *J* = 6 Hz, 1H), 7.97 (app. s, 2H), 7.80-7.78 (multiple peaks, 2H), 7.58 (d, *J* = 8 Hz, 2H), 7.53-7.42 (multiple peaks, 7H), 7.30 (dd, *J* = 6 Hz, 2Hz, 1H), 1.40 (s, 9H), 1.35 (s, 9H). ¹³C NMR (CDCl₃): δ 197.68, 169.15, 163.78, 163.66, 155.39, 154.39, 151.72, 150.44, 138.74, 135.98, 132.62, 131.50, 129.91, 128.12, 127.96, 123.60, 123.38, 118.21, 118.08, 35.43(2 overlapping carbons), 30.31, 30.28. HRMS electrospray (m/z): [M – I + MeCN]⁺ calcd for C₃₃H₃₆N₃OPd, 596.1880; Found, 596.1900. Notably, small amounts (~5%) of (dtbpy)Pd(I)₂ were observed in the ¹H and ¹³C NMR spectra of most isolated samples of (dtbpy)Pd(*p*-Ph C(O)C₆H₄)(I).

The product (dtbpy)Pd(*m*-CH₃C₆H₄)(I) was isolated as an orange solid (0.72 g, 23% yield). ¹H NMR (CDCl₃): δ 9.50 (d, *J* = 6 Hz, 1H), 7.98 (s, 2H), 7.59 (d, *J* = 6 Hz, 1H), 7.51 (m, 1H), 7.35 (m, 1H), 7.28 (s, 1H), 7.20 (d, *J* = 7 Hz, 1H), 6.93 (t, *J* = 7 Hz, 1H), 6.74 (d, *J* = 7 Hz, 1H), 2.28 (s, 3H), 1.44 (s, 9H), 1.40 (s, 9H). ¹³C NMR (CDCl₃): δ 163.21, 163.16, 155.92, 153.91, 152.57, 150.00, 146.54, 137.20, 136.54, 133.51, 126.99, 124.19, 123.90, 123.65, 118.37, 117.99, 35.61, 35.56, 30.52, 30.39, 21.65. HRMS electrospray (m/z): [M - I - MeCN]⁺ calcd for C₂₅H₃₁IN₂Pd, 506.1782; Found, 506.1798. Notably, small amounts (~4%) of (dtbpy)Pd(I)₂ were observed in the ¹H and ¹³C NMR spectra of most isolated samples of (dtbpy)Pd(*m*-CH₃C₆H₄)(I).

The product (dtbpy)Pd(*p*-CNC₆H₄)(I) was isolated as an orange solid (1.38 g, 66% yield). ¹H NMR (CDCl₃, 500.09 MHz): δ 9.47 (d, *J* = 6 Hz, 1H), 7.97 (s, 1H), 7.95 (s, 1H), 7.58 (d, *J* = 9 Hz, 2H), 7.50 (dd, *J* = 5 Hz, 2 Hz, 1H), 7.43 (d, *J* = 6 Hz, 1H), 7.34 (dd, *J* = 6 Hz, 2 Hz, 1H), 7.25 (d, *J* = 9 Hz, 2H), 1.41 (s, 9H), 1.38 (s, 9H). ¹³C NMR (CDCl₃, 125.75 MHz): δ 163.78, 163.59, 158.15, 155.94, 153.77, 152.59, 149.26, 137.67, 129.18, 124.02, 123.71, 120.14, 118.64, 118.20, 106.32, 35.55, 35.47, 30.31, 30.18. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₂₅H₂₈IN₃Pd, 626.0255; Found, 626.0256. Notably, small amounts (~5%) of (dtbpy)Pd(I)₂ were observed in the ¹H and ¹³C NMR spectra of most isolated samples of (dtbpy)Pd(*p*-CNC₆H₄)(I).

The product (dtbpy)Pd(*o*-tol)(I) was isolated as an orange solid (0.60 g, 19%). ¹H NMR (CDCl₃,): δ 9.45 (d, *J* = 6 Hz, 1H), 7.94 (s, 2H), 7.48 (d, *J* = 6 Hz, 1H), 7.39-7.34 (multiple peaks, 2H), 7.26 (m, 1H), 6.94 (m, 1H), 6.84-6.82 (multiple peaks, 2H), 2.57 (s, 3H), 1.40 (s, 9H), 1.36 (s, 9H). ¹³C NMR (CDCl₃): δ 163.06, 163.02, 155.86, 153.70, 152.28, 149.18, 147.26, 141.28, 136.10, 128.65, 123.98, 123.82, 123.64, 123.09, 118.33, 117.86, 35.45, 35.41, 30.27, 30.23, 26.90. HRMS-electrospray (m/z): [M + Na]⁺ calcd for C₂₅H₃₁IN₂Pd, 615.0464; Found, 615.0477. Notably, small amounts (~7%) of (dtbpy)Pd(I)₂ were observed in the ¹H and ¹³C NMR spectra of most isolated samples of (dtbpy)Pd(o-tol)(I).

General procedure for the synthesis of (tmeda)Pd(Aryl)(l): Under nitrogen, Pd(dba)₂ (2.0 g, 3.48 mmol, 1 equiv) was weighed into a 250 mL round bottom flask and dissolved in THF (50 mL). TMEDA (1.1 g, 9.06 mmol, 2.6 equiv) was added, and the resulting mixture was stirred at 25 °C for 15 min. The appropriate aryl iodide (9.74 mmol, 2.8 equiv) was added, and the reaction was heated at 60 °C for 30 min. In air, the reaction mixture was filtered through a plug of Celite, and the solvent was removed under reduced pressure. The resulting solid was washed with hexanes (3 x 20 mL) and then diethyl ether (3 x 50 mL) to remove all residual dibenzylidene acetone (dba). The product was then dried *in vacuo*.

The product (tmeda)Pd(*p*-MeC₆H₄)(I) was isolated as an orange solid (1.18 g, 51% yield). ¹H NMR (CDCl₃): δ 7.06 (d, *J* = 8 Hz, 2H), 6.72 (d, *J* = 8 Hz, 2H), 2.68-2.66 (multiple peaks, 2H), 2.62 (s, 6H), 2.52-2.49 (multiple peaks, 2H), 2.28 (s, 6H), 2.18 (s, 3H). ¹³C NMR (CDCl₃): δ 139.49, 135.89, 131.43, 127.43, 61.98, 58.10, 49.77, 49.56, 20.48. HRMS electrospray (m/z): [M – I + MeCN]⁺ calcd for C₁₃H₂₃IN₂Pd, 354.1162; Found, 354.1166.

The product (tmeda)Pd(*p*-MeOC₆H₄)(I) was isolated as an orange solid (1.23 g, 77% yield). ¹H NMR (CDCl₃, 500.09 MHz): δ 7.08 (d, *J* = 9 Hz, 2H), 6.61 (d, *J* = 9 Hz, 2H), 3.69 (s, 3H), 2.72-2.70 (multiple peaks, 2H), 2.66 (s, 6H), 2.56-2.54 (multiple peaks, 2H), 2.31 (s, 6H). ¹³C NMR (CDCl₃, 125.75 MHz): δ 156.22, 135.90, 131.70, 112.64, 61.92, 58.09, 54.90, 49.69, 49.53. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₃H₂₃IN₂OPd, 478.9788; Found, 478.9782.

The product (tmeda)Pd(*p*-CF₃C₆H₄)(I) was isolated as an orange solid (1.02 g, 39% yield). ¹H NMR (CDCl₃): δ 7.35 (d, *J* = 8 Hz, 2H), 7.06 (d, *J* = 8 Hz, 2H), 2.59 (s, 6H), 2.45 (app s, 4H), 2.20 (s, 6H). ¹⁹F NMR (CDCl₃): δ –61.81 (s, 3F). ¹³C NMR (CDCl₃): δ 152.69, 136.48, 124.77 (q, *J* = 271 Hz), 124.56 (q, *J* = 32 Hz), 121.90 (q, *J* = 4 Hz), 61.93, 58.08, 49.76, 49.60. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₃H₂₀F₃IN₂Pd, 516.9556; Found, 516.9573.

The product (tmeda)Pd(*p*-CNC₆H₄)(I) was isolated as an orange solid (0.95 g scale, 0.51 g, 68% yield). ¹H NMR (CDCl₃): δ 7.44 (d, *J* = 8 Hz, 2H), 7.13 (d, *J* = 8 Hz, 2H), 2.73 (br. s, 2H), 2.67 (s, 6H), 2.57 (br. s, 2H), 2.31 (6H). ¹³C NMR (CDCl₃): δ 156.99, 137.40, 128.46, 119.99, 105.90, 62.12, 58.31, 49.98, 49.86. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₃H₂₀IN₃Pd, 473.9634; Found, 473.9644.

The product (tmeda)Pd(*m*-MeC₆H₄)(I) was isolated as an orange solid (1.24 g, 81% yield). ¹H NMR (CDCl₃): δ 7.05 (s, 1H), 7.00 (d, *J* = 8 Hz, 1H), 6.77 (m, 1H), 6.58 (d, *J* = 7 Hz, 1H), 2.69 (br multiplet, 2H), 2.63 (s, 6H), 2.53 (br multiplet, 2H), 2.29 (s, 6H), 2.18 (s, 3H). ¹³C NMR (CDCl₃): δ 144.46, 136.77, 135.31, 133.21, 125.86, 123.41, 61.92, 58.03, 49.76, 49.67, 49.49 (2 overlapping carbons), 21.29. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₃H₂₃IN₂Pd, 462.9838; Found, 462.9843.

The product (tmeda)Pd(o-MeC₆H₄)(I) was isolated as an orange solid (0.52 g, 68% yield). ¹H NMR (CDCl₃): δ 7.17 (d, *J* = 7 Hz, 1 Hz, 1H), 6.82 (m, 1H), 6.77-6.72 (multiple peaks, 2H), 2.86-2.82 (multiple peaks, 2H), 2.70-2.66 (multiple peaks, 11H), 2.45 (s, 3H), 2.16 (s, 3H). ¹³C NMR (CDCl₃): δ 144.55, 141.63, 135.31, 127.76, 123.62, 122.62, 62.03, 58.09, 50.20 (2 overlapping carbons), 48.77, 48.52, 27.50. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₃H₂₃IN₂Pd, 462.9838; Found, 462.9844.

The product (tmeda)Pd(*o*-MeOC₆H₄)(I) was isolated as an orange solid (0.61 g, 38% yield). ¹H NMR (CDCl₃): δ 7.16 (d, *J* = 7 Hz, 1H), 6.82 (t, *J* = 7 Hz, 1H), 6.63 (t, *J* = 7 Hz, 1H), 6.47 (d, 8 Hz, 1H), 3.82 (s, 3H), 2.74-2.62 (multiple peaks, 4H), 2.70 (s, 3H), 2.69 (s, 3H), 2.36 (s, 3H), 2.31 (s, 3H). ¹³C NMR (CDCl₃): δ 161.80, 137.50, 129.74, 123.62, 119.95, 110.13, 61.98, 58.41, 55.75, 50.09 (2 overlapping carbons), 49.73, 49.27. HRMS electrospray (m/z): [M + I]⁺ calcd for C₁₃H₂₃IN₂OPd, 329.0845; Found, 329.0848.

<u>General procedure for the synthesis of (dtbpy)Pd(Aryl)(CF₃):</u> Under nitrogen, (dtbpy)Pd(Aryl)(I) (1 equiv) and CsF (3 equiv) were suspended in THF (0.145 M) in a 25 mL Schlenk flask. This mixture was stirred for 10 min, and then Me₃SiCF₃ (2 equiv) was added. The reaction was stirred vigorously for 3 h at 22 °C. The solvent was removed under reduced pressure, CH_2CI_2 (15 mL) was added to dissolve the product, and the resulting suspension was filtered through a plug of Celite. The plug was washed with CH_2CI_2 (2 x 5 mL), the filtrate was concentrated under reduced pressure to (~2 mL), and hexanes (60 mL) was added to precipitate the product. The resulting solid was collected on fritted Büchner funnel, washed with hexanes (3 x 10 mL) and diethyl ether (2 x 2 mL), and dried *in vacuo*. The scale of these syntheses (amount of (dtbpy)Pd(Aryl)(I) starting material) are noted accordingly.

<u>Complex 1b</u>. Product **1b** was isolated as an yellow solid (1.2 g scale, 0.59 g, 54% yield). ¹H NMR (CDCl₃): δ 9.00 (app. d, *J* = 6 Hz 1H), 7.99 (s, 1H), 7.96 (s, 1H), 7.76 (d, *J* = 8 Hz, 2H), 7.54 (d, *J* = 6 Hz, 1H), 7.50 (d, *J* = 6 Hz, 1H), 7.32 (d, *J* = 8 Hz, 2H), 7.28 (d, *J* = 6 Hz, 1H), 1.43 (s, 9H), 1.36 (s, 9H). ¹⁹F NMR (CDCl₃): δ –21.25 (s). ¹³C NMR (CDCl₃): δ 168.76, 164.00, 163.81, 155.40, 154.33, 151.71 (br q, *J* = 4 Hz), 150.13, 136.94, 134.57 (q, *J* = 364 Hz), 129.37, 123.71, 123.45, 120.60, 118.33, 118.25, 106.20, 35.46 (2 overlapping carbons), 30.30, 30.23. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₂₆H₂₈F₃N₃Pd, 568.1162; Found, 568.1166.

Complex 1d. Product **1d** was isolated as a yellow solid (1.0 g scale, 0.47 g, 51% yield). ¹H NMR (CDCl₃): δ 9.02 (br multiplet, 1H), 7.98 (s, 1H), 7.94 (s, 1H), 7.83 (d, *J* = 7 Hz, 2H), 7.78 (d, *J* = 8 Hz, 2H), 7.59-7.51 (multiple peaks, 5H), 7.48-7.43 (multiple peaks, 2H), 7.23 (resonance overlaps with CDCl₃ peak, 1H), 1.42 (s, 9H), 1.35 (s, 9H). ¹⁹F NMR (CDCl₃): δ –20.86 (s). ¹³C NMR (CDCl₃): δ 197.68, 169.14 (q, *J* = 11 Hz), 163.78, 163.66, 155.39, 154.39, 151.73 (q, *J* = 5 Hz), 150.44, 138.75, 135.99, 134.15 (q, *J* = 364 Hz), 132.63, 131.50, 129.91, 128.12, 127.96, 123.60, 123.39, 118.21, 118.08, 35.43 (2 carbon resonances overlapping), 30.31, 30.24. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₃₂H₃₃F₃N₂OPd, 605.1596; Found, 605.1603.

<u>Complex 1e</u>. Product 1e was isolated as a yellow solid (0.53 g scale, 0.23 g, 47% yield). ¹H NMR (CDCl₃): δ 8.95 (app. s, 1H), 7.94 (s, 1H), 7.90 (s, 1H), 7.59-7.45 (multiple peaks, 4H), 7.17 (br d, *J* = 4 Hz, 1H), 7.04-7.00 (multiple peaks, 2H), 6.94 (m, 1H), 1.37 (s, 9H), 1.29 (s, 9H). ¹⁹F NMR (CDCl₃): δ – 20.45 (s). ¹³C NMR (CDCl₃): δ 163.40, 163.39, 157.66 (q, *J* = 10 Hz), 155.33, 154.33, 151.62 (q, *J* = 4 Hz), 150.48, 135.90, 135.73 (q, *J* = 369 Hz), 126.86, 123.44, 123.21, 122.94, 118.12, 117.92, 35.36,

35.34, 30.28, 30.21. HRMS electrospray (m/z): $[M + Na]^+$ calcd for $C_{25}H_{29}F_3N_2Pd$, 543.1215; Found, 543.1223.

Complex 1i. NOTE: The product is partially soluble in hexanes and diethyl ether; therefore, pentanes (60 mL) was used to precipitate the product. The resulting solid was filtered over a fritted Büchner funnel, washed with pentanes (3 x 10 mL) and dried *in vacuo*. Product **1i** was isolated as a yellow solid (0.72 g scale, 0.35 g, 54% yield). ¹H NMR (CDCl₃): δ 8.94 (br. d, *J* = 4 Hz, 1H), 7.93 (s, 1H), 7.89 (s, 1H), 7.59 (d, *J* = 6 Hz, 1H), 7.44 (br. d, *J* = 5 Hz, 1H), 7.37 (s, 1H), 7.30 (br. d, *J* = 8 Hz, 1H), 7.17 (br. d, *J* = 6 Hz, 1H), 6.74 (br. d, *J* = 7 Hz, 1H), 2.22 (s, 3H), 1.36 (s, 9H), 1.29 (s, 9H). ¹⁹F NMR (CDCl₃): δ – 20.33 (s). ¹³C NMR (CDCl₃): δ 163.35, 157.41 (q, *J* = 10 Hz), 155.30, 154.31, 151.58 (q, *J* = 4 Hz), 150.55, 135.93 (q, *J* = 364 Hz), 135.73, 136.48, 132.74, 126.48, 123.83, 123.58, 123.41, 123.20, 118.08, 117.89, 35.34, 35.33, 30.27, 30.19, 21.63. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₂₆H₃₁F₃N₂Pd, 557.1372; Found, 557.1383.

Product (dtbpy)Pd(o-tol)(CF₃) was isolated as an yellow solid (0.50 g scale, 0.20 g, 45%). ¹H NMR (CDCl₃): δ 9.05 (br d, *J* = 4 Hz, 1H), 7.98 (s, 1H), 7.93 (s, 1H), 7.58 (d, *J* = 7 Hz, 1H), 7.53 (d, *J* = 6 Hz, 1H), 7.46 (d, *J* = 6 Hz, 1H), 7.22 (m, 1H), 7.03 (d, *J* = 6 Hz, 1H), 6.96-6.89 (multiple peaks, 2H), 2.61 (s, 3H), 1.42 (s, 9H), 1.35 (s, 9H). ¹⁹F NMR (CDCl₃): δ –20.51 (s). ¹³C NMR (CDCl₃): δ 163.29, 159.17 (*J* = 10 Hz), 155.43, 154.28, 151.71, 151.67, 150.06, 141.58, 136.08 (*J* = 361 Hz), 135.45, 127.90, 123.55 (two overlapping carbons), 123.38, 122.59, 118.03, 117.92, 35.38 (two overlapping carbons), 30.34, 30.26, 26.46. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₂₆H₃₁F₃N₂Pd, 557.1372; Found, 557.1384. Anal. Calc. for C₂₃H₃₁F₃N₂Pd: C, 58.37, H, 5.84, N, 5.24; Found: C, 58.29, H, 5.95, N, 5.24. By ¹H, ¹⁹F, ¹³C NMR spectroscopy, <5% of (dtbpy)Pd(CF₃)₂ was observed.

Complex 9. Product **9** was synthesized from (dpe)Pd(Ph)(CF₃) [dpe = 1,2-dipiperidinoethane] according the procedure described for (tmeda)Pd(Aryl)(CF₃). Under nitrogen, (dpe)Pd(Ph)(I) (1.0 g, 1.97 mmol, 1 equiv) and CsF (3 equiv) were suspended in THF (0.145 M) in a 25 mL Schlenk flask. This mixture was stirred for 10 min and then Me₃SiCF₃ (2 equiv) was added. The reaction was stirred vigorously for 6 h at 23 °C. The solvent was removed under reduced pressure, CH_2CI_2 (15 mL) was added to dissolve the product, and the resulting suspension was filtered through a plug of Celite. The plug was washed with CH_2CI_2 (2 x 5 mL), the filtrate was concentrated under reduced pressure to (~2 mL), and hexanes (60 mL) was added to precipitate the product. The resulting solid was collected on fritted Buchner funnel, washed with hexanes (3 x 10 mL) and diethyl ether (2 x 2 mL), and dried *in vacuo*. The product was isolated as a pale yellow solid (0.59 g, 67% yield). ¹H NMR (CD₂Cl₂): δ 7.42 (d, *J* = 7 Hz, 2H), 6.97-6.93 (multiple peaks, 2H), 6.87 (m, 1H), 3.56-2.63 (multiple peaks, 12H), 1.77-0.99 (multiple peaks, 12H). ¹⁹F NMR (CD₂Cl₂): δ -21.02 (s). ¹³C NMR (CD₂Cl₂): δ 159.27 (q, *J* = 10 Hz), 136.37, 135.14 (q, *J* = 365 Hz), 126.38, 122.59, 54.42, 54.16, 50.82, 49.73, 24.34, 24.11, 19.63, 19.16. HRMS electrospray (m/z): [M + Na]^{*} calcd for C₁₉H₂₉F₃N₂Pd, 471.1215; Found, 471.1203.

Complex 10. Product **10** was synthesized from (teeda)Pd(Ph)(I) [teeda = teeda = N,N,N',N' tetraethylethylenediamine] according the procedure described for (tmeda)Pd(Ph)(CF₃). Under nitrogen, (teeda)Pd(Ph)(I) (0.4 g, 0.80 mmol, 1 equiv) and CsF (3 equiv) were suspended in THF (0.145 M) in a 25 mL Schlenk flask. This mixture was stirred for 10 min and then Me₃SiCF₃ (2 equiv) was added. The reaction was stirred vigorously for 20 h at 23 °C. The solvent was removed under reduced pressure, CH₂Cl₂ (15 mL) was added to dissolve the product, and the resulting suspension was filtered through a plug of Celite. The plug was washed with CH₂Cl₂ (2 x 5 mL), the filtrate was concentrated under reduced pressure to (~2 mL), and hexanes (60 mL) was added to precipitate the product. The resulting solid was collected on fritted Buchner funnel, washed with hexanes (3 x 10 mL) and diethyl ether (2 x 2 mL), and dried *in vacuo*. The product was isolated as a yellow solid (0.20 g, 56% yield). ¹H NMR (CD₂Cl₂): δ 7.42 (d, *J* = 8 Hz, 2H), 6.90 (m, 2H), 6.82 (m, 1H), 3.07-2.98 (multiple peaks, 2H), 2.82-2.73 (multiple peaks, 2H), 2.62 (s, 4H), 2.51-2.39 (multiple peaks, 4H), 1.36 (t, *J* = 7 Hz, 6H), 1.29 (t, *J* = 7 Hz, 6H). ¹⁹F NMR (CD₂Cl₂): δ -21.10 (s). ¹³C NMR (CD₂Cl₂): δ 157.88 (q, *J* = 10 Hz), 134.54 (q, *J* = 366 Hz), 136.26, 126.12 (q, *J* = 12 Hz), 122.46, 51.50, 51.38, 49.82, 48.40, 11.13, 11.06. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₇H₂₉F₃N₂Pd, 447.1215; Found, 447.1219.

<u>General procedure for the synthesis of (tmeda)Pd(Aryl)(CF₃) 11:</u> Under nitrogen, (tmeda)Pd(Aryl)(I) (1.0 g, 2.02-2.30 mmol, 1 equiv) and CsF (3 equiv) were suspended in THF (0.145 M) in a 25 mL Schlenk

flask. This mixture was stirred for 10 min and then Me_3SiCF_3 (2 equiv) was added. The reaction was stirred vigorously for 3 h at 22 °C. The solvent was removed under reduced pressure, CH_2CI_2 (15 mL) was added to dissolve the product, and the resulting suspension was filtered through a plug of Celite. The plug was washed with CH_2CI_2 (2 x 5 mL), the filtrate was concentrated under reduced pressure to (~2 mL), and hexanes (60 mL) was added to precipitate the product. The resulting solid was collected on fritted Buchner funnel, washed with hexanes (3 x 10 mL) and diethyl ether (2 x 2 mL), and dried *in vacuo*. Some substrates were synthesized on a different scale with the same equivalents of materials as described above. These substrates and their scale of synthesis (as determined by amount of (tmeda)Pd(Aryl)(I) used) are noted accordingly.

Complex 11b. Product **11b** was isolated as a yellow solid (0.37 g, 42% yield). ¹H NMR (CDCl₃): δ 7.61 (d, J = 8 Hz, 2H), 7.19 (d, J = 8 Hz, 2H), 2.69 (s, 6H), 2.59 (app. s, 4H), 2.20 (s, 6H). ¹⁹F NMR (CDCl₃): δ – 21.14 (s, 3F), -61.67 (s, 3F). ¹³C NMR (CDCl₃): δ 163.82 (q, J = 11 Hz), 136.05, 133.69 (q, J = 365 Hz), 125.19 (q, J = 271 Hz), 124.81 (q, J = 32 Hz), 122.44, 60.37, 59.84, 49.03, 48.72. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₄H₂₀ F₆N₂Pd, 417.0581; Found, 417.0586.

<u>**Complex 11c.</u>** Product **11c** was isolated as a yellow solid (0.47 scale, 0.21 g, 51% yield). ¹H NMR (CDCl₃) δ 7.64 (d, *J* = 7 Hz, 2H), 7.22 (d, *J* = 7 Hz, 2H), 2.69 (s, 6H), 2.60 (app. s, 4H), 2.21 (s, 6H). ¹⁹F NMR (CDCl₃): δ –21.60 (s). ¹³C NMR (CDCl₃): δ 168.37 (q, *J* = 10 Hz), 136.91, 133.12 (q, *J* = 365 Hz), 128.65, 120.55, 105.86, 60.40, 59.96, 49.12, 48.82. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₄H₃₀F₃N₃Pd, 416.0542 Found, 416.0537.</u>

<u>**Complex 11d.</u>** Product **11d** was isolated as a yellow solid (0.89 g, 34% yield). ¹H NMR (CDCl₃): δ 7.33 (d, *J* = 8 Hz, 2H), 6.64 (d, *J* = 8 Hz, 2H), 3.72 (s, 3H), 2.67 (s, 6H), 2.56 (app. s, 4H), 2.20 (s, 6H). ¹⁹F NMR (CDCl₃): δ –20.80 (s). ¹³C NMR (CDCl₃): δ 155.94, 144.95 (q, *J* = 11 Hz), 135.65, 134.74 (q, *J* = 365 Hz), 112.24, 60.23, 59.63, 54.80, 48.87, 48.52. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₄H₂₃F₃N₂Pd, 421.0695; Found, 421.0699.</u>

Complex 11f. Product **11f** was isolated as a yellow solid (0.51 g, 57% yield). ¹H NMR (CDCl₃): δ 7.33 (d, J = 8 Hz, 2H), 6.81 (d, J = 8 Hz, 2H), 2.67 (s, 6H), 2.56 (br multiplet, 4H), 2.22 (s, 6H), 2.20 (s, 3H). ¹⁹F NMR (CDCl₃): δ –20.86 (s). ¹³C NMR (CDCl₃): δ 151.74 (q, J = 11 Hz), 135.52, 134.93 (q, J = 365 Hz), 131.37, 127.17, 60.33, 59.66, 48.91, 48.63, 20.85. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₄H₂₃F₃N₂Pd, 363.0864; Found, 363.0863.

Complex 11g. Product **11g** was isolated as a yellow solid (0.37 g, 42% yield). ¹H NMR (CDCl₃): δ 7.30 (s, 1H), 7.24 (d, *J* = 7 Hz, 1H), 6.85 (m, 1H), 6.70 (d, *J* = 7 Hz, 1H), 2.65 (s, 6H), 2.54 (app. s, 4H), 2.23 (s, 3H), 2.19 (s, 6H). ¹⁹F NMR (CDCl₃): δ –20.82 (s). ¹³C NMR (CDCl₃): δ 156.30 (q, *J* = 10 Hz), 136.49, 134.92 (q, *J* = 365 Hz), 135.05, 132.83, 125.82, 123.48, 60.40, 59.70, 48.96, 48.70, 21.54. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₄H₂₃F₃N₂Pd, 405.0746; Found, 405.0758.

<u>Complex 11h</u>. Product 11h was isolated as a yellow solid (1.5 g scale, 0.89 g, 59% yield). ¹H NMR (CDCl₃): δ 7.42 (d, *J* = 7 Hz, 1H), 6.91 (m, 1H), 6.85-6.81 (multiple peaks, 2H), 2.72-2.67 (multiple peaks, 11 H), 2.48-2.45 (multiple peaks, 2H), 2.32 (s, 3H), 2.09 (s, 3H). ¹⁹F NMR (CDCl₃): δ –20.819 (s). ¹³C NMR (CDCl₃): δ 157.67 (q, *J* = 11 Hz), 141.76, 135.30, 134.98 (q, *J* = 365 Hz), 127.11, 123.01, 122.27, 60.24, 59.56, 49.37, 48.94, 47.93, 47.78, 26.33. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₄H₂₃F₃N₂Pd, 405.0746; Found, 405.0734.

<u>Complex 11i</u>. Product 11i was isolated as a yellow solid (0.50 g scale, 0.04 g, 10% yield). ¹H NMR (CDCl₃): δ 7.40 (d, *J* = 7 Hz, 1H), 6.93 (m, 1H), 6.69 (m, 1H), 6.58 (d, *J* = 8 Hz, 1H), 3.82 (s, 3H), 2.73 (s, 3H), 2.69 (s, 3H), 2.65-2.60 (multiple peaks, 2H), 2.53-2.46 (multiple peaks, 2H), 2.25 (s, 3H), 2.21 (s, 3H), 2.21 (s, 3H), 2.21 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 2.21 (s, 3H), 2.21 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 2.21 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 2.21 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 2.25 (s, 3H), 2.21 (

3H). ¹⁹F NMR (CDCl₃): δ –20.74 (s). ¹³C NMR (CDCl₃): δ 162.26, 143.25 (q, *J* = 11 Hz), 136.83, 133.79 (q, *J* = 365 Hz), 123.44, 119.76, 109.70, 60.22, 60.00, 55.61, 49.57, 49.03, 48.48, 48.36. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₄H₂₃F₃N₂OPd, 421.0695; Found, 421.0699.

Synthesis of (dtbpy)Pd^{IV}(4-CH₃C₆H₅)(CF₃)(F)(OTf), 5. Under N₂, a solution of complex 1g (60 mg, 0.11 mmol, 1 equiv) in DCE (1 mL) was added to a suspension of 1-fluoro-2,4,6-trimethylpyridium triflate (NFTPT) (45 mg, 0.15 mmol, 1.4 equiv) in DCE (1 mL). An additional 0.8 mL of DCE was added, and the reaction mixture was stirred at 23 °C for 45 min. The solvent was then removed in vacuo, and the residue was taken up in a mixture of DCE (0.5 mL) and toluene (2 mL). This suspension was filtered through a plug of Celite, which was washed with additional toluene (0.5 mL). Pentane (10 mL) was then added, and the resulting suspension was sonicated for 5 min. The solids were allowed to settle, and then the solution was removed by decantation. Fresh pentane (10 mL) was added, and the sonication process was repeated. The residue was dried in vacuo. The product was recrystallized by vapor diffusion of pentanes into a concentrated DCE solution of 5 at -30 °C. The resulting solid was washed with cold DCE (3 x 2 mL) and dried *in vacuo*, yielding **5** as a yellow solid (21 mg, 27% yield). ¹H NMR (CD₃CN): δ 8.93-8.91 (multiple peaks, 2H), 8.53 (s, 1H), 8.46 (s, 1H), 8.40 (m, 1H), 7.95 (m, 1H), 6.87-6.85 (multiple peaks, 2H), 6.81-6.79 (multiple peaks, 2H), 2.24 (s, 3H), 1.55 (s, 9H), 1.47 (s, 9H). ¹⁹F NMR (CD₃CN): δ –31.23 (d, J = 9 Hz, 3F, Pd-CF₃), -79.30 (s, 3F, Pd-OTf), -256.42 (br q, 1F, Pd-F). Calc. for C₂₇H₃₁F₇N₂O₃PdS: C, 46.13, H, 4.42, N, 3.98 Found: C, 45.87, H, 4.51, N, 4.12. Splitting of the aryl-Pd carbon signal by both F and CF₃ groups could not be seen because this signal was in the baseline.

<u>Synthesis of (dtbpy)Pd^{IV}(4-CF₃C₆H₅)(CF₃)(F)(OTf), 6</u>. Under N₂, a solution of complex 1c (60 mg, 0.09 mmol, 1 equiv) in DCE (0.5 mL) was added to a suspension of 1-fluoro-2,4,6-trimethylpyridium triflate (NFTPT) (38 mg, 0.13 mmol, 1.4 equiv) in DCE (0.5 mL). An additional 0.5 mL of DCE was added, and

the reaction mixture was stirred at 23 °C for 45 min. The solvent was then removed *in vacuo*, and the residue was taken up in a mixture of DCE (0.5 mL) and toluene (2 mL). This suspension was filtered through a plug of Celite, which was washed with additional toluene (0.5 mL). Pentane (10 mL) was then added, and the resulting suspension was sonicated for 5 min. The solids were allowed to settle, and then the solution was removed by decantation. Fresh pentane (10 mL) was added, and the sonication process was repeated. The residue was dried *in vacuo*. The product was recrystallized by vapor diffusion of pentanes into a concentrated DCE solution of **6** at –30 °C. The resulting solid was washed with cold DCE (3 x 2 mL) and dried *in vacuo*, yielding **6** as a yellow solid (4.3 mg, 2% yield). ¹H NMR (CD₃CN): δ 8.88 (d, J = 6 Hz, 1H), 8.85 (d, J = 6 Hz, 1H), 8.49 (s, 1H), 8.41 (s, 1H), 8.00 (m, 1H), 7.90 (m, 1 H), 7.32 (d, J = 9 Hz, 2H), 7.10 (d, J = 9 Hz, 2H), 1.50 (s, 9H), 1.41 (s, 9H). ¹⁹F NMR (CD₃CN): δ –30.72 (d, J = 8 Hz, 3F, Pd^{IV}–**CF**₃), –63.10 (s, 3F, Pd^{IV}–**AryICF**₃), –79.35 (s, 3F, Pd^{IV}–**OTf**), –254.55 (br. q, J = 10 Hz, 1F, Pd^{IV}–**F**). Anal. Calc. for C₂₇H₂₈F₁₀N₂O₃PdS: C, 42.84, H, 3.73, N, 3.70 Found: C, 42.55, H, 3.83, N, 3.78. Splitting of the aryl–Pd carbon signal by F, CF₃ and Aryl-CF₃ groups (qqd) could not be seen by ¹³C NMR because this signal was in the baseline.

Under N₂, (tmeda)Pd(*p*-CF₃Ph)(I) (500 mg, 1.01 mmol, 1 equiv) and AgTFA (246 mg, 1.11 mmol, 1.1 equiv) were dissolved in CH₂Cl₂ (5 mL) in a 20 mL vial. The reaction was stirred vigorously for 30 min. The solvent was then removed under reduced pressure. CH₂Cl₂ (50 mL) was added, and the resulting suspension was filtered through a plug of Celite. The filtrate was concentrated under reduced pressure to ~2 mL, and hexanes (30 mL) was added to precipitate the product. The resulting solid was collected on a fritted filter, washed with hexanes (50 mL), and dried *in vacuo*. The product was isolated as a pale-yellow solid (430 mg, 88% yield). ¹H NMR (CDCl₃): δ 7.55 (d, *J* = 8 Hz, 2H), 7.17 (d, *J* = 8 Hz, 2H), 2.76 (m, 2H), 2.59 (m, 2H), 2.58 (s, 6H), 2.50 (s, 6H). ¹⁹F NMR (CDCl₃): δ –61.83 (s, 3F), –74.51 (s, 3F). ¹³C NMR (CDCl₃): δ 155.10, 134.54, 126.20, 125.79(q, *J* = 32 Hz), 124.88 (q, *J* = 272 Hz), 122.29 (q, *J* = 4 Hz), 115.38 (q, *J* = 292 Hz), 63.63, 57.62, 51.55, 47.78. HRMS electrospray (m/z): [M – TFA + MeCN]⁺ calcd for C₁₅H₂₀F₆N₂O₂Pd, 408.0879; Found, 408.0881.

Under N₂, (tmeda)Pd(p-CF₃Ph)(I) (500 mg, 1.01 mmol, 1 equiv) and AgOAc (186 mg, 1.11 mmol, 1.1 equiv) were dissolved in CH₂Cl₂ (5 mL) in a 20 mL vial. The reaction was stirred vigorously for 30 min.

The solvent was then removed under reduced pressure. CH_2Cl_2 (50 mL) was added, and the resulting suspension was filtered through a plug of Celite. The filtrate was concentrated under reduced pressure to ~2 mL, and hexanes (30 mL) was added to precipitate the product. The resulting solid was collected on a fritted filter, washed with hexanes (50 mL), and dried *in vacuo*. The product was isolated as a yellow solid (326 mg, 76% yield). ¹H NMR (CDCl₃): δ 7.60 (d, *J* = 8 Hz, 2H), 7.14 (d, *J* = 8 Hz, 2H), 2.71 (m, 2H), 2.59 (s, 6H), 2.56 (m, 2H), 2.46 (s, 6H). ¹⁹F NMR (CDCl₃): δ -61.76 (s). ¹³C NMR (CDCl₃): δ 176.94, 157.53, 135.15, 125.25 (q, *J* = 32 Hz), 125.14 (q, *J* = 272 Hz), 122.09 (q, *J* = 4 Hz), 63.37, 57.92, 51.42, 48.17, 23.83. HRMS electrospray (m/z): [M + Na]⁺ calcd for C₁₅H₂₃F₃N₂O₂Pd, 408.0879; Found, 408.0880.

Procedure for the synthesis of $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{CF}_3)$ (**11b**) from $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{TFA})$. Under N₂, $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{TFA})$ (416 mmol, 1 equiv) and CsF (2 equiv) were dissolved in THF (0.04 M) in a 25 mL Schlenk flask. Me₃SiCF₃ (10 equiv) was added. The reaction was stirred vigorously for 2 h at 22 °C. The solvent was then removed under reduced pressure. CH₂Cl₂ (50 mL) was added, and the resulting suspension was filtered through a plug of Celite. The plug was washed with CH₂Cl₂ (40 mL), the filtrate was concentrated under reduced pressure to ~5 mL, and hexanes (60 mL) was added to precipitate the product. The resulting solids were collected on a fritted filter, washed with hexanes (50 mL), and dried *in vacuo* to afford **10b** in 56% yield.

Procedure for the synthesis of $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{CF}_3)$ (**11b**) from $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{OAc})$. Under N₂, $(\text{tmeda})\text{Pd}(p-\text{CF}_3\text{Ph})(\text{OAc})$ (469 mmol, 1 equiv) and CsF (2 equiv) were dissolved in THF (0.04 M) in a 25 mL Schlenk flask. Me₃SiCF₃ (10 equiv) was added. The reaction was stirred vigorously for 2 h at 22 °C. The solvent was then removed under reduced pressure. CH₂Cl₂ (50 mL) was added, and the resulting suspension was filtered through a plug of Celite. The plug was washed with CH₂Cl₂ (40 mL), the filtrate was concentrated under reduced pressure to ~5 mL, and hexanes (60 mL) was added to precipitate the product. The resulting solids were collected on a fritted filter, washed with hexanes (50 mL), and dried *in vacuo* to afford **10b** in 61% yield.

<u>General procedure for oxidatively induced Aryl–CF₃ coupling from 1a-1i, (dtbpy)Pd(o-tol)(CF₃). 9,</u> <u>10 and 11a-11i.</u> The Pd^{II} trifluoromethyl complex (40 mg, 1 equiv) was dissolved in an appropriate volume of nitrobenzene to make a 0.084 M solution. The solution was added to a 4 mL scintillation vial containing 1-fluoro-2,4,6-trimethylpyridium triflate (2 equiv) and a Teflon®-coated stir bar. The vial was purged with nitrogen, sealed with a Teflon®-lined cap, shaken vigorously, and then stirred at 23 °C for 1 h or 80 °C for 3h. The resulting light to dark brown mixture was cooled to room temperature, 4-fluoroanisole was added as an internal standard (under air), and the reactions were analyzed by ¹⁹F NMR spectroscopy. The identities of the organic reductive elimination products were confirmed by comparison to authentic samples of these materials. The authentic sample was spiked into the crude reaction mixtures, and, in each case, the ¹⁹F NMR resonances were coincident. Reactions with complexes **1a-1k**, **11a**, **11f and 11g** were conducted on a 50 mg scale.

It is important to note that the optimal conditions for ¹⁹F NMR spectroscopic analysis of these reactions were as follows: spectral window of -10 to -150 ppm, relaxation delay = 2 s, and acquisition time = 2 s. These conditions were required due to the faster relaxation time of the standard relative to the trifluoromethylated Arene products.

Procedure to determine rate of reductive elimination from Pd^{IV} complex 4,

In a N₂-filled drybox, complex **4** (14 mg, 0.0198 mmol, 1.0 equiv) was added to a screw-cap NMR tube and dissolved in dry NO₂Ph- d_5 (0.4 mL). The internal standard, 4-fluoroanisole was added (50 µL of a stock solution in dry DCE, 0.0198 mmol, 1 equiv), and the tube was sealed with a Teflon®-lined cap. The tube was immediately placed in an NMR spectrometer with the temperature pre-equilibrated at 60 °C, and the reaction was allowed to equilibrate for three minutes. The rate of reductive elimination was studied using ¹⁹F NMR spectroscopy by monitoring the appearance of product **2a** (1-fluoro-4-benzotrifluoride). The data was fit to a first order kinetic plot using Sigma Plot 10. A representative reaction profile is shown in **Figure S1**.

As seen in Figure S1, the rate of product-formation changes as the reaction progresses. This is clearly seen at the beginning of the reaction (highlighted in the box). To confirm that this was the case, we plotted the rate data as function of percent conversion. As shown in Table S1, the initial rate of product formation decreased upon higher conversion. This suggests the possibility of inhibition by one of the products of this transformation. On the basis of this observation, we used initial rates (monitoring the 1st 10% of the reaction progress) for all subsequent rate experiments.

Conversion	Rate (M s ^{−1})
0-10%	2.20 x 10 ⁻⁴
10-20%	1.91 x 10 ⁻⁴
20-30%	1.66 x 10 ⁻⁴
40-50%	1.64 x 10 ⁻⁴
50-60%	1.31 x 10 ⁻⁴
60-70%	1.11 x 10 ⁻⁴
70-80%	1.16 x 10 ⁻⁴
80-90%	1.18 x 10 ⁻⁴
90-100%	1.34 x 10 ⁻⁴

Table S1. Rate versus percent conversion of the 4 to 2a in NO₂Ph- d_5 at 60 °C

Determining Order in Triflate with 4 at 50 °C in NO₂Ph-d₅

In a N₂-filled drybox, complex **4** (14 mg, 0.0198 mmol, 1.0 equiv) and NBu₄OTf (0.004 to 0.04 mmol, 0.01M to 0.1M) were combined in a screw-cap NMR tube and dissolved in dry NO₂Ph-*d*₅ (0.4 mL). An internal standard (4-fluoroanisole) was added (50 μ L of a stock solution in dry NO₂Ph-*d*₅, 0.0198 mmol, 1 equiv), and the tube was sealed with a Teflon®-lined cap. The tube was immediately placed in an NMR spectrometer with the temperature pre-equilibrated at 50 °C, and the reaction was allowed to equilibrate for three minutes. The rate of reductive elimination was studied using ¹⁹F NMR spectroscopy by monitoring the appearance of the product signal. The reaction was followed to 10% conversion of **4** to 1-fluoro-4-benzotrifluoride (**2a**). The data was plotted as [**2a**] versus time and fit to a linear regression where m = initial rate. Each experiment was carried out in duplicate, and the initial rates reported in **Table S2** represent an average of two runs.

equiv	[OTf ⁻]	1/[OTf ⁻]	Initial rate (M s ^{−1})	Error in initial rate (M s ⁻¹)
0.20	0.01	100	2.91 x 10 ⁻⁵	± 3.4 x 10 ⁻⁷
0.60	0.03	33.3	1.68 x 10 ^{−5}	± 4.4 x 10 ⁻⁷
1.0	0.05	20.0	1.35 x 10 ^{−⁵}	± 8.4 x 10 ⁻⁸
1.4	0.07	14.3	1.25 x 10 ^{−5}	± 9.1 x 10 ⁻⁸
2.0	0.1	10.0	1.18 x 10 ⁻⁵	± 5.6 x 10 ⁻⁸

Figure S3. Representative Initial Rate Data (Reductive Elimination from 4 in the Presence of 0.07 M NBu₄OTf)

Activation Parameters for Reductive Elimination from 4

In a N₂-filled drybox, complex **4** (14 mg, 0.0198 mmol, 1.0 equiv) was added to a screw-cap NMR tube and dissolved in dry NO₂Ph- d_5 (0.4 mL). An internal standard (4-fluoroanisole) was added (50 µL of a stock solution in dry NO₂Ph- d_5 , 0.0198 mmol, 1 equiv), and the tube was sealed with a Teflon®-lined cap. The tube was immediately placed in an NMR spectrometer with the temperature pre-equilibrated, and the reaction was allowed to equilibrate for three minutes. The rate of reductive elimination was studied using ¹⁹F NMR spectroscopy by monitoring the appearance of the product signal. The rate was followed to 10% conversion of **4** to 1-fluoro-4-benzotrifluoride (**2a**) at 30 °C, 40 °C, 50 °C and, 60 °C. The rate data reported in **Table S3** represent an average of two runs.

Temperature (K)	Initial Rate (M s ⁻¹)	Error in initial rate (M s ⁻¹)	ln(<i>k</i> /T)	1/T
303.2	1.15 x 10 ^{−6}	2.1 x 10 ⁻⁸	-19.39	0.0033
313.2	5.15 x 10 ^{−6}	5.4 x 10 ⁻⁸	-17.92	0.0032
323.2	2.21 x 10 ^{−5}	7.5 x 10 ⁻⁷	-16.50	0.0031
333.2	9.59 x 10 ^{−5}	1.0 x 10 ^{−6}	-15.06	0.0030

Figure S4. Representative Initial Rate Data (Reductive Elimination from 4 at 50 °C)

Figure S5. Eyring Plot for the Reductive Elimination of 4 in NO₂Ph-d₅

 ΔH^{\ddagger} = +29.1 ± 0.2 kcal/mol, ΔS^{\ddagger} = +9.48 ± 0.8 eu

Determining Initial Rate of Reductive Elimination from Complexes 5 and 6 at 50 °C in NO2Ph-d5

In a N₂-filled drybox, complex **5** or **6** (14 mg, 1.0 equiv) was dissolved in dry NO₂Ph- d_5 (0.4 mL). An internal standard (4-fluoroanisole) was added (50 µL of a stock solution in dry in NO₂Ph- d_5 , 0.0198 mmol, 1 equiv), and the tube was sealed with a Teflon®-lined cap. The tube was immediately placed in an NMR spectrometer with the temperature pre-equilibrated at 50 °C, and the reaction was allowed to equilibrate for three minutes. The rate of reductive elimination was studied using ¹⁹F NMR spectroscopy by monitoring the appearance of the product signal. The reaction was followed to 10% conversion of Pd^{IV} complex to product. The data was plotted as [**product**] versus time and fit to a linear regression where m

= initial rate. Each experiment was carried out in duplicate, and the initial rates reported in **Table S4** represent an average of two runs.

Compound	Initial rate (M s ^{−1})	Error initial rate (M s ⁻¹)
5	4.58 x 10 ⁻⁴	1.6 x 10 ^{−6}
6	1.43 x 10 ^{−5}	2.0 x 10 ^{−8}

Table S4. Initial Rate for Aryl–CF₃ Reductive Elimination from Complexes 5 and 6 at 50 °C in NO₂Ph-d₅

Figure S6. Representative Initial Rate Data (Reductive Elimination from 5 at 50 °C in NO₂Ph-d₅)

Computational Methods

Using Gaussian 09 suite of programs,⁹ all density functional theory (DFT) calculations were performed with the M06 functional¹⁰ along with the Stevens (CEP-31G) valence basis sets with effective core potentials.^{11,12} The CEP-31G basis set are triple-ξ for Pd and double-ξ for all main group elements. A dpolarization function (see 6-31G^{*})^{13,14} was added to all non-hydrogen main group elements: $\xi_d = 0.8$ for carbon, nitrogen, oxygen, and fluorine and ξ_d = 0.65 for sulfur (referred to as CEP-31G(d) level of theory). All geometries were optimized using CEP-31G(d)/M06 without symmetry constraints using the restricted Kohn-Sham formalism for all complexes. All minima were confirmed by the absence of imaginary frequencies and all transitions states were verified by visual inspection of the single imaginary frequency vibration. Transition states for Ph-CF₃ and Ph-F reductive elimination from 8 and Ph-CF₃ reductive elimination from $[(\text{tmeda})\text{Pd}(\text{Ph})(\text{CF}_3)(\text{F})]^+$ were optimized along the reaction coordinate in each direction. Thermochemical data was calculated using unscaled vibrational frequencies and default parameters at 298.15 K and 1 atm. Solvent corrections were performed as single point calculations using the SMD model¹⁵ with default settings. Single point energy calculations (using CEP-31G(d)/M06 optimized geometries) were performed to distinguish between Aryl-CF₃ versus Aryl-F reductive elimination transition states using the related triple- ξ basis set for main group elements CEP-121G.^{11,12} These calculations were also augmented with d-polarization function (f-polarization for Pd)¹⁶ added to all atoms (see 6- $311G^{**}++)^{13,14}$: ξ_d = 0.626 for carbon, ξ_d = 0.913 for nitrogen, ξ_d = 1.750 for fluorine, ξ_s = 0.036 for hydrogen, and ξ_f = 1.472 for palladium and p-diffuse function were added to all main group elements: ξ_{sp} = 0.0438 for carbon, ξ_{sp} = 0.0639 for nitrogen, ξ_{sp} = 0.1076 for fluorine and ξ_s = 0.036 for hydrogen (referred to as CEP-121G(d,p). NBO analysis¹⁷ was used to determine relevant charge distribution in transition states. All rate constants for Hammett analysis are calculated using transition state theory based on gas phase ΔH^{\dagger}_{298} with the assumption of similar entropy components to all transition states at 298 K.

Transition state	Basis Set	Gas/Solvent	∆SCF [‡]	∆(SCF+ZPE corr) [‡]	ΔH [‡] ₂₉₈	$\Delta G^{\ddagger}_{298}$
Aryl-CF ₃	CEP-31G(d)	Gas	10.15	9.93	9.41	10.85
Aryl-F	CEP-31G(d)	Gas	11.62	10.84	10.66	10.91
Aryl-CF ₃	CEP-31G(d)	Nitrobenzene	13.69	13.74	13.72	13.55
Aryl-F	CEP-31G(d)	Nitrobenzene	15.01	14.48	14.75	13.79
Aryl-CF ₃	CEP-121G(d,p)	Gas	9.41	9.42	8.88	10.17
Aryl-F	CEP-121G(d,p)	Gas	11.87	10.99	10.82	11.03
Aryl-CF ₃	CEP-121G(d,p)	Nitrobenzene	13.12	13.39	12.76	14.67
Aryl-F	CEP-121G(d,p)	Nitrobenzene	15.38	14.77	14.47	15.50

Table S5. Transition State and Solvent Correction Data

 Δ SCF[‡] = electronic transition state energy; Δ (SCF+ZPE corr)[‡] = zero point energy corrected electronic transition state energy; Δ H[‡]₂₉₈ = thermally corrected transition state enthalpy; Δ G[‡]₂₉₈ = thermally corrected transition state Gibbs energy. All energies are reported in kcal/mol.

Table S6. NBO Analysis Charges

Complex	lpso-Ph	CF ₃ carbon
$[(bpy)Pd^{V}(Ph)(CF_3)(F)]^+$ intermediate	+0.07	+1.18
[(bpy)Pd ^{IV} (Ph)(C H ₃)(F)] ⁺ intermediate	+0.06	-0.58 (C H ₃)
$[(bpy)Pd^{IV}(Ph)(CF_3)(F)]^+$ Ph-CF ₃ ts	-0.11	+1.24

Calculations run using CEP-31G(d)/M06 in the gas phase.

X	∆SCF [‡]	Δ (SCF+ZPE corr) [‡]	$\Delta H^{\ddagger}_{298}$	$\Delta G^{\ddagger}_{298}$	σ^{\dagger}
NMe ₂	7.08	7.57	6.89	9.05	-1.70
NH ₂	7.82	7.49	7.10	8.03	-1.30
OH	8.40	8.11	7.70	8.30	-0.92
OMe	8.45	8.26	7.86	8.66	-0.78
SMe	8.61	8.05	7.79	7.93	-0.60
Me	9.74	9.76	9.19	10.95	-0.30
F	9.06	8.87	8.41	9.46	-0.07
Н	10.15	9.93	9.41	10.85	0
CF ₃	9.78	10.05	9.43	11.73	0.53
CN	9.83	9.72	9.23	10.66	0.71
NO ₂	10.06	9.63	9.23	10.09	0.78

Table S7. Electronic Substituent Analysis

 Δ SCF[‡] = electronic transition state energy; Δ (SCF+ZPE corr)[‡] = zero point energy corrected electronic transition state energy; Δ H[‡]₂₉₈ = thermally corrected transition state enthalpy; Δ G[‡]₂₉₈ = thermally corrected transition state Gibbs energy. All energies are reported in kcal/mol.

Figure S8. Hammett Plot (versus σ^{*}) for AryI-CF₃ Reductive Elimination from [(bpy)Pd^{IV}(p-XC₆H₄)(CF₃)(F)]⁺

 $\rho^+ = -0.79; R^2 = 0.84$

Figure S9. Hammett Plot (versus σ) for Aryl-CF₃ Reductive Elimination from [(bpy)Pd^{IV}(p-XC₆H₄)(CF₃)(F)]⁺

 $\rho = -1.17; R^2 = 0.57$

Figure S10. Hammett Plot (versus σ^{-}) for AryI-CF₃ Reductive Elimination from [(bpy)Pd^{IV}(p-XC₆H₄)(CF₃)(F)]⁺

 ρ^- = -0.86 ; R² = 0.52

Calculations – Optimized Atomic Coordinates

Complex formulas along with element symbol followed by x, y, z Cartesian coordinates (Å). Complexes are tabulated in the order that the complexes appear in the paper.

$[Pd(bpy)(C_6H_5)(CF_3)(F)(OTf)]$

Pd	-0.65671900	-0.57900800	-0.34736500
С	-2.66727700	-0.19917500	-0.28954000
С	-3.35603400	-0.24579700	-1.51922500
С	-3.30110400	0.16403200	0.91798300
С	-4.73465100	0.08857500	-1.53041300
Ĥ	-2.83499000	-0.55174100	-2.43121900
С	-4.68163800	0.49343200	0.88248600
Ĥ	-2 77122100	0 17344900	1 87638200
C	-5 39715800	0 45997500	-0.33663600
н	-5 28300300	0.05015300	-2 47916500
н	-5 18753100	0 76787200	1 81593300
C	-0.09132200	-0 50882100	2 65486800
Ĉ	-0.06615900	1 57440100	1 55877500
ĉ	0.20037000	0.07270000	3 87781500
ц Ц	0.23337300	1 58752000	2 56107000
0	-0.24477000	-1.50752900	2.50197900
C	0.29079700	2.22049400	2.73793000
	0.47237600	1.47210300	3.93109900
	0.40304400	-0.30300300	4.74943200
н	0.46846200	3.30738400	2.75987600
Н	0.76839100	1.96402800	4.86382300
C	-0.30246100	1.96157600	-2.07722100
C	-0.12152500	2.28559200	0.24827400
С	-0.06581400	3.33081400	-2.33266000
Н	-0.45011800	1.20979500	-2.86450200
С	0.12092600	3.66691400	0.08077000
С	0.14442500	4.18893500	-1.23169100
Н	-0.03238900	3.69950200	-3.36112500
Н	0.30459200	4.31965000	0.93943200
Н	0.34048100	5.25465600	-1.38999400
С	-1.09729500	-2.53527300	0.14138200
F	-1.77458300	-2.61923800	1.31946900
F	0.03204600	-3.23220300	0.29706400
F	-1.84334400	-3.13815800	-0.77899400
F	-0.78702300	-1.08208400	-2.22653900
0	1.55596100	-0.98157700	-0.37796900
S	2.55479800	0.14573100	-0.34667500
0	2.62763100	0.81673000	0.96097500
0	2.53269100	1.01050900	-1.52827600
Ċ	4,14638100	-0.82648700	-0.47706300
F	4,18231700	-1.52700100	-1.61107600
F	5,18486100	0.01810500	-0.46236500
F	4 27014100	-1 66852100	0 55445900
Ň	-0 33141400	1 48633400	-0 82425500
N	-0 29821000	0 22652600	1 54252200
н	-6 46282400	0.71542200	-0 35448700
	0.40202400	5.7 10-12200	0.00440700
	[Pd(boy)(C ₀ H ₂)(C	F_)F1 ⁺ intermed	liate
	r. ~(ob)/(ob)/(0	·	

Pd	-0.38557800	0.02778500	-0.81707600
С	1.52717000	-2.39595700	-1.14119500
С	2.44289100	-0.51188000	-0.05698600
С	2.73187000	-3.12232400	-0.99440700
Н	0.63372800	-2.80339500	-1.63322600
С	3.67968400	-1.17013400	0.13091000
С	3.81866800	-2.49363600	-0.34783500
Н	2.80629900	-4.14352800	-1.37700100
Н	4.51598100	-0.67802100	0.63662700
Н	4.76716200	-3.02348600	-0.21422400
С	0.57106200	2.62431200	0.56408300
С	2.15898800	0.88544600	0.39317800
С	1.50501200	3.48682500	1.17553500
Н	-0.45649500	2.94911200	0.37846100

С	3.14163300	1.69748300	1.00275300
С	2.81399500	3.01166800	1.40032200
Н	1.19867700	4.49625000	1.46113900
Н	4.15259000	1.30963800	1.15757100
Н	3.56824300	3.64938500	1.87150900
С	-1.31695900	-0.76204800	0.85090500
С	-0.72461800	-0.51901500	2.09964900
С	-2.46455400	-1.52799800	0.60634300
С	-1.36722300	-1.12012300	3.21727100
Н	0.17122300	0.09055100	2.24328600
С	-3.07312700	-2.10378200	1.75536800
Н	-2.86490500	-1.68418500	-0.39837300
С	-2.53121800	-1.90283100	3.04578300
Н	-0.94095800	-0.95870900	4.21386500
Н	-3.97458100	-2.71039300	1.61491800
Н	-3.01620500	-2.35567300	3.91664600
С	-2.00898000	1.26004800	-1.06687000
F	-1.22437300	-1.31108500	-1.93600800
F	-3.08995400	0.65078500	-1.52033500
F	-2.34982900	1.94533500	0.04218800
F	-1.59423700	2.15709300	-1.98631900
Ν	0.88616800	1.36367200	0.18452500
Ν	1.41034700	-1.13669300	-0.68313300

[OTf]⁻

0	-1.24327900	-0.83281900	-1.17477400
S	-0.93688400	-0.00001500	-0.00006600
0	-1.24345800	-0.60094100	1.30852000
0	-1.24298300	1.43379900	-0.13401800
С	0.94594400	-0.00017900	0.00001400
F	1.45030200	0.51978900	-1.13921400
F	1.44963100	0.72692500	1.01992200
F	1.45031500	-1.24660300	0.11964200

 $[Pd(bpy)(C_6H_5)(CF_3)F]^+$ transition state Ar-CF₃

Pd	-0 11014700	-0 46962200	-0.33367800
ĉ	2 09787900	-2 50969300	-0.08351500
C C	2 72251000	-0 27256100	0.37589600
č	3 38728000	-2 98013900	0 25534000
Ĥ	1.27347300	-3.15710200	-0.41093400
C	4.02750100	-0.67206000	0.73724500
Č	4.35854300	-2.04542600	0.67554200
H	3.60895600	-4.04855700	0.19327500
н	4.76885100	0.06228300	1.06675700
Н	5.36368600	-2.37666700	0.95476000
С	0.44474500	2.57950000	-0.09925800
С	2.24396800	1.13660300	0.35091500
С	1.24211800	3.72403300	0.10858400
Н	-0.60350600	2.67952100	-0.40055900
С	3.09893700	2.23572700	0.59178000
С	2.59294700	3.54710200	0.47793400
Н	0.80320800	4.71662000	-0.02104400
Н	4.14964600	2.06785200	0.84611400
Н	3.24332100	4.40847800	0.65784200
С	-2.05971200	-0.17180400	0.45838700
С	-2.88819100	-1.31238000	0.49660000
С	-2.14719800	0.88275900	1.39453000
С	-3.83218500	-1.39911600	1.54926300
Н	-2.79494100	-2.10726700	-0.24655900
С	-3.09085200	0.76325600	2.44255300
Н	-1.51949100	1.77682300	1.34010600
С	-3.93391600	-0.37185600	2.51700100
Н	-4.48280200	-2.27859800	1.60052400
Н	-3.16689600	1.56403500	3.18597200
Н	-4.67150300	-0.45218000	3.32235700
С	-1.78486400	0.42959400	-1.56778400
F	-0.65719400	-2.26941300	-0.83552900
F	-2.64136800	-0.41905600	-2.09216500

F	-2.38147800	1.60342600	-1.32556900
F	-0.85612300	0.69688100	-2.51925500
Ν	0.91946200	1.32033800	0.03746400
Ν	1.80099000	-1.19753500	-0.01929700

 $\left[\text{Pd}(\text{bpy})(C_6\text{H}_5)(\text{CF}_3)\text{F}\right]^{\star}\text{ transition state Ar-F}$

Pd	-0.28555600	0.12941600	-0.68415500
С	1.42526700	-2.45390800	-1.09618400
С	2.48906300	-0.67480100	0.02433500
С	2.61311000	-3.21914300	-1.11566900
Н	0.48247000	-2.80925100	-1.53382500
С	3.71764600	-1.37588000	0.04469400
С	3.77422400	-2.66461700	-0.53250300
Н	2.61983000	-4.21038600	-1.57644800
Н	4.61686700	-0.93491500	0.48481900
Н	4.71535100	-3.22358600	-0.53042100
С	0.83867300	2.51094400	0.93323900
С	2.30110100	0.69451500	0.59721700
С	1.81396600	3.23193800	1.65365100
Н	-0.15956400	2.92893300	0.77516000
С	3.32607100	1.36344100	1.30399400
С	3.08473400	2.64828200	1.83522400
Н	1.56869100	4.22032500	2.05018200
Н	4.29998200	0.88674400	1.44727200
Н	3.87262300	3.17525300	2.38216800
С	-1.82123100	-1.01096700	0.45910900
С	-3.17094900	-0.66976000	0.39819900
С	-1.16707000	-1.83644700	1.37581400
С	-3.93018000	-1.08999900	1.52296700
Н	-3.61777400	-0.13025100	-0.43920900
С	-1.97653300	-2.23196700	2.47946100
Н	-0.11586000	-2.12396000	1.30417800
С	-3.33954000	-1.86429600	2.55123100
Н	-4.99345600	-0.82891700	1.55577800
Н	-1.51476400	-2.83661900	3.26797100
Н	-3.94758300	-2.19719700	3.39821000
С	-1.56844300	1.64839700	-1.13340600
F	-1.40690900	-1.26159000	-1.56069500
F	-2.55284300	1.28557100	-1.95593000
F	-2.13157200	2.24165800	-0.05643500
F	-0.83407000	2.58984800	-1.76462600
Ν	1.07417800	1.28582900	0.40952900
Ν	1.37980300	-1.22912500	-0.53578600

$\left[\mathsf{Pd}(\mathsf{bpy})(\mathsf{C}_6\mathsf{H}_4\mathsf{NH}_2)(\mathsf{CF}_3)\mathsf{F}\right]^{\scriptscriptstyle +} \text{ intermediate}$

Pd	-0.03065900	-0 47313800	-0.87725200
C	-1 30506300	2 22270000	-1 74485100
C	-2 35300800	1 13681400	0 07009700
Č	-2 22177500	3 29855400	-1 69190300
Ĥ	-0 49757000	2 16515900	-2 47933100
C	-3.30667100	2.17617700	0.18839600
Č	-3.23448700	3.26982900	-0.70605900
Ĥ	-2.13668400	4.12265700	-2.40171400
H	-4.08578300	2.14764900	0.95029700
Н	-3.96023600	4.08307900	-0.63146400
С	-1.22705200	-2.10910800	1.46618500
С	-2.32263300	-0.08297200	0.93865500
С	-2.17342900	-2.42176200	2.46531400
Н	-0.39112900	-2.77381100	1.26026800
С	-3.30083300	-0.33566200	1.92915200
С	-3.22928300	-1.51500300	2.70200000
Н	-2.07080600	-3.34985500	3.02921900
Н	-4.11418100	0.37140300	2.09034000
Н	-3.98316400	-1.71857800	3.46589300
С	1.47376900	0.43330300	0.22892400
С	1.28011300	0.64851100	1.60302000
С	2.62909500	0.80408700	-0.47867100
С	2.31652100	1.30775000	2.30954400

Н	0.38676000	0.33755100	2.14093400
С	3.64915600	1.45833300	0.25196200
Н	2.74531900	0.60650000	-1.54226800
С	3.51352200	1.71879900	1.64957900
Н	2.18208900	1.49799400	3.37848000
Н	4.55408200	1.76608900	-0.28026400
С	1.09711900	-2.17784500	-0.98153400
F	0.76591300	0.12429900	-2.52865600
F	2.19205200	-2.07623100	-1.74448100
F	1.48568000	-2.68678600	0.22553100
F	0.26234100	-3.10378800	-1.55066700
Ν	-1.29602000	-0.97617100	0.72549300
Ν	-1.38419100	1.18934900	-0.88424300
N	4.50331400	2.42614500	2.34183600
Н	4.52323000	2.30131400	3.35216400
Н	5.43241500	2.41947300	1.92506500

 $[Pd(bpy)(C_6H_4NH_2)(CF_3)F]^+$ transition state

РЧ	0 10001000	0 40400400	0.24600000
Pu	-0.12901300	-0.49460100	0.34069600
	-2.3/353000	-2.50152900	-0.1321/600
C	-2.90036200	-0.23035300	-0.03210000
	-3.02550900	-2.94095000	-0.0204000
	-1.01400100	-3.17193400	0.27430700
C	-4.10444000	-0.02340300	-1.14709400
	-4.52746000	-1.99026200	-1.13954500
	-3.67021000	-4.00971400	-0.39326700
	-4.00004000	0.12103500	-1.54995600
	-5.49659600	-2.29655900	-1.55591100
	-0.64611200	2.56758300	0.12903300
C	-2.40351000	1.15394600	-0.53621000
C	-1.40323400	3.72709800	-0.13910600
Н	0.35552100	2.65063400	0.54769000
C	-3.21464700	2.27279800	-0.84422900
С	-2.70970300	3.57603900	-0.65380800
Н	-0.97056800	4.70880400	0.05852900
Н	-4.23243800	2.12861500	-1.20613200
Н	-3.32806700	4.44692500	-0.88258100
С	1.88568800	-0.14524900	-0.11802900
С	2.76979000	-1.25262700	-0.03026800
С	2.19538700	0.96926500	-0.94116200
С	3.92900100	-1.27220200	-0.82339100
Н	2.54630800	-2.09000900	0.62701300
С	3.35017200	0.94131000	-1.74230400
Н	1.55323900	1.84588200	-1.00331000
С	4.24315700	-0.17902400	-1.69445800
Н	4.59405000	-2.13891900	-0.77203900
Н	3.56229700	1.78363400	-2.40686300
С	1.27148600	0.34687700	1.91830100
F	0.36317400	-2.31245100	0.81929500
F	2.04972300	-0.53444300	2.54862400
F	1.89325000	1.55363100	1.86649700
F	0.18537200	0.55961000	2.73604800
Ν	-1.11358100	1.31501500	-0.08570100
Ν	-2.04494400	-1.19377300	-0.14287000
Ν	5.36420900	-0.22175700	-2.50480600
Н	5.69289600	0.64003000	-2.93332700
Н	6.08580600	-0.90930000	-2.30187800

$\left[\mathsf{Pd}(\mathsf{bpy})(\mathsf{C}_6\mathsf{H}_4\mathsf{NMe}_2)(\mathsf{CF}_3)\mathsf{F} \right]^{\scriptscriptstyle +} \text{ intermediate}$

Pd	-0.78882800	-0.74045000	-0.73998500
С	-1.44469400	1.89969500	-2.23883500
С	-2.29694900	1.73526000	-0.04409800
С	-1.99513500	3.19174000	-2.40658500
Н	-0.87724500	1.38846000	-3.02086800
С	-2.87612800	3.02399300	-0.13340300
С	-2.71871500	3.75794000	-1.33235000
Н	-1.85688600	3.72527800	-3.34811600
Н	-3.43338500	3.45456900	0.69868600

Н	-3.15725700	4.75458200	-1.42216600
С	-1.79998300	-1.21219000	2.15054700
С	-2.39802100	0.84640500	1.15750700
С	-2.53240600	-0.92013400	3.32098300
Н	-1.24828200	-2.14515400	2.05598500
С	-3.14730500	1.20055100	2.30428400
С	-3.21772600	0.31157400	3.39882900
Н	-2.55425200	-1.64637500	4.13461100
Н	-3.67737700	2.15190400	2.34103600
Н	-3.79700200	0.57650200	4.28627700
С	1.12362900	-0.12526200	-0.20833600
С	1.32666500	0.49791300	1.03224000
С	2.14217800	-0.37767000	-1.14007300
С	2.63985600	0.92837600	1.34128300
Н	0.53429300	0.66263300	1.75970900
С	3.44633800	0.05675300	-0.80934000
Н	1.95068200	-0.88134900	-2.08527600
С	3.73346700	0.72594100	0.43068700
Н	2.79281800	1.41708600	2.30323400
Н	4.23378500	-0.13763700	-1.53704900
С	-0.23399800	-2.68539200	-0.43913800
F	-0.26357200	-0.89161200	-2.59062800
F	0.60867900	-3.17641200	-1.35603300
F	0.30126100	-2.94769800	0.79055900
F	-1.40720400	-3.39237900	-0.51677600
Ν	-1.73272400	-0.35797300	1.10042100
Ν	-1.59993900	1.21382900	-1.08994600
N	5.01173100	1.16167200	0.73288900
С	5.29471200	1.72447900	2.05912600
Н	4.68922200	2.62962900	2.24635100
Н	5.09732300	0.99754500	2.87087900
Н	6.35235500	2.01550000	2.11012600
С	6.12747600	0.82333100	-0.16205700
Н	6.26851100	-0.27061000	-0.25476400
Н	5.96907800	1.24184400	-1.17174300
Н	7.05419400	1.25668200	0.23711200

 $\left[\mathsf{Pd}(\mathsf{bpy})(\mathsf{C}_6\mathsf{H}_4\mathsf{NMe}_2)(\mathsf{CF}_3)\mathsf{F} \right]^{+}$ transition state

Pd	-0.60431200	-0.53209300	0.34056400
С	-2.80650600	-2.47516000	-0.51958600
С	-3.24904400	-0.19190900	-0.93818700
С	-3.98949100	-2.87194200	-1.18420800
Н	-2.10519600	-3.18088000	-0.06709300
С	-4.44186400	-0.51360100	-1.62904700
С	-4.81323100	-1.87246200	-1.75114700
Н	-4.24407000	-3.93059400	-1.25255200
Н	-5.06671600	0.26488200	-2.06741000
Н	-5.72989700	-2.14193200	-2.28101300
С	-1.09712400	2.54616100	0.27700600
С	-2.76120000	1.19726100	-0.69055200
С	-1.81428800	3.72838700	-0.00106600
Н	-0.15480100	2.59123500	0.82011400
С	-3.52714800	2.34235500	-1.01865200
С	-3.04802500	3.62505800	-0.68069300
Н	-1.40810600	4.69020900	0.31507400
Н	-4.49361200	2.23208500	-1.50997500
Н	-3.63292400	4.51510700	-0.92335600
С	1.43900300	-0.15040100	0.25365800
С	2.32693700	-1.24278200	0.44815100
С	1.88952400	1.02265600	-0.40996000
С	3.62133300	-1.19508600	-0.08938300
Н	2.00037300	-2.12871400	0.98838100
С	3.18013800	1.06800900	-0.96053900
Н	1.24960400	1.89143900	-0.55472200
С	4.09218500	-0.04158900	-0.81647800
Н	4.26589500	-2.06107600	0.05700900
Н	3.47469300	1.96461000	-1.50512900
С	0.45376100	0.17953200	2.21304300
F	-0.17075500	-2.38810200	0.71029600

F	1.10582900	-0.76299900	2.89768700
F	1.07942000	1.37503500	2.37269500
F	-0.76083400	0.34428900	2.83689900
Ν	-1.53469500	1.31510800	-0.07852000
Ν	-2.46705000	-1.17450400	-0.40660100
Ν	5.35860900	0.00125000	-1.34681700
С	6.27861500	-1.13373500	-1.15809700
Н	6.49911300	-1.30239500	-0.08865800
Н	5.85702900	-2.06204700	-1.58165600
Н	7.22349700	-0.92186200	-1.67473700
С	5.83134000	1.20918800	-2.04221600
Н	5.20062000	1.43782300	-2.91972400
Н	5.83524400	2.08742200	-1.37146800
Н	6.85713600	1.04434000	-2.39593200

 $[Pd(bpy)(C_6H_4OMe)(CF_3)F]^+$ intermediate

Pd	-0.43061300	-0.59384100	-0.83999700
C	-1.22557700	2.20545000	-1.91872800
C	-2.29225500	1.54340500	0.08076300
C	-1.91185200	3.44203300	-1.93118600
Н	-0.51362600	1.91094000	-2.69406700
	-3.01561100	2.75874500	0.13966400
C	-2.81796100	3.71744400	-0.88167800
н	-1.73611000	4.15497600	-2.73805100
н	-3.71320100	2.96537500	0.95148400
Н	-3.36593800	4.66223700	-0.85477000
C	-1.6/1/5400	-1.69506700	1.77813900
C	-2.41173600	0.43994600	1.08652100
C	-2.55200800	-1.70005300	2.88131600
Н	-1.00227300	-2.53292900	1.59582200
C	-3.31415200	0.49744000	2.17445100
C	-3.38810800	-0.58071400	3.08319200
н	-2.56764800	-2.56155700	3.55023800
н	-3.95657000	1.36737400	2.30802300
Н	-4.08382000	-0.54419500	3.92457100
C	1.32893800	0.07746600	0.02879200
C	1.29667100	0.54543800	1.35611400
С	2.46852400	0.06209600	-0.78414900
С	2.50884000	1.03570100	1.89284900
н	0.40162900	0.54110200	1.97454000
С	3.67754800	0.55579400	-0.22302500
Н	2.44296000	-0.30558900	-1.80785000
С	3.70283900	1.04262900	1.11395100
Н	2.54142000	1.40880200	2.91898200
Н	4.57182200	0.54620700	-0.84641900
C	0.30203400	-2.50516600	-0.83811800
F	0.30764300	-0.34092500	-2.60272500
F	1.29340400	-2.72439400	-1.71048700
F	0.71881300	-2.96393100	0.37813400
F	-0.77062500	-3.27422600	-1.20701200
N	-1.60189100	-0.65980400	0.90602000
Ν	-1.42174000	1.30329800	-0.93752800
0	4.80662500	1.53442600	1.74237500
С	6.05371100	1.55117100	1.01947800
Н	6.79225500	1.97188000	1.71350200
Н	6.35626600	0.52905500	0.73135900
Н	5.98177300	2.19187600	0.12280300

$[Pd(bpy)(C_6H_4OMe)(CF_3)F]^{+}$ transition state

Pd	-0.36955500	-0.39942400	0.50659900
С	-2.38126700	-2.63002500	0.03397900
С	-3.00571300	-0.50320600	-0.79490000
С	-3.53414100	-3.23209700	-0.52029100
Н	-1.62559600	-3.18242800	0.59814700
С	-4.17409200	-1.03933400	-1.38564100
С	-4.43768100	-2.42167500	-1.24468100
Н	-3.70484300	-4.30101400	-0.38471100
Н	-4.86291000	-0.40587600	-1.94492300

Н	-5.33466100	-2.85410800	-1.69416500
С	-1.06733000	2.56315800	-0.13612500
С	-2.62560100	0.93973900	-0.82076900
С	-1.86393900	3.61634200	-0.63257700
Н	-0.13267800	2.77695500	0.37999300
С	-3.46679700	1.94306500	-1.35882600
С	-3.08107700	3.29745000	-1.27396800
Н	-1.52847700	4.64714800	-0.51052000
Н	-4.41747100	1.67335100	-1.81844300
Н	-3.72384900	4.08113800	-1.68116500
С	1.66851100	0.04357500	0.15956100
С	2.58535900	-1.00112000	0.41445000
С	1.95438700	1.06891800	-0.78064900
С	3.78789100	-1.06146900	-0.32455900
Н	2.36591900	-1.76419000	1.15806200
С	3.14556400	1.00117400	-1.52162500
Н	1.27742400	1.90032200	-0.96662800
С	4.07570600	-0.06175400	-1.30009100
Н	4.47870600	-1.88149800	-0.12834900
Н	3.37993600	1.76067200	-2.27036300
С	0.88009700	0.72348300	2.04104100
F	0.18758400	-2.10303000	1.25214000
F	1.66756300	-0.00970900	2.82905300
F	1.41146300	1.96221400	1.88068700
F	-0.27949000	0.94128400	2.75058700
N	-1.41734800	1.25988300	-0.24622900
N	-2.14512700	-1.30928100	-0.10755000
0	5.19633100	-0.02101700	-2.06114800
С	6.19647500	-1.04674700	-1.87803900
Н	6.99844800	-0.80502500	-2.58653600
Н	6.59160000	-1.02859500	-0.84786300
Н	5.78244300	-2.04310400	-2.11037800

 $[Pd(bpy)(C_6H_4OH)(CF_3)F]^+$ intermediate

Pd	-0.01093700	-0.45472000	-0.87507200
С	-1.33108400	2.22423200	-1.72407600
С	-2.37700600	1.09252200	0.06481500
С	-2.27891600	3.27295900	-1.67708000
Н	-0.51127200	2.19573200	-2.44649600
С	-3.36185400	2.10319200	0.17545000
С	-3.30637000	3.20640000	-0.70843800
Н	-2.20609700	4.10529200	-2.37859300
Н	-4.15303400	2.04550000	0.92314400
Н	-4.05654100	3.99765500	-0.63927000
С	-1.18014000	-2.13194200	1.45294900
С	-2.32482400	-0.13253000	0.92485800
С	-2.12489400	-2.47238800	2.44455900
Н	-0.32537500	-2.77377400	1.25182000
С	-3.30358900	-0.41507700	1.90646000
С	-3.20650200	-1.59515900	2.67577200
Н	-2.00080100	-3.39845200	3.00746900
Н	-4.13569600	0.27037000	2.06503000
Н	-3.95999800	-1.82104700	3.43373300
С	1.47596400	0.45336400	0.24636500
С	1.23234500	0.72545400	1.60453400
С	2.65538700	0.78617500	-0.43626700
С	2.25462400	1.38829600	2.32619300
Н	0.31286900	0.44989300	2.11677500
С	3.66690600	1.44666600	0.30792700
Н	2.79893900	0.55782200	-1.49032200
С	3.46965800	1.74656300	1.68252900
Н	2.11668400	1.62159200	3.38422400
Н	4.59927800	1.71804100	-0.19732600
С	1.13417600	-2.14828000	-0.99913100
F	0.79319000	0.18280900	-2.50642400
F	2.22088700	-2.03138100	-1.77175800
F	1.53742500	-2.66138500	0.19983500
F	0.30029800	-3.07396300	-1.56848300
Ν	-1.27444700	-0.99905600	0.71488300

Ν	-1.39417500	1.18158700	-0.87292700
0	4.40855700	2.38230500	2.45284700
Н	5.20652200	2.56494000	1.92358600

 $\left[\mathsf{Pd}(\mathsf{bpy})(\mathsf{C}_6\mathsf{H}_4\mathsf{OH})(\mathsf{CF}_3)\mathsf{F} \right]^{\star} \text{ transition state}$

Pd	-0.12709800	-0.46596000	0.41468300
С	-2.30853500	-2.52694000	-0.05487700
С	-2.87242000	-0.29994000	-0.62481900
С	-3.54481600	-3.00983900	-0.54192500
Н	-1.53938100	-3.17013600	0.37996400
С	-4.12379800	-0.71302500	-1.13925100
С	-4.46002600	-2.08619600	-1.09627500
Н	-3.76916900	-4.07597600	-0.48623400
Н	-4.82100400	0.00750300	-1.56736000
Н	-5.42132800	-2.42452200	-1.48999300
С	-0.68020700	2.57704300	0.08948200
С	-2.40333400	1.11532800	-0.56425300
С	-1.44917000	3.71513900	-0.23216500
Н	0.31245500	2.68938600	0.52286000
С	-3.22492400	2.21029800	-0.92443100
С	-2.74282700	3.52679600	-0.76662900
Н	-1.03476500	4.70946300	-0.06017400
Н	-4.23252600	2.03894100	-1.30280500
Н	-3.36889200	4.38019300	-1.03655500
С	1.89812600	-0.11965200	-0.09351800
С	2.76080900	-1.23831100	-0.01141100
С	2.15781300	0.95601400	-0.98103400
С	3.87355500	-1.30631600	-0.87580600
Н	2.56505200	-2.04467900	0.69186200
С	3.26234000	0.87875900	-1.85005600
Н	1.52506000	1.83983400	-1.03132900
С	4.12691000	-0.25214000	-1.79800600
Н	4.53668200	-2.17572600	-0.82749700
Н	3.47143800	1.68093600	-2.56059900
С	1.34105800	0.44712800	1.89920000
F	0.38614300	-2.25526700	0.96648100
F	2.13489300	-0.40301900	2.55033200
F	1.95098300	1.65365400	1.78375900
F	0.26801600	0.68729300	2.72702500
N	-1.12613200	1.31153300	-0.09237900
Ν	-2.00349600	-1.21365500	-0.10202900
0	5.18577100	-0.25436300	-2.65865400
Н	5.72048000	-1.06014500	-2.53118400

$\left[Pd(bpy)(C_6H_4Me)(CF_3)F \right]^{+}$ intermediate

Pd	-0.04997600	-0.47836800	-0.86953600
С	-1.30776500	2.21804800	-1.75406000
С	-2.35068500	1.15785300	0.07979500
С	-2.22365200	3.29503000	-1.71303800
Н	-0.50383100	2.14889700	-2.49142800
С	-3.30358900	2.19920600	0.18584400
С	-3.23351300	3.28035700	-0.72389700
Н	-2.14064100	4.10889500	-2.43480100
Н	-4.08140000	2.18083400	0.94933200
Н	-3.95913600	4.09453100	-0.65883400
С	-1.22630300	-2.07244600	1.51344100
С	-2.31864500	-0.04956200	0.96560300
С	-2.16274300	-2.36421200	2.52824000
Н	-0.39592100	-2.74463300	1.30926600
С	-3.28728400	-0.28211700	1.97012600
С	-3.21224500	-1.44927000	2.76119900
Н	-2.05743000	-3.28305800	3.10660000
Н	-4.09545300	0.43129000	2.12948200
Н	-3.95846500	-1.63698800	3.53657400
С	1.48999000	0.41464200	0.20216600
С	1.28611600	0.70253200	1.55861900
С	2.65312200	0.71670400	-0.52139000
С	2.35306700	1.35584700	2.23703400

Н	0.37667300	0.45043300	2.10008800
С	3.69130800	1.36508000	0.19799100
Н	2.76147800	0.47505700	-1.57668100
С	3.56329200	1.69154500	1.57648000
Н	2.22095300	1.59214800	3.29660100
Н	4.61021900	1.61205300	-0.34144700
С	1.04284400	-2.20716700	-0.97172000
F	0.73376300	0.09475100	-2.53578500
F	2.10895300	-2.14709900	-1.77823600
F	1.46684500	-2.69061800	0.23329700
F	0.16865400	-3.12962600	-1.48415700
Ν	-1.29889200	-0.95152000	0.75512700
Ν	-1.38415500	1.19711100	-0.87808600
С	4.70835100	2.37314700	2.32174300
Н	5.56451400	1.68516100	2.43311200
Н	5.06650500	3.25952900	1.77228000
Н	4.39825400	2.69368000	3.32808900

 $[Pd(bpy)(C_6H_4Me)(CF_3)F]^+$ transition state

Pd	-0.14498700	-0.43978300	0.46939700
С	-2.27127700	-2.54429300	-0.00601100
С	-2.85515200	-0.34249300	-0.65217600
С	-3.48927200	-3.05918600	-0.50620000
Н	-1.50318500	-3.16251000	0.46540100
С	-4.08870600	-0.78931000	-1.18096400
С	-4.40547700	-2.16576000	-1.10632000
Н	-3.69904600	-4.12662200	-0.42469100
Н	-4.78712000	-0.09132200	-1.64306600
Н	-5.35298200	-2.52971600	-1.51047700
С	-0.71985000	2.58287100	0.03221700
С	-2.40800200	1.08061200	-0.62156500
С	-1.49402100	3.70086200	-0.34361200
Н	0.26070000	2.71996900	0.48585500
С	-3.23326800	2.15332900	-1.03580100
С	-2.77114000	3.47998200	-0.90478500
Ĥ	-1.09627500	4.70522300	-0.19175200
н	-4.22830000	1.95800900	-1.43539200
н	-3.40016500	4.31694200	-1.21613500
С	1,90190100	-0.10052100	-0.03837400
Č	2.74756100	-1.22858700	0.06423300
Ċ	2,13992300	0.93548800	-0.96874400
Č	3.83301900	-1.33031900	-0.83411200
Ĥ	2.56123300	-2.00617600	0.80162300
C	3.22809200	0.80106700	-1.86298500
Ĥ	1.51895000	1.82707600	-1.03021200
C	4.09456900	-0.32555200	-1.80933300
Ĥ	4,48335600	-2.20669100	-0.76657400
H	3.40337600	1.59095500	-2.59801200
С	1.34720200	0.53646100	1.90946900
F	0.37004200	-2.20039300	1.10346400
F	2,15361500	-0.27596400	2,59196400
F	1.93777500	1.74825000	1.75136900
F	0.26989300	0.79003000	2,72971400
Ň	-1 14693600	1 30743500	-0 12170100
N	-1 98459400	-1 22837900	-0.08526700
C	5.28568800	-0.45208400	-2.75153900
Ĥ	5 28765100	0 34522000	-3 51004700
н	6 23364000	-0.39085800	-2 18868500
H	5.27561400	-1.42558300	-3.27030800
••	0.2.00.100		0.2.000000
	[Pd(bpv)(C ₆ H₄F)(C	CF ₃)F1 ⁺ interme	diate
Pd	0.00202300	-0.43313200	-0.87629600
C	-1.33793500	2.24757800	-1.68725000
Ĉ	-2 38625400	1 07278700	0 07305800
Č	-2 29741300	3 28514900	-1 62933500
Ĥ	-0.51269600	2.24086800	-2.40400000
C	-3.38269100	2.07080600	0.19309300
č	-3 33172200	3 19035400	-0 67046700
Ĥ	-2.22786300	4.13050700	-2.31543700
	, 00000		

Н	-4.17972000	1.99140800	0.93258200
Н	-4.09091900	3.97221700	-0.59345000
С	-1.16715500	-2.16505000	1.41164000
С	-2.32847700	-0.16738500	0.91057400
С	-2.11810700	-2.53468900	2.38659000
Н	-0.30389700	-2.79445900	1.20708800
С	-3.31369100	-0.47967800	1.87664800
С	-3.21147300	-1.67360600	2.62372900
Н	-1.98985200	-3.47036200	2.93245500
Н	-4.15490000	0.19349800	2.03960600
Н	-3.97014500	-1.92245300	3.36924400
С	1.48077200	0.45999400	0.26288900
С	1.22849000	0.70006400	1.62482500
С	2.65850800	0.81691900	-0.41597400
С	2.24391200	1.35971400	2.36635500
Н	0.30963400	0.40442700	2.12636200
С	3.66486000	1.47219800	0.34002600
Н	2.80149700	0.60936000	-1.47429500
С	3.43705200	1.72937900	1.70933400
Н	2.11006100	1.57441200	3.42860700
Н	4.60374700	1.77360600	-0.12920700
С	1.16003000	-2.11737200	-1.02658900
F	0.80903100	0.24095800	-2.48974100
F	2.24667500	-1.97865600	-1.79441200
F	1.56308600	-2.64693800	0.16459900
F	0.33126500	-3.03511600	-1.61349200
N	-1.26648000	-1.01867100	0.69467300
N	-1.39637600	1.18934000	-0.85476700
F	4.40102600	2.35568300	2.42369600

$[Pd(bpy)(C_6H_4F)(CF_3)F]^+$ transition state

Pd	-0.12467300	-0.44264100	0.45725500
С	-2.26264600	-2.53876600	0.00789800
С	-2.85314100	-0.33099200	-0.61385900
С	-3.48973400	-3.04787500	-0.47574400
Н	-1.48853700	-3.16225700	0.46201300
С	-4.09572900	-0.77226100	-1.12533200
С	-4.41376600	-2.14878000	-1.05489200
Н	-3.69994700	-4.11550600	-0.39814500
Н	-4.80024000	-0.07004100	-1.57148300
Н	-5.36824700	-2.50835000	-1.44631800
С	-0.70240100	2.58562700	0.05940600
С	-2.40302900	1.09083000	-0.58029700
С	-1.48065400	3.70776900	-0.29454100
Н	0.28477100	2.71837300	0.49998200
С	-3.23294200	2.16829700	-0.97222600
С	-2.76670400	3.49319100	-0.83771300
Н	-1.07930300	4.71029000	-0.14002400
Н	-4.23458900	1.97777000	-1.35732200
Н	-3.39922500	4.33357900	-1.13224800
С	1.91017000	-0.10785900	-0.08227900
С	2.75082000	-1.24385300	-0.00504800
С	2.13828000	0.94210700	-1.00423200
С	3.82530800	-1.35483600	-0.91599400
Н	2.56900900	-2.02704100	0.72746000
С	3.20535500	0.82647300	-1.92254900
Н	1.51994500	1.83653700	-1.03959700
С	4.02854100	-0.32154000	-1.85820700
Н	4.49102600	-2.21988700	-0.89729000
Н	3.40449200	1.60482600	-2.66157100
С	1.39816200	0.51473400	1.88125700
F	0.39920500	-2.20898300	1.06710700
F	2.21342800	-0.30842000	2.53803700
F	1.98987500	1.72409900	1.71961900
F	0.33684700	0.76312500	2.72001300
Ν	-1.13331500	1.31180900	-0.09940400
Ν	-1.97495400	-1.22265500	-0.06725500
F	5.05601800	-0.42698500	-2.72771700
$\left[\mathsf{Pd}(\mathsf{bpy})(\mathsf{C}_{6}\mathsf{H}_{4}\mathsf{CF}_{3})(\mathsf{CF}_{3})\mathsf{F}\right]^{*} \text{ intermediate}$

Dd	1 00/73200	0 70707400	0 75200200
C C	-1.60134800	1 00/30100	-2 16103300
C	-2 40682700	1 79464400	0.04966800
Č	-2.40002700	3 30386800	-2 28324300
н	-1.06803200	1 49005700	-2.20324300
C	-2 95432300	3 09905400	0.00554600
C C	-2 80509900	3 86005900	-1 17789400
й	-1 99146100	3 85769800	-3 21410300
н	-3 48260900	3 52153000	0.86032600
н	-3 21953900	4 86946600	-1 23180800
C	-1 94592400	-1 22655000	2 15344600
Ĉ	-2 50428800	0.87807600	1 23024000
Č	-2 63327000	-0.94099400	3 35229900
н	-1 42961200	-2 17492500	2 01982700
C	-3 20761200	1 22491100	2 40765500
Ĉ	-3 27490400	0 30997300	3 481 16600
Ĥ	-2.65452200	-1.68663000	4.14819900
Н	-3.70376000	2.19194800	2.48553000
Н	-3.81800000	0.57060300	4.39241600
C	0.94649700	-0.22249900	-0.26688300
C	1.19014800	0.42705000	0.95441900
С	1.92432900	-0.53440700	-1.22409800
С	2.53358200	0.79435800	1.23010700
Н	0.41300900	0.65154900	1.68120700
С	3.25879300	-0.15845900	-0.91799500
Н	1.68340900	-1.03238400	-2.16075800
С	3.55678200	0.50249500	0.29770200
Н	2.76379200	1.30513100	2.16713100
Н	4.04844800	-0.38059800	-1.63854900
С	-0.54580600	-2.69227900	-0.52659000
F	-0.52321500	-0.81854900	-2.61500400
F	0.21063800	-3.20149000	-1.50451600
F	0.04243800	-3.01275500	0.66136300
F	-1.76413900	-3.31607700	-0.55386400
Ν	-1.88161900	-0.34680800	1.12348200
Ν	-1.74620500	1.28318700	-1.02611600
С	5.00585400	0.86087600	0.63106700
F	5.62884200	-0.15833100	1.28296200
F	5.72690800	1.12388500	-0.48844300
F	5.07656000	1.95441300	1.43628400

$\left[\mathsf{Pd}(\mathsf{bpy})(\mathsf{C}_{6}\mathsf{H}_{4}\mathsf{CF}_{3})(\mathsf{CF}_{3})\mathsf{F}\right] ^{*} \text{ transition state}$

Pd	-0.85109900	-0.27022300	0.70207800
С	-2.66603000	-2.63605400	0.22395800
С	-3.18780500	-0.68159100	-1.01075000
С	-3.69014500	-3.36673700	-0.42125600
Н	-2.00999300	-3.06323100	0.98633200
С	-4.22275000	-1.35470800	-1.70013000
С	-4.47274800	-2.71438500	-1.40055000
н	-3.85555000	-4.41224000	-0.15746400
Н	-4.82032300	-0.84190600	-2.45417200
Н	-5.26717000	-3.25071800	-1.92472100
С	-1.45668600	2.52983900	-0.49373900
С	-2.84158500	0.75808100	-1.18849500
С	-2.17010500	3.46444900	-1.27345100
Н	-0.63055300	2.85594400	0.13732900
С	-3.59033200	1.63515600	-2.00880700
С	-3.24858100	3.00332400	-2.06063200
Н	-1.87943400	4.51566000	-1.25188200
Н	-4.43825700	1.26103000	-2.58240900
Н	-3.82165800	3.69173500	-2.68573500
С	1.24961200	0.14955100	0.57921600
С	2.08301500	-0.87382700	1.08015400
С	1.63533200	0.98983900	-0.49001200
С	3.33061900	-1.09006100	0.44835000
Н	1.77139600	-1.49315500	1.91808000
С	2.87976100	0.75497900	-1.11750200

1.01376600	1.80607300	-0.85170000
3.72188700	-0.28352300	-0.64792700
3.98274000	-1.88625600	0.81164300
3.18531000	1.37866200	-1.95939200
0.27363900	1.11336600	2.17420200
-0.41882600	-1.79956100	1.81508800
0.93464100	0.52239800	3.16710900
0.84088500	2.30899000	1.88387100
-0.96966600	1.43257700	2.66543100
-1.76238400	1.21113600	-0.46624800
-2.44004200	-1.33966600	-0.07530000
5.09218400	-0.48955900	-1.29684600
5.51047100	-1.77561900	-1.18803200
5.06940400	-0.17127800	-2.61841400
6.03548900	0.29577600	-0.71009400
	$\begin{array}{c} 1.01376600\\ 3.72188700\\ 3.98274000\\ 3.18531000\\ 0.27363900\\ -0.41882600\\ 0.93464100\\ 0.84088500\\ -0.96966600\\ -1.76238400\\ -2.44004200\\ 5.09218400\\ 5.51047100\\ 5.506940400\\ 6.03548900\\ \end{array}$	1.01376600 1.80607300 3.72188700 -0.28352300 3.98274000 -1.88625600 3.18531000 1.37866200 0.27363900 1.11336600 -0.41882600 -1.79956100 0.93464100 0.52239800 0.84088500 2.30899000 -0.96966600 1.43257700 -1.76238400 -1.2113600 -2.44004200 -1.33966600 5.09218400 -0.48955900 5.51047100 -1.77561900 5.06940400 -0.17127800 6.03548900 0.29577600

$[Pd(bpy)(C_6H_4CN)(CF_3)F]^{+} intermediate$

Pd	-0.31907200	-0.60818400	-0.81710900
С	-1.27790200	2.10965500	-1.96900000
С	-2.26556500	1.46184600	0.07679400
С	-2.02853400	3.30765200	-2.00623800
Н	-0.57022500	1.82685600	-2.75250800
С	-3.05035700	2.63911100	0.11119600
С	-2.92481800	3.57163100	-0.94553000
Н	-1.90807200	4.00021600	-2.84051800
Н	-3.74142300	2.83671000	0.93077100
Н	-3.52095900	4.48711900	-0.93715700
С	-1.44801900	-1.68677800	1.86058900
С	-2.30781600	0.38787000	1.11940800
С	-2.30449100	-1.69973000	2.98193200
Н	-0.74306700	-2.49763000	1.69005800
С	-3.18941700	0.43459300	2.22475900
С	-3.19078800	-0.61664200	3.16759000
Н	-2.26423200	-2.53966900	3.67678800
Н	-3.87185800	1.27538900	2.34567900
Н	-3.87009700	-0.58769800	4.02255000
С	1.43351900	0.14630900	-0.02520800
С	1.41882300	0.64528600	1.28879800
С	2.54866600	0.15459500	-0.87904200
С	2.62669600	1.20202200	1.78055700
Н	0.54136800	0.61863000	1.93086800
С	3.74607200	0.71307600	-0.36442000
Н	2.50506000	-0.24148900	-1.89141400
С	3.78520900	1.23552800	0.95763200
Н	2.66159600	1.60039800	2.79656700
Н	4.63817000	0.73875100	-0.99352600
С	0.49428500	-2.49070100	-0.77442700
F	0.37050400	-0.37476500	-2.60111500
F	1.46266100	-2.69724700	-1.67285800
F	0.96901600	-2.88371000	0.44209800
F	-0.56060100	-3.30624300	-1.07938200
N	-1.44705200	-0.67630300	0.95588000
N	-1.40411400	1.23275400	-0.95303000
С	5.01839600	1.81120600	1.47623800
N	6.01446100	2.28031700	1.90006900

$[Pd(bpy)(C_6H_4CN)(CF_3)F]^+$ transition state

Pd	-0.30222200	-0.38448200	0.57372400
С	-2.30879800	-2.57852100	0.04516100
С	-2.87801700	-0.44459100	-0.81477100
С	-3.45675600	-3.16451500	-0.53591700
Н	-1.57900000	-3.13936300	0.63414200
С	-4.03883300	-0.96705900	-1.43051800
С	-4.32774700	-2.34455400	-1.28839900
Н	-3.64751500	-4.22970300	-0.39802300
Н	-4.70355700	-0.32562900	-2.00953700
Н	-5.21965300	-2.76557400	-1.75824700
С	-0.90550900	2.58626900	-0.10659900

С	-2.47318700	0.99056200	-0.83835600
С	-1.66207300	3.65215700	-0.63756500
Н	0.01524000	2.78458700	0.44098800
С	-3.27336300	2.00698400	-1.41233400
С	-2.86191600	3.35364700	-1.32071400
Н	-1.31042100	4.67687500	-0.50984400
Н	-4.21168000	1.75415800	-1.90587100
Н	-3.47260700	4.14794800	-1.75571800
С	1.77944800	-0.03379100	0.20205700
С	2.61246900	-1.15648600	0.41023400
С	2.06610000	0.95605500	-0.76660400
С	3.74358800	-1.31652800	-0.42093500
Н	2.38375500	-1.89096200	1.17918800
С	3.19264600	0.78382000	-1.59963200
Н	1.45182400	1.84416700	-0.89674800
С	4.03177200	-0.35338500	-1.42831200
Н	4.39554000	-2.18165200	-0.28693900
Н	3.42357700	1.52550600	-2.36635800
С	1.10408700	0.70893300	2.05173800
F	0.19593100	-2.08050500	1.37123800
F	1.89181400	-0.03647100	2.82370300
F	1.66339700	1.92659300	1.85170000
F	-0.03082500	0.96371500	2.78143600
Ν	-1.28038300	1.29022900	-0.22218900
Ν	-2.04824400	-1.26237700	-0.10085300
С	5.19598600	-0.52255900	-2.28485600
N	6.13640700	-0.65825200	-2.98454000

 $[Pd(bpy)(C_6H_4NO_2)(CF_3)F]^+$ intermediate

Pd	-0.67915900	-0.70513400	-0.76201400
С	-1.38433100	1.97144100	-2.16929600
С	-2.28773200	1.68298000	-0.00545600
С	-1.98490100	3.24510400	-2.30128300
Н	-0.77776200	1.51701600	-2.95687300
С	-2.91908600	2.94828400	-0.06220700
С	-2.76064900	3.73648500	-1.22661000
Н	-1.84427400	3.82118500	-3.21700700
Н	-3.51804300	3.32088300	0.76881300
Н	-3.23912100	4.71661000	-1.28961300
С	-1.73328400	-1.33475800	2.08129000
С	-2.38421000	0.74287200	1.15620800
С	-2.50322700	-1.11715500	3.24354200
Н	-1.14619700	-2.24307900	1.96368600
С	-3.17219700	1.02097300	2.29762800
С	-3.23491000	0.08530700	3.35346900
Н	-2.51680200	-1.87622900	4.02681000
Н	-3.73759700	1.95035900	2.36057000
Н	-3.84343900	0.29288300	4.23656300
С	1.20332800	-0.10250400	-0.16867000
С	1.34178200	0.53368000	1.07862600
С	2.24685400	-0.32934800	-1.08246400
С	2.63817800	0.98488000	1.43376700
Н	0.51572500	0.68576500	1.76930700
С	3.53758900	0.12540100	-0.70907100
Н	2.08184800	-0.82531600	-2.03643400
С	3.70524000	0.77201400	0.53480400
Н	2.81366700	1.48515300	2.38655300
Н	4.39012400	-0.02077700	-1.37320500
С	-0.09478100	-2.65994300	-0.54394800
F	-0.09934600	-0.75622100	-2.59963500
F	0.76759700	-3.08722600	-1.47164300
F	0.42542500	-2.96855900	0.67817600
F	-1.25975400	-3.36363100	-0.67759700
Ν	-1.67341800	-0.43502300	1.06821200
Ν	-1.53926100	1.23404700	-1.05144800
Ν	5.06397500	1.25234500	0.91823200
0	5.98810700	1.05632100	0.10678200
0	5.17649900	1.81849800	2.02356500

$\left[Pd(bpy)(C_{6}H_{4}NO_{2})(CF_{3})F\right]^{+}$ transition state

ϘΟΟΟΤΟΟΗΗΗΟΟΟΗΟΟΗΗΗΟΟΟΟΗΟΗΟΗΟΗΟΗΗΗΗΕΖΖΟΟ	-0.57368700 -2.45044300 -3.52545000 -1.75663100 -4.10005900 -4.35520900 -3.69280400 -4.73383500 -5.18977300 -1.20396000 -1.94595400 -0.33812000 -3.43490600 -3.07496000 -1.94595400 -3.07496000 -3.67176200 1.52438600 2.36618400 1.85917500 3.66729700 2.09438200 3.05365800 1.23177500 3.86304300 4.24110500 3.84133700 0.67365300 -0.09993900 1.39067500 1.23513300 -0.53095900 -1.52789700 2.22048100 5.14752800 5.86562000 5.39158500	-0.35706600 -2.63012600 -0.53655100 -3.26771700 -3.15239400 -1.11218000 -2.49533500 -0.50661700 -2.95724000 2.57411000 0.91056100 3.60162700 2.57411000 0.91056100 3.60162700 2.81609500 4.64007800 1.59111500 4.01111300 0.05001500 -1.04071500 1.01682300 -1.04071500 1.01682300 -1.75633600 0.85384800 1.88045900 -0.25141700 -2.02843500 1.56493000 0.82366300 -2.01226100 0.1234100 2.04228600 1.26410000 -1.30950500 -0.41905100 -1.39547100 0.42916900	0.63794300 -0.00656400 -0.96560000 -0.66733300 0.65664500 -1.51118500 -0.51887300 -2.31112200 -2.04377000 -0.79316400 0.44209000 -1.56490500 -0.66394300 -2.21924800 -2.26897800 0.44192100 0.75671300 -0.53540500 0.2612700 1.52921100 -1.27122100 -0.74303400 -0.74303400 -0.75770400 0.22790200 -2.04556400 2.19763300 1.52884500 3.06377400 2.01480800 2.80215400 -0.28575700 -0.16423400 -1.74998100 -1.46385800 -2.63055200
	[Pd(tmeda)(C ₆ H	H₅)(CF₃)(F)(OT	f)]
РССССНСНСННСЕЕЕОЯООСЕЕЕНС	-0.54426500 -2.54260300 -2.82169800 -3.57316400 -4.16053400 -2.02001300 -4.90871600 -3.38619300 -5.20789200 -4.37164800 -5.70065300 -0.68012500 0.42531300 -1.71381200 0.42531300 -0.85526400 -0.19373000 1.64791300 2.77155700 2.43317900 3.48345800 3.94245700 4.21972800 5.08698300 3.40107300 -6.23907800 -0.72223600	-0.00588600 -0.16710700 -0.96097300 0.54051100 -1.06705100 -1.47263500 0.43339900 1.19699000 -0.37770700 -1.69142800 0.98934700 -2.01783400 -2.23123300 -2.41771300 -2.80246900 -0.35193600 0.15751600 -0.83393200 -1.89574600 -1.15464200 0.28670000 1.38942100 -0.34787100 0.67566800 -0.46451200 2.84938200	0.00700900 -0.53001100 -1.66526200 0.12239400 -2.11898300 -2.20141900 -0.34851400 0.97356900 -1.46499800 0.16770300 0.49183900 1.34786000 1.34786000 1.12905800 -0.56173100 -1.87530600 0.32355600 0.06141700 -0.87235600 0.687235600 0.29757700 -0.87646700 -0.15790800 -1.13236200 -2.03804200 -1.82540200 0.87543400

-0.35763400	3.89870100	0.89125900
-1.81968000	2.88710400	1.01702000
-0.05437600	2.05823600	2.00607200
1.03129900	1.97532400	1.82904500
-0.20612700	2.56732700	2.98015400
-1.88536900	0.66377400	2.85833500
-2.41361000	-0.29067700	2.70805400
-1.67491600	0.80328700	3.93636200
-2.52178200	1.49996700	2.53684800
0.35740500	-0.13910100	2.96928700
0.48966300	0.40240600	3.92721200
-0.07974900	-1.12821800	3.17286200
1.32681900	-0.25474400	2.46775700
-1.42595300	2.65612000	-1.46776500
-1.32344800	3.74506300	-1.65843500
-1.22528100	2.09538000	-2.39588900
-2.45535900	2.43772500	-1.14172600
0.90614000	2.60106700	-0.94237000
0.91090500	3.68143700	-1.19913900
1.67947300	2.39137600	-0.18994800
1.13290300	1.99766400	-1.83534100
-0.59444000	0.65219600	2.11140100
-0.44465300	2.22043700	-0.44268300
	-0.35763400 -1.81968000 -0.05437600 1.03129900 -0.20612700 -1.88536900 -2.41361000 -2.52178200 0.35740500 0.48966300 -0.07974900 1.32681900 -1.42595300 -1.42595300 -1.42535900 0.90614000 0.90614000 0.91090500 1.67947300 1.13290300 -0.59444000 -0.44465300	-0.357634003.89870100-1.819680002.88710400-0.054376002.058236001.031299001.97532400-0.206127002.56732700-1.885369000.66377400-2.41361000-0.29067700-1.674916000.80328700-2.521782001.499967000.35740500-0.139101000.489663000.40240600-0.07974900-1.128218001.32681900-0.25474400-1.425953002.65612000-1.323448003.74506300-2.455359002.437725000.906140002.601067000.90905003.681437001.679473002.391376001.132903001.99766400-0.594440000.65219600-0.44653002.22043700

 $\left[\mathsf{Pd}(\mathsf{tmeda})(\mathsf{C}_6\mathsf{H}_5)(\mathsf{CF}_3)\mathsf{F} \right]^{\scriptscriptstyle +} \text{ intermediate}$

— ·			
Pd	0.38464400	0.19848000	-0.44272200
C	-1.52133900	-0.38077800	0.15413100
C	-1.68176200	-0.85514900	1.46308300
C	-2.52580800	-0.32588800	-0.82295200
С	-2.97890500	-1.31637300	1.82000300
Н	-0.87953900	-0.89758600	2.20520600
C	-3.80825600	-0.79247900	-0.42410500
Н	-2.34111500	0.04396700	-1.83317100
С	-4.03523200	-1.28077900	0.88272300
Н	-3.13872700	-1.69482600	2.83583100
Н	-4.62048400	-0.76207500	-1.15878000
Н	-5.03123300	-1.63210500	1.17077800
С	-0.39383200	2.11156900	-0.39809300
F	-0.19265000	0.00611800	-2.28853300
F	-1.31087900	2.34360100	-1.31874800
F	-0.88588400	2.47806400	0.79625200
F	0.67815400	2.89447300	-0.65680500
Ν	1.56456500	0.36844600	1.34534800
Ν	1.44226400	-1.76806700	-0.61311000
С	2.44680200	-1.82527200	0.48967800
Н	2.64744800	-2.87500200	0.78134300
Н	3.40234200	-1.41270300	0.12129900
С	1.95470800	-1.04167700	1.70837600
Н	2.74323700	-1.00312500	2.48682400
Н	1.06943800	-1.52774900	2.15668600
С	1.08347500	1.07223300	2.57290400
Н	1.85707400	0.99680000	3.36111400
Н	0.89781300	2.13026400	2.34259300
Н	0.14761100	0.62310700	2.93599500
С	2.76494100	1.11489600	0.83845400
Н	2.51879300	2.18259200	0.74663200
Н	3.60897000	0.99022500	1.54429500
Н	3.07754600	0.74386900	-0.15374700
С	2.11134700	-1.86961600	-1.94186400
Н	2.66063900	-2.82893300	-2.02170400
Н	1.34756800	-1.80216800	-2.73098300
Н	2.82067100	-1.03284600	-2.06932300
С	0.45805100	-2.87798400	-0.49001100
Н	0.00385200	-2.88062400	0.51511500
Н	-0.33858100	-2.73954800	-1.23945300
н	0 96143700	-3 85079000	-0 66046900

 $\left[\text{Pd}(\text{tmeda})(\text{C}_6\text{H}_5)(\text{CF}_3)\text{F}\right]^{\scriptscriptstyle +}\text{transition state}$

Pd	-0.41478000	-0.21983500	-0.16144100
С	1.69566200	-0.01297600	-0.23297200
С	2.13831500	-0.74710200	-1.36175800
С	2.49114800	0.98512300	0.37394900
С	3.37136800	-0.38170700	-1.95659100
Н	1.54071400	-1.57177600	-1.76029400
С	3.72772600	1.32094600	-0.22768600
Н	2.20657700	1.47399000	1.31009300
С	4.16221200	0.64862300	-1.39591000
Н	3.71129700	-0.92349000	-2.84572800
Н	4.35328800	2.09210000	0.23489100
Н	5.12429700	0.90913000	-1.84956600
С	0.82708000	-1.11192400	1.49131100
F	-0.28236700	-2.07059300	-0.79935800
F	1.72826000	-2.04956100	1.32240700
F	1.21318000	-0.24500500	2.42914300
F	-0.28751000	-1.70323100	1.96283400
С	-3.17979800	0.84221100	-0.21947100
Н	-4.11199500	1.01902300	-0.79163500
Н	-3.47060500	0.65754600	0.82975900
С	-2.25020100	2.04143700	-0.33139800
Н	-2.72111100	2.95298700	0.08734800
Н	-2.01373300	2.25014500	-1.39065900
С	-0.02303900	2.89326200	-0.07389300
Н	0.88703000	2.90807100	0.53888000
Н	0.25516400	2.73284900	-1.12834500
Н	-0.53985900	3.86685100	0.03438500
С	-1.12019400	1.90441600	1.85674700
Н	-0.14450800	1.76838100	2.34854300
Н	-1.52577800	2.90190000	2.11684200
Н	-1.80479000	1.12241600	2.22496900
С	-3.08805300	-1.60322100	-0.13553000
Н	-2.54984600	-2.48525000	-0.51045500
Н	-2.99498700	-1.56361300	0.96271500
Н	-4.15814100	-1.65566300	-0.41859800
С	-2.53976300	-0.47488100	-2.21750000
Н	-2.11935800	0.43078600	-2.68610800
Н	-1.94623300	-1.34903000	-2.52669500
Н	-3.59157000	-0.59939700	-2.54210400
Ν	-2.47985000	-0.37377800	-0.72883900
Ν	-0.93798200	1.79730700	0.37698600

References

¹ For further information on using this method to reference NMR spectra, refer to the following website: <u>www.iupac.org/publications/pac/2001/7311/7311x1795.html</u>.

² Takahashi, Y.; Ito, S. S., Sukai, S.; Ishii, Y. J. Chem. Soc. Dalton Trans. **1970**, *17*, 1065-1066.

³ Foley, S. R.; Han, S.; Qadeer, U. A.; Jordan, R. F. *Organometallics* **2004**, 23, 600-609.

⁴ Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. **2009**, 131, 3796-3797.

⁵ Markies, B. A.; Canty, A. J.; de Graff, G.; Boersma, J.; Janssen, M. D.; Hogerheide, M. P.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. *J. Organomet. Chem.* **1994**, *482*, 191-199.

⁶ Ball, N.D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. **2010**, 132, 2878-2879.

⁷ Marshall, W. J.; Grushin, V. V. *Can. J. Chem.* **2005**, 83, 640-645.

⁸ Gamzaeva, S. A.; Mamedova, P. S.; Allakhverdieva, K. M.; Velieva, G. K.; Akhundova, M. A.; Allakhverdiev, M. A. *Russ. J. Appl. Chem.* **2009**, *82*, 1577-1581.

¹⁰ Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

¹¹ Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. **1984**, *81*, 6026-6033.

¹² Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. *Can. J. Chem.* **1992**, *70*, 612-630.

¹³ Feller, D. J. Comp. Chem. **1996**, *17*, 1571-1586.

¹⁴ Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. *J. Chem. Inf. Model.* **2007**, *47*, 1045-1052.

¹⁵ Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.

¹⁶ Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.* **1993**, *208*, 111-114.

¹⁷ NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.

⁹ Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

S58

S61

S63

STANDARD PROTON PARAMETERS

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:

FidFile: 5-ndb-56forcarbon-H

Pulse Sequence: PROTON (s2pul) Solvent: cdc13 Data collected on: Feb 18 2010

Operator: nball

Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 3.500 sec Width 6410.3 Hz

VARIAN 🕻

STANDARD PROTON PARAMETERS

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

S87

1