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I. ANALYSIS OF H2B-GFP DIVISION DATA

A. Extraction of H2B-GFP division data

From the raw FACS data for mouse skin sample i (1 ≤ i ≤ Nskin samples = 3) we use a

semi-automated approach to extract the proportion pi
t0→t1,n of labeled bulge cells at time t1

(following doxycycline induction at time t0) that have divided n times (Fig S1): we select

live CD34+/α6-integrin+ cells as described [1] and export the GFP fluorescence values for

each of the Nevents cells in the selected subpopulation from FlowJo (Tree Star, Inc.), define

xi
t0→t1,j (1 ≤ j ≤ Nevents) by applying a logicle [2] transformation (having a linear regime

near zero and a logarithmic region away from zero) to each of the exported values, and

determine the ~pi
t0→t1

as the mixing coefficients of a Gaussian mixture model fit to the ~xi
t0→t1

via expectation-maximization (EM) [3]. In this case, the likelihood maximized is a sum

evaluating a mixture of k Gaussian probability distribution functions n[·|µi
n, (σ

i
n)2] (0 ≤ n ≤

k− 1 ≡ dim) with mean µi
n and variance (σi

n)2 at each of the logicle-transformed H2B-GFP

data values xi
t0→t1,j:

L(~pi
t0→t1

|~xi
t0→t1

) =
Nevents∑

j=1

k−1∑

n=0

pi
t0→t1,n n[xi

t0→t1,j |µ
i
n, (σ

i
n)2] . (S1)

The gaussians are assumed ordered according to their means, with µi
0 the largest mean

fluorescence and µi
k−1 ≡ µi

dim the smallest mean fluorescence, corresponding to the “dim”

peak (see below). Following standard practice [4–6], we initialize the EM algorithm using

k-means [7], whose number k and location of clusters are themselves manually initialized

by visualizing a histogram of the logicle-transformed H2B-GFP data. This computational

approach is a simplified, univariate version of techniques for analyzing the full multivariate

FACS data space by fitting mixtures of Gaussian [4–6, 8], skew normal [6], t [6, 8], or skew

t [6] distributions using EM [4, 6, 8] or Markov chain Monte Carlo (MCMC) [5] algorithms,

where the number of components k in the mixture may be determined by automated model

selection criteria [3], such as Akaike Information Criterion (AIC) [6], Bayesian Information

Criterion (BIC) [5, 6, 8], or related approaches [6].
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FIG. S1: Extracting data from GFP experiments. (a) Raw data (heavy blue line) is fit to a

Gaussian mixture (thin black line). Numbers above peaks correspond to number of divisions. Dim

indicates highly proliferative cells or unlabeled cells (see text). (b) Individual Gaussians within the

mixture [dashed lines in (a)] represent a population of cells that have undergone the same number

of divisions. Error bars are 90% credible sets.

B. Likelihood function for H2B-GFP division data

A likelihood function for the H2B-GFP division data needs to reflect two sources of

potential variation—that between skin samples and that due to error fitting the Gaussian

mixture model. In the vicinity of the maximum likelihood parameter estimates, the likeli-

hood function of Eq. (S1), governing the fit of the Gaussian mixture model to the data, may

be approximated by the multivariate Gaussian distribution [9, 10]

L(~pi
t0→t1

|~xi
t0→t1

) ∝ exp[−(~pi
t0→t1

− ~pi∗
t0→t1

) · (Σi)−1 · (~pi
t0→t1

− ~pi∗
t0→t1

)/2] , (S2)

where ~pi∗
t0→t1

are the maximum likelihood estimates (MLEs) of the ~pi
t0→t1

determined from

the fit and the covariance matrix

Σi = − H−1{log[L(~pi
t0→t1

|~xi
t0→t1

)]}
∣∣
~pi

t0→t1
=~pi∗

t0→t1

is calculated in terms of the inverse of the Hessian matrix H of the log likelihood function

H{log[L(~pi
t0→t1

|~xi
t0→t1

)]}qr ≡
∂2 log[L(~pi

t0→t1
|~xi

t0→t1
)]

∂pi
t0→t1,q∂pi

t0→t1,r

.

Eq. (S2) characterizes the error due to the fit, but since it allows negative proportions it is

clearly an approximation to the likelihood, which would not allow negative proportions.
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We seek as an overall likelihood function L(~pt0→t1 |Xt0→t1) for the data Xt0→t1 across all

skin samples a compound distribution that accommodates both inter- and intra-skin sample

variation, where the latter is captured by Eq. (S2). However, Eq. (S2) is an approximation

that, in principle, is inadequate because it allows logically-incoherent negative proportions.

An intuitive appeal to a Gaussian distribution in the logarithm of the proportions is still

inadequate: though it could represent the intra-skin sample variation of non-negative pro-

portions, it would remain to introduce inter-skin sample variation about these values, which

could again force them below zero. As a recourse and for mathematical convenience, we

use a Dirichlet distribution to approximate both sources of variation while respecting the

non-negativity constraints. We assume that this Dirichlet distribution approximates the true

error model, in which the realized ~pt0→t1 result from fitting error (from the Gaussian mixture)

introduced to a set of proportions sampled from an unknown distribution. As such, it can

not be conveniently represented in analytical form. Instead we generate samples consistent

with the unknown error model and fit a Dirichlet distribution to them. Given our limited

knowledge of the true proportion distribution, we make no assumptions other than that it

yields one of the experimentally-realized ~pi∗
t0→t1

, each with equal probability. Therefore, to

generate samples from the error model ptrue(~pt0→t1) we choose one of the experimentally-

realized ~pi∗
t0→t1

with equally probability and then introduce fitting error by sampling the

corresponding Gaussian distribution of Eq. (S2) with mean ~pi∗
t0→t1

. [We discard any negative

proportions sampled from the Gaussian distribution.] In order to fit the approximate error

model represented by a Dirichlet distribution p̃(~pt0→t1|~αt0→t1) ≡ Dir(~pt0→t1 |~αt0→t1) to these

samples [assumed drawn from the unknown, but fixed error model ptrue(~pt0→t1)], we min-

imize the Kullback-Leibler divergence [3] between the true and approximate error models

with respect to the ~αt0→t1

KL(ptrue||p̃) ≡

∫
ptrue(~pt0→t1) log

ptrue(~pt0→t1)

p̃(~pt0→t1 |~αt0→t1)
d~pt0→t1

to obtain ~α∗
t0→t1

and then define L(~pt0→t1 |Xt0→t1) = Dir(~pt0→t1|~α
∗
t0→t1

). Since ptrue(~pt0→t1)

is fixed, minimizing the Kullback-Leibler divergence is equivalent to maximizing
∫

ptrue(~pt0→t1) log[p̃(~pt0→t1 |~αt0→t1)] d~pt0→t1 .

We can approximate this integral via importance sampling (see Section II)
∫

ptrue(~pt0→t1) log[p̃(~pt0→t1 |~αt0→t1)] d~pt0→t1 ≈
∑

m

log[p̃(~pt0→t1,m|~αt0→t1)]
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wherein the ~pt0→t1,m are sampled from the error model ptrue(~pt0→t1) as described above. [Do

not confuse the mth sample k-vector of proportions ~pt0→t1,m with the (scalar) proportion of

the nth peak pi
t0→t1,n (from skin sample i) or pt0→t1,n (in general).] Therefore, in order to

fit the Dirichlet distribution to the data sampled from the error model, we maximize the

sum of the logarithm of the Dirichlet probability distribution function evaluated at those

samples. We consider importance sampling converged once the mean-normalized difference

between the current and previous estimates of the Dirichlet parameters is below 0.001. We

draw random samples for 100, 000 ∗ Nskin samples iterations, where Nskin samples is the number

of skin samples, and then check for convergence every 10, 000 ∗ Nskin samples iterations.

C. Bulge fold change and average number of divisions

One difficulty in the fold change calculation is the peak indicated as “dim” in Fig. S1.

Waghmare et al. [1] noted the presence of such a near-zero H2B-GFP intensity peak, even

for mice that were induced with doxycycline too soon before being sacrificed to exhibit

peaks of H2B-GFP diluted into that range. They surmised that this “unlabeled peak” was

caused by mosaicism in transgene expression. However, given the apparent presence of a

peak immediately abutting it and, in this case, representing six divisions, it is likely that

the dim peak in Fig. S1 contains both cells that were never labeled (due to mosaicism) and

those whose label was diluted to or below the detection threshold through repeated division.

It would be possible to differentiate between these two classes of cells by introducing a

dynamical model. Instead, we consider the two extreme cases that provide lower and upper

bounds for fcno loss, the fold change under the hypothesis of no bulge cell loss. This upper

bound will also serve as an upper bound on fc, the biologically-realized fold change with

cell loss, as in Eq. (3).

To derive bounds, we recognize that the percentage of cells in the dim peak is fixed at

pt0→t1,dim. A lower bound is obtained if the dim peak has only unlabeled cells. Since the

pt0→t1,n are intended to represent H2B-GFP labeled cells, we must subtract off the fraction

pt0→t1,dim of unlabeled cells, and adjust the proportions of the remaining peaks so that they

sum to one: pt0→t1,n 6=dim → pt0→t1,n 6=dim/(1 − pt0→t1,dim). Proving the lower bound

1 − pt0→t1,dim∑
n 6=dim pt0→t1,n ·

(
1
2

)n <
1∑

n=0 pt0→t1,n ·
(

1
2

)n = fcno loss (S3)
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involves some algebraic manipulation. We begin by writing the denominator of fcno loss as
∑

n=0 pt0→t1,n ·
(

1
2

)n
= pt0→t1,dim ·

(
1
2

)dim
+
∑

n 6=dim pt0→t1,n ·
(

1
2

)n
. Multiplying the numerator

and denominator of fcno loss by 1−pt0→t1,dim, expanding products, and collecting terms then

establishes the lower bound

fcno loss =
1∑

n=0 pt0→t1,n ·
(

1
2

)n

=
1 − pt0→t1,dim

(1 − pt0→t1,dim)
(
pt0→t1,dim ·

(
1
2

)dim
+
∑

n 6=dim pt0→t1,n ·
(

1
2

)n)

=
1 − pt0→t1,dim

∑
n 6=dim pt0→t1,n ·

(
1
2

)n
+ pt0→t1,dim

((
1
2

)dim
− pt0→t1,dim

(
1
2

)dim
−
∑

n 6=dim pt0→t1,n ·
(

1
2

)n)

>
1 − pt0→t1,dim∑

n 6=dim pt0→t1,n ·
(

1
2

)n .

The inequality holds because

−
∑

n 6=dim

pt0→t1,n ·

(
1

2

)n

<

(
1

2

)dim

− pt0→t1,dim

(
1

2

)dim

−
∑

n 6=dim

pt0→t1,n ·

(
1

2

)n

<

(
1

2

)dim

−

(
1

2

)dim∑

n

pt0→t1,n

=

(
1

2

)dim

−

(
1

2

)dim

= 0 .

Therefore, the denominator is less than
∑

n 6=dim pt0→t1,n ·
(

1
2

)n
(though positive), which proves

the inequality used in the lower bound.

The upper bound leverages both the fixed pt0→t1,dim and the fact that the per cell H2B-

GFP fluorescence of the cells in this peak is unknown. Though it could vary between cells,

a worst case and a mathematical upper bound occurs when all cells in the dim peak tend

towards infinite divisions. In this case their individual H2B-GFP fluorescence tends towards

zero:
(

1
2

)n
→ 0 as n → ∞. Therefore, the term involving pt0→t1,dim effectively drops out of

the sum, which establishes the upper bound

fcno loss =
1∑

n=0 pt0→t1,n ·
(

1
2

)n

< lim
dim divisions→∞

1

pt0→t1,dim ·
(

1
2

)dim divisions
+
∑

n 6=dim pt0→t1,n ·
(

1
2

)n

=
1∑

n 6=dim pt0→t1,n ·
(

1
2

)n . (S4)
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Combining Eqs. (S3) and (S4) provides the bounds on fcno loss

1 − pt0→t1,dim∑
n 6=dim pt0→t1,n ·

(
1
2

)n < fcno loss =
1∑

n=0 pt0→t1,n ·
(

1
2

)n <
1∑

n 6=dim pt0→t1,n ·
(

1
2

)n . (S5)

We caution that the notion of the number of divisions tending towards infinity is a valid

mathematical approach even though it is biologically inconsistent. In particular, given that

we are working under the hypothesis of no cell loss, it is biologically impossible to have a

small percentage pt0→t1,dim of cells that have divided many times, while the remaining cells

divide significantly fewer times. Biological plausibility would instead require cells with final

division states intermediate between the two proliferative extremes. In short, the fold change

calculation effectively counts cells, not number of divisions. Mathematically, the former can

remain finite though the latter tends to infinity. Biologically, and under the hypothesis of no

cell loss, this is not possible. Nevertheless, the mathematical bound is valid in establishing an

upper bound on the biologically-realized fold change. Further, assuming that the fraction

pt0→t1,dim of cells in the dim peak is small, the assumption of division tending towards

infinity does not lead to loose bounds: the ratio between the upper and lower bounds,

1/ (1 − pt0→t1,dim), is close to one, and Fig. S2 shows that the difference between the lower

(“unlabeled”) and upper (“highly proliferative”) bounds is small. Finally, a more careful

bound accounting for the finiteness of the cell cycle duration would not significantly change

the result. For example, imposing a cell cycle time of 24 hours on the PD21-35 data allows 14

divisions. The effect of using an H2B-GFP content of
(

1
2

)14
as opposed to limn→∞

(
1
2

)n
= 0

would be negligible and not worth the additional biological assumption of a particular cell

cycle time.

The above arguments do not invalidate the bound fcno loss > fc established in Eq. (3)

for any particular pt0→t1,n. In fact, Eq. (S5) allows us to establish a bound on fc (i.e., with

cell loss) that accounts for the uncertainty in the dim peak:

fc =
1 − (N l

1/N
b
0) ·
∑

n=0 pl
t0→t1,n ·

(
1
2

)n
∑

n=0 pt0→t1,n ·
(

1
2

)n

<
1∑

n=0 pt0→t1,n ·
(

1
2

)n

<
1∑

n 6=dim pt0→t1,n ·
(

1
2

)n . (S6)

When the population fold change is known, Eq. (2) may be inverted to provide a lower
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FIG. S2: Fold change calculated assuming the dim peak is comprised of unlabeled cells or of highly

proliferative cells for time points indicated. Error bars are 90% credible sets.

bound on the fractional cell loss N l
1/N

b
0 from the bulge

N l
1

N b
0

=
1 − (N b

1/N
b
0) ·
∑

n=0 pt0→t1,n ·
(

1
2

)n
∑

n=0 pl
t0→t1,n ·

(
1
2

)n . (S7)

When the fold change N b
1/N

b
0 and the bulge division probabilities pt0→t1,n are fixed, Eq. (S7)

is minimized with pl
t0→t1,0 = 1 (and hence pl

t0→t1,n 6=0 = 0). Hence, the ratio of cells lost from

the bulge with respect to the initial bulge population is bounded below by

N l
1

N b
0

≥ 1 − (N b
1/N

b
0) ·
∑

n=0

pt0→t1,n ·

(
1

2

)n

. (S8)

Multiplying by N b
0/N

b
1 instead gives the ratio with respect to the bulge population at the

end of the chase (t1)
N l

1

N b
1

≥ (N b
0/N

b
1) −

∑

n=0

pt0→t1,n ·

(
1

2

)n

. (S9)

The average number of divisions can also be calculated from the H2B-GFP data as

∑

n=0

n pt0→t1,n .

Unlike the fold-change calculation, the average number of divisions is critically dependent on

whether the dim peak contains unlabeled cells or highly replicative cells. For the purposes of

this calculation, we assume that the dim peak contains only unlabeled cells. A more sophis-

ticated calculation would incorporate a dynamical model (with its additional assumptions)
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to infer the distribution of label within the dim peak, as mentioned above. The relative

insensitivity of the fold change to this factor may make it a more biologically-meaningful

statistic.

D. Estimating number of bulge cells via microscopy

Calculating the number of bulge cells per hair follicle is most straightforward before the

cells begin their lateral migration. In that case, bulge cells form a closed cylinder around the

base of the hair follicle and the number of bulge cells may be derived from simple geometry.

We magnified a high-resolution image of a hematoxylin and eosin-stained bulge at PD25

(Fig. S5D in Ref. 11) to determine an inter-cell spacing of 5.32 µm, the number of layers

of cells (14) in a bulge, and the layer-dependent bulge radii (which range from 4.25 µm at

the base to 12 µm mid-bulge). Assuming that inter-cell spacing is isotropic (i.e., the same

in all directions) allows the number of cells per layer to be calculated by dividing the bulge

circumference at that layer by the inter-cell spacing. Summing across all layers gives a total

number of bulge cells of ∼ 150. Assuming bulge morphology and number of cells are similar

between PD21 and PD25, we can multiply the fractional loss relative to number of bulge

cells at PD21 (42%) by 150 to determine that ∼ 63 bulge cells must have been lost during

the first hair cycle.

II. ERROR ANALYSIS

We characterize the error in the experimentally-derived H2B-GFP peaks, the bulge fold

change, and the average number of divisions using 90% credible sets [12]. Given data X

and posterior distributions π(~θ|X) over parameters ~θ and π[h(~θ)|X] ≡ π(h|X) over a scalar

function h(~θ) of those parameters, a credible set A for h(~θ) satisfies

P (h(~θ) ∈ A|X) =

∫

A

π(h|X) dh =

∫

A

∫
δ[h − h(~θ′)] π(h|X) dh d~θ′

=

∫

B

π(~θ′|X) d~θ′ ,

where ~θ ∈ B → h(~θ) ∈ A and δ(x) is the Dirac delta function. The set B defines an ellipsoid

in parameter space, whereas the credible set A is a projection onto the one-dimensional space
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spanned by h(~θ). We choose this contiguous region such that h(~θ) has the same probability

of being above it as below it.

For situations in which the posterior distribution π(~θ|X) is known and its quantile func-

tion (i.e., the inverse of its cumulative distribution function) is simply calculated, the above

approach is straightforward to apply. For our purposes, one or both of these conditions is

frequently violated. Fortunately, in cases where the posterior distribution is unknown, we

have access to a likelihood function L(~θ|X), which is related to the posterior distribution

π(~θ|X) =
L(~θ|X) p(~θ)

∫
L(~θ′|X) p(~θ′) d~θ′

≡
π̃(~θ|X)

∫
π̃(~θ′|X) d~θ′

through the prior distribution p(~θ). Once the prior is specified, this allows us to use the

general strategy of evaluating integrals via importance sampling [13].

Importance sampling is a computational technique for evaluating potentially high-

dimensional integrals of the form

〈h(~θ)〉 =

∫
h(~θ) π(~θ|X) d~θ =

∫
h(~θ) π̃(~θ|X) d~θ
∫

π̃(~θ′|X) d~θ′
, (S10)

involving distributions π(~θ|X) that can not be conveniently sampled. It instead relies on a

sampling kernel µ(~θ) from which samples ~θm can be drawn efficiently. Under mild condi-

tions [13], a sum of the h(~θm) weighted by w(~θm) ≡ π̃(~θm|X)/µ(~θm),

h̄N ≡

∑N

m=1 h(~θm) w(~θm)
∑N

q=1 w(~θq)
,

converges to Eq. (S10). Since convergence to the true value 〈h(~θ)〉 necessarily requires

sampling the high-probability credible set A, the latter can be calculated as a side effect of

the computation [13]. For example, the lower bound for a 1 − α credible set is any hlo such

that
∑

m:h(~θm)≤hlo w(~θm)/
∑N

q=1 w(~θq) ≥ α/2 and
∑

m:h(~θm)≥hlo w(~θm)/
∑N

q=1 w(~θq) ≥ 1−α/2.

We consider convergence obtained once the number of samples N is at least 100, 000 and

exceeds the number required to maintain relative error below 1% at a 95% asymptotic

confidence level [14]

N ≥

(
1.96

0.005

)2
(

σh̄N

〈h(~θ)〉

)2

.
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We approximate 〈h(~θ)〉 as h̄N and the variance σ2
h̄N

of the samples as [13, 15]

σ̂2
h̄N

=

∑N

m=1

(
h(~θm) − h̄N

)2

w(~θm)2

(∑N

q=1 w(~θq)
)2 .

We calculate credible sets for the division proportions ~pt0→t1 and for bulge fold changes

(fc) and average number of divisions based on the ~pt0→t1 using the Dirichlet likelihood

function L(~pt0→t1 |Xt0→t1) = Dir(~pt0→t1 |~α
∗
t0→t1

) derived in Section IA. We take a uniform

prior distribution p(~pt0→t1) so that the posterior distribution is a Dirichlet distribution:

L(~pt0→t1 |Xt0→t1) p(~pt0→t1) ∝ Dir(~pt0→t1 |~α
∗
t0→t1

) = π(~pt0→t1 |Xt0→t1) ≡ π(~θ|X). This is used

as the importance sampling kernel µ(~pt0→t1) = Dir(~pt0→t1 |~α
∗
t0→t1

) in evaluating integrals

such as
∫

B
pt0→t1,n L(~pt0→t1 |Xt0→t1) p(~pt0→t1) d~pt0→t1∫

L(~pt0→t1 |Xt0→t1) p(~pt0→t1) d~pt0→t1

=

∫

B

pt0→t1,n Dir(~pt0→t1|~α
∗
t0→t1

) d~pt0→t1

and
∫

B
fc(~pt0→t1) L(~pt0→t1 |Xt0→t1) p(~pt0→t1) d~pt0→t1∫

L(~pt0→t1 |Xt0→t1) p(~pt0→t1) d~pt0→t1

=

∫

B

fc(~pt0→t1) Dir(~pt0→t1 |~α
∗
t0→t1

) d~pt0→t1 .
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Equations 
 
The following equations appear in order as they appear for the first time in the text. 
































































