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A.1 Proof of Theorem 1

Let P denote the law of (Y,A,X) . Suppose first that q2 (X,A2) and q1 (X,A1)

are known functions. With this additional restriction, model A is the semipara-
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metric regression model

Y − m (X,A; β∗) = ǫ, when g (x) = x and

Y exp {−m (X,A; β∗)} = 1 + ǫ, when g (x) = exp (x)

where m (X,A; β) = q3 (A,X; β) + q2 (X,A2) + q1 (X,A1) + h(X) with h (X)

an unknown function and m (X,A; β) − h(X) a known function, ǫ has an un-

known distribution satisfying E (ǫ|A,X) = 0 and the joint law of (A,X) is un-

known. The nuisance tangent space for this model is ΛSR
nuis = ΛSR

1,nuis + ΛSR
2,nuis +

ΛSR
3,nuis where ΛSR

1,nuis = {a (A,X) : E [a (A,X)] = 0} ∩L2 (P ) is the closed linear

span of all scores for parametric submodels for the joint law of (A,X) , ΛSR
2,nuis =

{a (ǫ, A,X) : E [a (ǫ, A,X) |A,X] = 0, E [ǫa (ǫ, A,X) |A,X] = 0} ∩L2 (P ) is the closed

linear span of all scores for parametric submodels for the joint conditional law of ǫ,

given (A,X), that satisfy E (ǫ|A,X) = 0, and ΛSR
3,nuis =

{
ǫVar (ǫ|A,X)−1 b (X)

}
∩

L2 (P ) is the closed linear span of all scores for parametric submodels for the un-

known function h (X) . Note that ΛSR
1,nuis, Λ

SR
2,nuis , ΛSR

3,nuis are mutually orthogonal.

Denote σ2 (A,X) ≡ Var (ǫ|A,X) . The orthocomplement ΛSR,⊥
nuis to ΛSR

nuis in the

Hilbert space L0
2 (P ) (with covariance inner product) of functions in L2 (P ) with

mean zero is

ΛSR,⊥
nuis = {ǫ [d (A,X) − E {d (A,X) |X}]} ∩ L0

2 (P )

=
{
ǫσ−2 (A,X) J (d)

}
∩ L0

2 (P ) where

J (d) = d (A,X) − E
[
σ−2 (A,X) |X

]−1
E

[
σ−2 (A,X) d (A,X) |X

]

since (i) ǫ [d (A,X) − E {d (A,X) |X}] is orthogonal (uncorrelated) to ΛSR
1,nuis, Λ

SR
2,nuis

and ΛSR
3,nuis in L0

2(P ); and (ii) the projection of ǫσ−2 (A,X) d (A,X) on ΛSR,⊥
nuis is

ǫσ−2 (A,X)
[
d(A,X) − E {σ−2 (A,X) |X}−1

E {σ−2 (A,X) d (A,X) |X}
]

and thus

ΛSR,⊥
nuis + ΛSR

nuis = L0
2 (P ) . See for example Chamberlain (1987).
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Consider now again the original model A with q2 (X,A2) and q1 (X,A1)

unrestricted. Consider one-dimensional submodels q1 (X,A1; t) = q1 (X,A1) +

tk1 (X,A1) , q2 (X,A2; t) = q2 (X,A2)+ tk2 (X,A2) . Then the score St(ǫ, A,X) for

t at the truth t = 0 satisfies E{St(ǫ, A,X)|A,X} = 0 and E{ǫSt(ǫ, A,X)|A,X} =

k1 (X,A1) + k2 (X,A2) for both g (x) = x and g (x) = exp (x). Its projection on

ΛSR,⊥
nuis is σ−2 (A,X) J (k1 + k2) ǫ, which can be seen because

E [{St − σ−2 (A,X) J (k1 + k2) ǫ}σ−2 (A,X) J (d) ǫ] = 0. Thus Λnuis for model A
is

ΛSR
nuis +

{
σ−2 (A,X) J (k1 + k2) ǫ; k1 = k1 (X,A1) , k2 = k2 (X,A2) arbitrary

}

It follows that the orthocomplement of the nuisance tangent space in model A
equals the set of functions [d (A,X) − E {d (A,X) |X}] ǫ, where d (A,X) is such

that for all k1 (X,A1) , k2 (X,A2):

0 = E
[
[d (A,X) − E {d (A,X) |X}] ǫσ−2 (A,X) J (k1 + k2) ǫ

]

= E [[d (A,X) − E {d (A,X) |X}] J (k1 + k2)]

= E [d (A,X) {J (k1 + k2) − E [J (k1 + k2) |X]}]

= E [d (A,X) {k1 (X,A1) − E [k1 (X,A1) |X] + k2 (X,A2) − E [k2 (X,A2) |X]}]

Let first k2(A,X) = 0. Then d (A,X) must be such that for all k1 (X,A1)

0 = E [d (A,X) {k1 (X,A1) − E [k1 (X,A1) |X]}]

⇔ 0 = E [{d (A,X) − E [d (A,X) |X]} |A1, X]

Reversing the roles of k1 and k2, we conclude that the orthocomplement of the

nuisance tangent space in model A is

Λ⊥
nuis = {ǫd (A,X) ; E{d(A,X)|A1, X} = E{d(A,X)|A2, X} = 0}
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A.2 Lemmas 1, 2 and 3

Lemma 1. When g(x) = exp(x) and A1 and A2 are dichotomous, the set of

unbiased estimating functions S (β) = s (Y,A,X; β) for β∗ under model A ∩Ma

with f (A|X) known that have nonzero expected derivative w.r.t. β and finite

variance (and thus power against local alternatives) is empty.

Proof. By Theorem 1, equation (14) and the fact that β is a functional of the

conditional law f(Y |A,X), the orthocomplement to the nuisance tangent space

under model A ∩Ma at (β∗, q2, q1, h) is

{U (d, v; β∗, q2, q1, h) = d(X)∆(A,X) {Y exp [−q3(β
∗, X)A1A2 − q2(X)A2

−q1(X)A1 − h(X)] − 1} + v(A,X); E {v(A,X)|X} = 0, d (X) ∈ Rp}

Suppose an unbiased estimating function S (β) existed under model A∩Ma with

nonzero expected derivative w.r.t. β. Then S (β∗) is an element of the ortho-

complement to the nuisance tangent space for β∗ at (β∗, q2, q1, h) and must equal

U (d (β∗) , v (β∗) ; β∗, q2, q1, h) w.p.1 for some functions d (X; β∗) and v (A,X; β∗)

with E {v (A,X; β∗) |X} = 0. But, by the unbiasedness of S (β) , Eβ∗,q∗
2
,q∗

1
,h∗ {S (β∗)} =

Eβ∗,q∗
2
,q∗

1
,h∗ {U (d (β∗) , v (β∗) ; β∗, q2, q1, h)} = 0 for all (q∗2, q

∗
1, h

∗) . Hence, taking

conditional expectations, we conclude that d (X; β∗) must satisfy

E [d(X; β∗)∆(Ai, Xi) exp [{q∗2(X) − q2 (X)}A2

+ {q∗1(X) − q1 (X)}A1 + h∗(X) − h(X)]] = 0 (1)

for all q∗2(X), q∗1(X), h∗(X), q1(X), q2(X), h(X). We shall now prove that d (X; β∗) =

0 w.p.1. Equation (1) implies that under the actual data generating process, for
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all functions m2(X),m1(X),m0(X),

0 = E [d(X; β∗)∆(A,X) exp {m2(X)A2 + m1(X)A1 + m0(X)}]

= E [d(X; β∗) {exp {m2(X) + m1(X) + m0(X)} − exp {m1(X) + m0(X)}

− exp {m2(X) + m0(X)} + exp {m0(X)}}]

We conclude that d(X; β∗) = 0 w.p.1. Thus S (β) = v(A,X; β). Hence, for all β,

the derivative ∂E {S (β)} /∂β = 0, proving the lemma.

Lemma 1 implies that, regardless of the the distribution of X, no first order

unbiased estimating function Si (β) = s (Yi, Ai, Xi; β) exists. However, in Lemma

2a we prove that, when g(x) = exp(x) and A1 and A2 are dichotomous, there exists

a second order unbiased estimating function S2,ij (β) depending on two subjects’

data with nonzero expected derivative whenever P (Xi = Xj) > 0 and f (A|X)

is known. Lemmas 2b and 2c extend this result to model A in which f (A|X)

is unknown. However, our interest in this paper is in covariate vectors X with

continuously distributed components which implies P (Xi = Xj) = 0. In Lemma 3

we argue that no higher-order unbiased estimating function exists for β∗ in model

A∩Ma with f (A|X) known (much less in model A) when g(x) = exp(x) and X

has continuous components.

Lemma 2a. When g(x) = exp(x) and A1 and A2 are dichotomous, E {S2,ij (β∗)} =

0 and E {∂S2,ij (β∗) /∂β} 6= 0 under model A∩Ma with f (A|X) known, provided

P (Xi = Xj) > 0 and P (A = (a, b) |X) > 0 w.p.1 for all a, b in {0, 1} , where

S2,ij (β) =
YiYjI (Xi = Xj)

f (Ai|Xi) f (Aj|Xj)
(1 − A1i) A1j {exp (−q3(Xj; β)) A2j − A2i}

with q3(Xj; β) ≡ q3((1, 1), Xj; β).
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Proof. The result follows immediately from the identities

(1 − A1i) A1j {exp (−q3(Xj; β)) A2j − A2i}

= exp (−q3(Xj; β)) (1 − A1i) (1 − A2i) A1jA2j − (1 − A1i) A2iA1j (1 − A2j)

and

E (YiYj|A1i = A2i = 0, A1j = A2j = 1, Xj, Xi = Xj) exp (−q3(Xj; β
∗))

= E [YiYj|A1i = A2j = 0, A1j = A2i = 1, Xj, Xi = Xj] .

The proofs of the following Lemmas are similar.

Lemma 2b. Suppose A1 and A2 are dichotomous and conditionally indepen-

dent given X under the true density f (A|X) , which we assume unknown. Let

f ∗ (A|X) = f ∗ (A1|X) f ∗ (A2|X) be an arbitrary (user supplied) positive den-

sity with A1 and A2 conditionally independent given X. Define S∗
2,ij (β) to be

S2,ij (β) as defined above but with f (A|X) everywhere replaced by the user-

supplied density f ∗ (A|X) . Then, provided P (Xi = Xj) > 0, E
{
S∗

2,ij (β∗)
}

= 0

and E
{
∂S∗

2,ij (β∗) /∂β
}
6= 0 under model A with g(x) = exp(x).

Lemma 2c. Define

S†
4,ijlm (β) = I (Xi = Xj = Xl = Xm)×

{exp (−q3(Xj; β)) (1 − A1i) (1 − A2i) A1jA2j − (1 − A1l) A2lA1m (1 − A2m)} ,

a function of 4 subjects’ data. Then, provided P (Xi = Xj = Xl = Xm) > 0,

E
{

S†
4,ijlm (β∗)

}
= 0 and E

{
∂S†

4,ijlm (β∗) /∂β
}
6= 0 under model A with g(x) =

exp(x) and A1 and A2 dichotomous.

Lemma 3. When g(x) = exp(x), A1 and A2 are dichotomous, and X has

a continuous component whose marginal density is absolutely continuous with

6



respect to Lesbegue measure, no unbiased estimating function Sm,i1,...,im (β) of m

subjects’ data with finite variance and nonzero expected derivative w.r.t. β exists

in model A ∩Ma with f (A|X) known.

Outline of Proof. The proof depends on methods developed in Robins et al.

(2008). Let β∗ be the true value of β. By Theorem 6.5 in Robins et al. (2008), we

know if Sm,i1,...,im (β) exists then the mth order U-statistic Sm (β∗)with (possibly

nonsymmetric) kernel Sm,i1,...,im (β∗) must be orthogonal to the kth order testing

nuisance tangent space for all k ≥ m in the model A∩Ma with f (A|X) known.

[The kth order testing nuisance tangent space is defined in the statement of their

Theorem 6.5]. By Lemma 1, we know that if Sm,i1,...,im (β) exists, then m > 1.

Thus it suffices to show that, for continuous X, for each m > 1, there is no

function Sm,i1,...,im (β) with nonzero expected β-derivative at β∗ that is contained

in the orthocomplement to the kth order testing tangent space for all k ≥ m. The

proof proceeds by showing that the existence of such a function would imply that

the set L2 of square integrable functions in R2 contains a Dirac kernel K (x, x′)

[i.e. a function K (x, x′) satisfying
∫

K (x, x′) g (x′) dx′ = g (x) for all g (·) in L2

and all x contained in a set with positive Lesbegue measure]. Since it is known a

Dirac kernel does not exist in L2, we arrive at a contradiction.

We only give the proof for the case m = 2. The proof for m > 2 is similar but

the details are tedious.

It suffices to consider the smaller model in which the marginal distribu-

tion of (A,X) is known. Without loss of generality assume X is one dimen-

sional with a density w.r.t. to Lesbegue measure. Define e = Y − µ, µ =

exp
{

β∗A1A2 +
∑2

j=0 Ajqj (X)
}

, where we have defined A0 to be the constant

1. Let f (Y,A,X) denote the density of an observation O = (Y,A,X) generated

under the unknown θ = (β∗, q2 (·) , q1 (·) , q0(·), f (e|A,X)). To obtain the first and
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second order nuisance tangent spaces at θ, it is sufficient to consider parametric

submodels

f (Yi, Ai, Xi; (τs, τt) , (ω1, ω2)) = f (ei (τs, τt) |Ai, Xi; (ω1, ω2)) f (Ai, Xi)

indexed by parameters ((τs, τt) , ω1, ω2) with (s, t) ∈ {0, 1, 2}2 , ei (τs, τt) = Yi −
µi (τs, τt) , µ (τs, τt) = exp

{
β∗A1A2 +

∑2
j=0 Ajqj (X) + τsAsgs (X) + τtAtgt (X)

}

with gs (X) , gt (X) arbitrary, f (e|Ai, Xi; (0, 0)) = f (e|Ai, Xi) ,
∫

udF (u|Ai, Xi; (ω1, ω2))

= 0, but the model f (ei|Ai, Xi; ω1, ω2) otherwise unrestricted.

It is sufficient to consider 2 subjects. Then in the model f (Y,A,X; (τs, τt) , (ω1, ω2))

the first order score for τs at τ = (τs, τt) = 0, ω = (ω1, ω2) = 0 for the two subjects

is

2∑

i=1

Ss,i (gs) =
2∑

i=1

fτs
(Yi, Ai, Xi; (0, 0))

f (Yi, Ai, Xi)
=

2∑

i=1

gs (Xi) Asiς (ei, Ai, Xi) µi,

where ς (e, A,X) = fe (e|A,X) /f (e|A,X) and where, for an arbitrary parameter

τ , fτ ≡ ∂f/∂τ . The first order tangent space for qs (·) is Λnu
1,s =

{∑2
i=1 Ss,i (g) ; g unrestricted

}
.

Throughout we silently understand that each set of random variables has been in-

tersected with L2 (F ) . Similarly, the first order tangent space for f (e|A,X) is

Λnu
1,e =

{
2∑

i=1

Ri; R = r (e, A,X) restricted by E (eR|A,X) = E (R|A,X) = 0

}
.

The first order nuisance tangent space for β∗ is Λnu
1 = ∪3

s=1Λ
nu
1,s∪Λnu

1,e. The 1st order

efficient score for β∗ is S1,eff = Π [Sβ∗|Λnu
1 ] = Π

[∑2
i=1 ς (ei, Ai, Xi) µiA1iA2i|Λnu

1

]
=

∑2
i=1 E [∆ (A,X) µ−2|Xi] ∆ (Ai, Xi) ei/µi where

∆ (A,X) = {f (A|X)}−1 [I {A1 = A2} − I {A1 6= A2}] .

In the model f (Y,A,X; (τs, τt) , (ω1, ω2)) the second order score for (τs, τt) at
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τ = ω = 0 for the 2 subjects is, by definition,

{
∂2

∂τs∂τt

Π2
i=1f (Yi, Ai, Xi; (0, 0) , (0, 0))

}
/Π2

i=1f (Yi, Ai, Xi) =
2∑

i=1

Sst,i (gs, gt)

+
∑

i6=j

Ss,i (gs) St,j (gt) ,

where

Sst,i (gs, gt) = fτs,τs
(Yi, Ai, Xi; (0, 0) , (0, 0)) /f (Yi, Ai, Xi)

=
{
ς (ei, Ai, Xi) µi + ς∗ (ei, Ai, Xi) µ2

i

}
gs (Xi) Asigt (Xi) Ati,

ς∗ (e, A,X) = fee (e|A,X) /f (e|A,X) ,

and
∑

i6=j aibj = a1b2 + a2b1.

The second order tangent space for (q2 (·) , q1 (·) , q0(·)) is thus, by definition,

Λnu
2,q = ∪(s,t)∈{0,1,2}2

{
2∑

i=1

Sst,i (g1, g2) +
∑

i6=j

Ss,i (g1) St,j (g2) ; g1, g2 unrestricted

}
.

Similiarly, there is a second order tangent space Λnu
2,e for f (e|A,X) based on

all possible second order score for (ω1, ω2) at τ = ω = 0 and a second order mixed

score tangent space Λnu
2,eqbased on all possible scores { ∂2

∂τs∂wt
Π2

i=1f (Yi, Ai, Xi; (0, 0) , (0, 0))}
/Π2

i=1f (Yi, Ai, Xi) . The second order testing nuisance tangent space Λnu
2 is, by def-

inition, Λnu
1 ∪Λnu

2,q ∪Λnu
2,e ∪Λnu

2,eq which can be written Λnu
2 = Π

[
Λnu

2,q|Λnu,⊥
1

]
∪Λnu

1 ∪
Λnu

2,e ∪ Λnu
2,eq, where

Π
[
Λnu

2,q|Λnu,⊥
1

]
=

{
2∑

i=1

S1,eff,ig1 (Xi) g2 (Xi)

+
∑

i6=j

g1 (Xi) A1ieiµiejµjA2jg2 (Xj) ; g1, g2 unrestricted

}
∪ (2)

[
∪{s,t}∈{0,1,2}2\{(1,2),(2,1)}

{
∑

i6=j

g1 (Xi) AsieiµiejµjAtjg2 (Xj) ; g1, g2 unrestricted

}]
,
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since Π
[
Sst,i (gs, gt) |Λnu,⊥

1

]
= 0 if {s, t} ∈ {0, 1, 2}2 \ {(1, 2) , (2, 1)} , Π

[
Sst,i (gs, gt) |Λnu,⊥

1

]
=

S1,eff,igs (Xi) gt (Xi) if {s, t} ∈ {(1, 2) , (2, 1)} . In these calculations we used the

fact that E[eς∗ (e, A,X) |A,X] =
∫

efee (e|A,X) de = efe (e|A,X) |∞−∞−
∫

fe (e|A,X) de =

0 − 0 = 0.

The orthocomplement to the 2th order testing tangent space for β∗ is defined

to be Λnu,⊥
2 .

Now suppose S2,ij (β) satisfying the conditions of the Lemma existed. We

will derive a contradiction. The U-statistic S2 (β∗) with kernel S2,ij (β∗) has a

unique Hoeffding representation with S2 (β∗) =
∑

i Q1i +
∑

i6=j Q2ij satisfying

E [Q2ij|Oi] = E [Q2ij|Oj] = 0. By S2,ij (β) having nonzero expected β-derivative

at β∗, we can use the extended information equality of Theorem 2.2 of Robins et

al. (2008) to conclude that E [S2,ij (β∗) S1,eff,i] = E [Q1i (β
∗) S1,eff,i] 6= 0.

Now by the set of equation (2) contained in Λnu
2 ,we conclude that for all

functions g1, g2

0 = E [Q1iS1,eff,ig1 (Xi) g2 (Xi)] + E [Q2ijg1 (Xi) A1ieiµiejµjA2jg2 (Xj)]

= E [b1 (Xi) g1 (Xi) g2 (Xi)] + E [b2 (Xi, Xj) g1 (Xi) g2 (Xj)]

= E [{b1 (Xi) g2 (Xi) − E [b2 (Xi, Xj) g2 (Xj) |Xi]} g1 (Xi)]

where b1 (Xi) = E [Q1iS1,eff,i|Xi] and b2 (Xi, Xj) = E [Q2ijA1ieiµiejµjA2j|Xi, Xj] .

Since g1 (Xi) is unrestricted, we conclude that

b1 (Xi) g2 (Xi) − E [b2 (Xi, Xj) g2 (Xj) |Xi] = 0

almost surely. Since we know that E [Q1i (β
∗) S1,eff,i] 6= 0, we have that the set

B (δ) = {x; |b1 (x)| > δ} has positive Lesbegue measure for some δ > 0 and on

this set g2 (x) =
∫

K (x,X) g2 (X) dX for all g2 (X) in L2, where K (x,X) =

I (x ∈ B (δ)) f (x) {b1 (x)}−1 b2 (x,X). Further K (x,X)is an element of L2 w.r.t.
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Lesbegue measure on R2. We conclude that K (x,X) is a Dirac kernel for x in a

set of positive Lesbegue measure that is contained in L2, a contradiction.

A.3 Proof of Theorems 2 and 3

We first prove Theorem 2 by showing that

E{U(β∗, γ̃(β∗), α̃)} = 0 (3)

under model Bid
cip where again we use ˜ to denote probability limits. First, γ̃(β∗) =

γ∗ under model Acip ∩My because Gi(β
∗, γ∗, α) has mean zero for each α under

this model. Equality (3) now follows because E(ǫ(β∗, γ∗)|A,X) = 0. Second,

α̃ = α∗ under model Acip ∩Ma. Equality (3) now follows because

E{U(β∗, γ, α∗)} = E [[d (A,X) − E {d (A,X) |A1, X; α∗
2} − E {d (A,X) |A2, X; α∗

1}

+E {d (A,X) |X; α∗}] {∆q2 (X,A2; γ) + ∆q1 (X,A1; γ) + ∆h(X; γ)}]

for functions ∆qj (X,Aj; γ) , j = 1, 2 and ∆h(X; γ), which is zero for each γ when

A1 ∐ A2|X. Third, α̃1 = α∗
1 under model Acip ∩ Mya1 and γ̃1(β

∗) = γ∗
1 by the

fact that Gi1(β
∗, (γ0, γ

∗
1 , γ2), α

∗
1) has mean zero for each (γ0, γ2) under this model.

Equality (3) now follows because

E{U(β∗, (γ0, γ
∗
1 , γ2), (α

∗
1, α2))} = E [[d (A,X) − E {d (A,X) |A1, X; α2}

−E {d (A,X) |A2, X; α∗
1} + E {d (A,X) |X; (α∗

1, α2)}]

×{∆q2 (X,A2; γ2) + ∆h(X; γ0)}]

for functions ∆q2 (X,A2; γ) and ∆h(X; γ), which is zero for each (γ0, γ2, α2) by

the fact that

E {d (A,X) |A1, X; α2} − E {d (A,X) |X; (α∗
1, α2)}

= E {d (A,X) |A1, X; α2} − E [E {d (A,X) |A1, X; α2} |X; α∗
1}
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and because, using A1 ∐ A2|X,

E {∆q2 (X,A2; γ2) |A1, X} = E {∆q2 (X,A2; γ2) |X}

Using similar arguments, one can show that equality (3) holds under model Acip∩
Mya2 and under model Bexp

cip .

Assuming that the regularity conditions of Theorem 1A in Robins, Mark

and Newey (1992) hold for Ui(β, γ, α), Gi(β, γ, α) and Ai(α), it now follows by

standard Taylor expansion arguments that

0 = n−1/2

n∑

i=1

Ui (β
∗, γ̃(β∗), α̃) +

[
E

{
∂

∂β
Ui (β, γ̃(β∗), α̃)

}

|β=β∗

− E

{
∂

∂γ
Ui(β

∗, γ, α̃)

}

|γ=γ̃(β∗)

×E−1

{
∂

∂γ
Gi(β

∗, γ, α̃)

}

|γ=γ̃(β∗)

E

{
∂

∂β
Gi (β, γ̃(β∗), α̃)

}

|β=β∗

]
√

n(β̂ − β∗)

−E

{
∂

∂γ
Ui(β

∗, γ, α̃)

}

|γ=γ̃(β∗)

E−1

{
∂

∂γ
Gi(β

∗, γ, α̃)

}

|γ=γ̃(β∗)

Gi(β
∗, γ̃(β∗), α̃)

−
[
E

{
∂

∂α
Ui(β

∗, γ̃(β∗), α)

}

|α=α̃

− E

{
∂

∂γ
Ui(β

∗, γ, α̃)

}

|γ=γ̃(β∗)

E−1

{
∂

∂γ
Gi(β

∗, γ, α̃)

}

|γ=γ̃(β∗)

×E

{
∂

∂α
Gi(β

∗, γ̃(β∗), α)

}

|α=α̃

]
E−1

{
∂

∂α
Ai(α)

}

|α=α̃

Ai(α̃) + op (1)

where op(1) denotes a random variable converging to 0 in probability. When

E

{
∂

∂β
Ui (β, γ̃(β∗), α̃)

}

|β=β∗

− E

{
∂

∂γ
Ui(β

∗, γ, α̃)

}

|γ=γ̃(β∗)

×E−1

{
∂

∂γ
Gi(β

∗, γ, α̃)

}

|γ=γ̃(β∗)

E

{
∂

∂β
Gi (β, γ̃(β∗), α̃)

}

|β=β∗

is nonsingular, it now follows that

√
n(β̂−β∗) =

1

n

n∑

i=1

E−1

{
∂

∂β
U∗

i (β, γ̃(β∗), α̃)

}

|β=β∗

U∗
i (β∗, γ̃(β∗), α̃)+op(1) (4)

The asymptotic distribution of
√

n(β̂−β∗) under models Bid and Bexp follows from

the previous equation by Slutsky’s Theorem and the Central Limit Theorem. This

proves part (i).

12



At the intersection model Acip ∩ My ∩ Ma, E
{

∂
∂γ

Ui(β
∗, γ, α̃)

}
|γ=γ̃(β∗)

= 0

and E
{

∂
∂α

Ui(β
∗, γ̃(β∗), α)

}
|α=α̃

= 0 and hence U∗
i (β∗, γ̃(β∗), α̃) = Ui(β

∗, γ̃(β∗), α̃).

It follows that the estimators β̂(d,G(1), A(1)) and β̂(d,G(2), A(2)) have the same

influence functions at the intersection model Acip ∩My ∩Ma. This proves part

(ii).

The proof of Theorem 3 is analogous and omitted here for brevity.

Remark: Relationship to the ‘case-only’ estimators of Tchetgen

Tchetgen and Robins (2009). In the special case of binary Y with support

{0, 1} and g exponential , Tchetgen Tchetgen and Robins (2009) constructed a

class of CAN estimators
{

β̂TR

}
of the interaction parameter β∗ under the union

model BTR
cip = Acip ∩ (M1 ∪M2) that assumes A1 and A2 are conditionally inde-

pendent given X and either a parametric model M1 = {f1 (A1|X,Y = 1,A2 = 0; ω1) ;

ω1 ∈ Rdim(ω1)} for the conditional density of A1 given (Y = 1, A2 = 0) or a model

M2 = {f2 (A2|X, Y = 1,A1 = 0; ω2) ; ω2 ∈ Rdim(ω2)} for the conditional density of

A2 given (Y = 1, A2 = 0) is true, with the fj known functions and the parameters

ω2 and ω1 variation independent. The estimators β̂TR do not depend on the data

from the subjects with Y = 0 (the non-cases); i.e., they are functions of the case

only data {(Ai, Xi) ; Yi = 1, i ∈ {1, ..., n}} . The model Acip ∩ (Mya1
∪Mya2

) is

strictly contained in both model Bexp
cip = Acip ∩ (Mya1

∪Mya2
∪My) and model

BTR
cip [since, owing to the identity

f (Aj|Y = 1, Aj′ = 0, X) =
exp {qj (Aj, X)} f (Aj|X)∫

exp {qj (Aj, X)} f (Aj|X) dµ (Aj)

under model Acip, parametric models for f (Aj|X) and qj (Aj, X) determine a

parametric model for f (Aj|Y = 1, Aj′ = 0, X) , j 6= j′. ]. Thus both β̂cip = β̂cip (d) solving

equation (8) and any β̂TR are CAN under model Acip ∩ (Mya1
∪Mya2

) ; however

there will exist distributions in Bexp
cip \BTR

cip under which β̂cip is CAN but β̂TR is

inconsistent and distributions in BTR
cip \Bexp

cip under which β̂TR is CAN but β̂cip is

13



inconsistent. Thus neither β̂cip nor β̂TR strictly dominates the other in terms of

robustness even though β̂cip is triply robust while β̂TR is only doubly robust.

We next compare β̂cip and β̂TR in terms of cost and statistical efficiency.

Use of β̂TR rather than β̂cip can lead to considerable savings in the cost of data

collection since data on non-cases need not be obtained. However, a potential

disadvantage of β̂TR compared to β̂cip when data on both cases and noncases have

been obtained is that, as shown next, if all specified parametric models happen

to be correct so that the data are actually generated under the joint intersection

submodel Acip ∩My ∩Ma ∩M1 ∩M2, then (i) the asymptotic variance of the

optimal estimator β̂TR in the class exceeds that of β̂cip (dopt (α̂, η̂)) of Section 4.2

and (ii) the semiparametric variance bound for models Acip,Bexp
cip , and BTR

cip are

equal to one another and to the asymptotic variance of β̂cip (dopt (α̂, η̂)) . However,

we show below that under the joint intersection submodel, the relative efficiency

of the optimal estimator in the class
{

β̂TR

}
compared to β̂cip (dopt (α̂, η̂)) is close

to 100% whenever E [Y |A,X] is small with high probability (i.e. under the rare

disease assumption).

Results (i) and (ii) follows from the fact that, like the class
{

β̂cip (d)
}

, the

estimating equation solved by the class
{

β̂TR

}
is an (estimated) subset of the

orthocomplement to the nuisance tangent space for model Acip. But, in contrast

to the class
{

β̂cip (d)
}

, the subset of the orthocomplement solved by
{

β̂TR

}
does

not contain the efficient score Seff . Specifically, with D the set defined by equation

(5), the orthocomplement
{

d (A,X) ǫ + d̃ (A,X) ; d ∈ D, d̃ ∈ D
}

to the nuisance

tangent space for β∗ under model Acip is the direct sum of the orthocomplement

{d (A,X) ǫ; d ∈ D} under model A and the set
{

d̃ (A,X) ; d̃ ∈ D
}

. As a conse-

quence, when g is exponential, the elements d (A,X) {ǫ + 1} ≡ d (A,X) Y/E [Y |A,X]

of the set CO = {d (A,X) {ǫ + 1} ; d ∈ D} are contained in the orthocomplement

14



under Acip, depend on the case-only (CO) data, and do not contain the efficient

score dopt (A,X) ǫ. The approach of Tchetgen Tchetgen and Robins is based on the

identity d (A,X) Y/E [Y |A,X] = Y d (A,X) f (A2|X) f (A1|X) /{f (A|X,Y = 1) E(Y =

1|X)} so with d (A,X; d∗)

≡ d∗ (A,X)−∑2
j=1

∫
d∗ (A,X) f (Aj|X) dµ (Aj) +

∫
d∗ (A,X) f (A2|X) f (A1|X) dµ (A2, A1)

CO =
{

Z (d∗) = Y d(A,X;d∗)f(A1|X)f(A2|X)
f(A|X,Y=1)

}
as d∗ (A,X) varies freely.

Under model Acip∩M1∩M2, the parameters (β, ω1, ω2) completely specify the

density of A given (X,Y = 1) , which we will denote by f (A|X,Y = 1;β, ω1, ω2) .

Similarly under model Acip∩Mj, (β, ωj) completely specify the density of Aj given

(X,Y = 1,Aj′) , j 6= j′, which we denote by f (Aj|Y = 1, Aj′ , X;β, ωj) . The estima-

tor β̂TR = β̂TR

(
d∗, f †

)
is defined to be the solution to

∑
i Zi

(
d∗; β, ω̂1 (β) , ω̂2 (β) , f †

)
=

0 where ω̂j (β) is the maximizer of
∏
i

f (Aji|Yi = 1, Aj′i, Xi;β, ωj) and Z
(
d∗; β, ω1, ω2, f

†
)

is defined like Z (d∗) except with f (A|X,Y = 1;β, ω1, ω2) replacing the true den-

sity f (A|X,Y = 1) and d
(
A,X; d∗, f †

)
replacing d (A,X; d∗) with d

(
A,X; d∗, f †

)

defined as d (A,X; d∗) except with arbitrary user-supplied densities f †
j (Aj|X) , j =

1, 2 replacing the true densities f (Aj|X). The estimator β̂TR

(
d∗, f †

)
is CAN un-

der model BTR
cip because Z

(
d∗; β∗, ω∗

1, ω
∗
2, f

†
)

has mean zero under model Acip∩Mj

when the true value of the parameters are
(
β∗, ω∗

j

)
even when model Mj′ is mis-

specified, ω∗
j′ is arbitrary, and f † did not generate the data.

Under the the joint intersection submodel, the relative efficiency of β̂TR

(
d∗, f †

)

and β̂cip (dopt) when β∗ is one dimensional, f † is the true density, and d
(
A,X; d∗, f †

)
=

d (A,X; d∗) equals E(Y = 1|X)dopt (A,X), is E[{dopt (A,X)}2 {
{E [Y |A,X]}−1 − 1

}
]

/E[{E [Y |A,X]}−1 {dopt (A,X)}2] which is nearly one whenever E [Y |A,X] is

small with high probability. The expression follows from the fact that the ratio of

asymptotic variances is Var{dopt (A,X) ǫ} /Var{dopt (A,X) Y /E [Y |A,X]}, that

Var {dopt (A,X) ǫ/E [Y |A,X]} = E
[
{dopt (A,X)}2 {

{E [Y |A,X|]}−1 − 1
}]

, and
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that Var {dopt (A,X) Y/E [Y |A,X]} = Var {dopt (A,X) ǫ/E [Y |A,X]}+E
[
{dopt (A,X)}2]

= E
[
{E [Y |A,X|]}−1 {dopt (A,X)}2] .

A.4 Proof of Theorem 4

Part (i). The efficient score Seff for β∗ under model A is the projection

Seff = Π
[
Sβ|Λ⊥

nuis

]
of the score Sβ for β∗ onto Λ⊥

nuis (as defined in the proof

of Theorem 1) in the Hilbert space with covariance inner product. Now Seff =

Π
[
Sβ|Λ⊥

nuis

]
= Π

{
Π

[
Sβ|ΛSR,⊥

nuis

]
|Λ⊥

nuis

}
since Λ⊥

nuis ⊂ ΛSR,⊥
nuis , where

Π
[
Sβ|ΛSR,⊥

nuis

]
=


∂q3(A,X; β)

∂β
−

E
{

σ−2 (A,X) ∂q3(A,X;β)
∂β

|X
}

E {σ−2 (A,X) |X}


σ−2(A,X)ǫ

evaluated at β∗, since E(Sβ|A,X) = 0, E(Sβǫ|A,X) = ∂q3(A,X; β)/∂β for both

g (x) = x and g (x) = exp (x) . Let us further write Λ⊥
nuis = Λ⊥

1 ∩ Λ⊥
2 , where

Λ⊥
j = {d(A,X)ǫ : E{d(A,X)|Aj, X} = 0} for j = 1, 2. Then Von Neumann’s

theorem (Bickel et al., 1993) shows that the projection onto Λ⊥
nuis can be ob-

tained by repeatedly projecting onto Λ⊥
1 and Λ⊥

2 until convergence. The projection

Π
[
d∗(A,X)ǫ|Λ⊥

j

]
of any d∗(A,X)ǫ on Λ⊥

j is

Π
[
d∗(A,X)ǫ|Λ⊥

j

]
=

{
d∗(A,X) − σ−2(A,X)E {d∗(A,X)|Aj, X}

E {σ−2(A,X)|Aj, X}

}
ǫ

since for all d(A,X)ǫ ∈ Λ⊥
j

0 = E
[{

d∗(A,X)ǫ − Π
[
d∗(A,X)ǫ|Λ⊥

j

]}
d(A,X)ǫ

]

= E

[
σ−2(A,X)E {d∗(A,X)|Aj, X}

E {σ−2(A,X)|Aj, X} d(A,X)σ2(A,X)

]

= E

[
E {d∗(A,X)|Aj, X}
E {σ−2(A,X)|Aj, X}E [d(A,X)|Aj, X]

]
= 0

16



Initiating the repeated projections with d∗(A,X)ǫ = ∂q3(A,X;β)
∂β |β=β∗

σ−2(A,X)ǫ

proves Part (i.2), upon noting that the projection of E
{

σ−2 (A,X) ∂q3(A,X;β)
∂β

|X
}

×σ−2(A,X)ǫ/E {σ−2 (A,X) |X} onto Λ⊥
j is zero for j = 1, 2.

Part (i.1) is proved by explicitly verifying that d†
opt(Xi)∆(Ai, Xi)ǫi is

Π
{

Π
[
Sβ|ΛSR,⊥

nuis

]
|Λ⊥

nuis

}
with Π

[
Sβ|ΛSR,⊥

nuis

]
as given above and with Λ⊥

nuis =

{d(X)∆(A,X)ǫ : d(X) arbitrary}. This is immediate upon noting that

0 = E
[{

Π
[
Sβ|ΛSR,⊥

nuis

]
− d†

opt(X)∆(A,X)ǫ
}

∆(A,X)ǫ|X
]

Part (ii). That β̂ (d (α̂)) and β̂(dopt (α̂, η̂)) are RAL estimators in models

Bid or Bexp follows from Theorem 3. The last part of the theorem holds by the

results of Robins and Rotnitzky (2001) as discussed in the main text just below

the theorem.

Extension: In fact we now show we can actually obtain a closed form expres-

sion for Seff for β∗ under model A whenever A1 or A2 has finite support. In the

following we assume A1 has finite support {̺1, ..., ̺R}.
Consider the Hilbert space H of functions of (A,X) with inner product given

by the inverse variance weighted expectation E (σ−2(A,X)b1 (A,X) b2 (A,X)) , for

all b1, b2 ∈ H. Let C0 = {b0 (X)}∩H, C1 = {b1 (A1, X)}∩H, C2 = {b2 (A2, X)}∩
H. Then, let K (D) = ΠH

(
D| (C0 ∪ C1 ∪ C2)

⊥
)

be the projection of D ∈ H onto

(C0 ∪ C1 ∪ C2)
⊥ in H. We shall need a closed form expression for this projection.

To do so we first orthogonalize C0∪ C1∪C2 as C0+ C∗
1 +C∗

2 , where C∗
1 = ΠH

(
C1|C⊥

2

)
,

C∗
2 = ΠH

(
C2|C⊥

0

)
; a straightforward calculation shows

ΠH

(
C1|C⊥

2

)
=





h (X) Ã1 : Ã1 =
(
A1 − E(A1σ−2(A,X)|A2,X)

E(σ−2(A,X)|A2,X)

)
,

h(X) arbirtary p × (R − 1) functions



 ∩H, and

ΠH

(
C2|C⊥

0

)
= {J (B2) : arbirtrary B2 = b2 (A2, X)} ∩ H,
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where J (·) is defined in section A.1, and that ΠH

(
C1|C⊥

2

)
and C0 are orthogonal in

H. Therefore, K (D) = ΠH

(
D|C⊥

0

)
−ΠH (D|C∗

1)−ΠH (D|C∗
2) , where ΠH

(
D|C⊥

0

)
=

J (D) , ΠH (D|C∗
1) = E

(
σ−2(A,X)DÃT

1 |X
)

E
(
σ−2(A,X)Ã1Ã

T
1 |X

)−1

Ã1 and fi-

nally ΠH (D|C∗
2) = J

(
E(Dσ−2(A,X)|A2,X)
E(σ−2(A,X)|A2,X)

)
. Now it follows essentially from its defi-

nition that efficient score for β is given by

Seff = Π


Π

(
Sβ| (Λrm

nuis)
⊥
)
|





(b0 (X) + b∗1 (A1, X) + b∗2 (A2, X))σ−2(A,X)ǫ

: b0 ∈ C0, b1∈ C1, b2∈ C2





⊥



where Π (·|·) is the orthogonal projection operator in L2 (P ) , and (Λrm
nuis)

⊥ is the

orthogonal complement to the nuisance tangent space in a restricted mean model

where q1, q2 and h (X) are assumed known; it is well known that Π
(
Sβ| (Λrm

nuis)
⊥
)

=

∂
∂β

q3(A,X; β)|β=β∗σ−2(A,X)ǫ, so that we have

Sβ,eff = Π


 ∂

∂β
q3(A,X; β)|β=β∗σ−2(A,X)ǫ|





(b0 (X) + b∗1 (A1, X) + b∗2 (A2, X))σ−2(A,X)ǫ

: b0 ∈ C0, b1∈ C1, b2∈ C2





⊥



=


ΠH


 ∂

∂β
q3(A,X; β)|β=β∗|





(b0 (X) + b∗1 (A1, X) + b∗2 (A2, X))

: b0 ∈ C0, b1∈ C1, b2∈ C2





⊥




σ−2(A,X)ǫ

=




J
(

∂
∂β

q3(A,X; β)|β=β∗

)

−E
(
σ−2(A,X) ∂

∂β
q3(A,X; β)|β=β∗ÃT

1 |X
)

E
(
σ−2(A,X)Ã1Ã

T
1 |X

)−1

Ã1

−J

(
E( ∂

∂β
q3(A,X;β)|β=β∗σ−2(A,X)|A2,X)

E(σ−2(A,X)|A2,X)

)




σ−2(A,X)ǫ,

the desired closed form expression.

A.5 Derivation of equation (23)

The proposition is valid when model My holds because then the lefthand

side of equation (23) in the article is zero and so is the righthand side by the fact

that γ̃(β∗) = γ∗ and E {ǫ(β∗, γ∗)|A,X} = 0 under My. Suppose now that model
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Ma holds and that g(x) = x. Define S2(α) = ∂ log f(A2|A1, X; α)/∂α. Under

weak regularity conditions (for interchanging the integral and derivative), it then

follows from equation (5) in the article that

E

{
∂

∂α
d(A,X; α)|A1, X; α

}
= −E {d(A,X; α)S2(α)|A1, X; α}

= −E [d(A,X; α) {S(α) − E[S(α)|A1, X]} |A1, X; α}

= −E [d(A,X; α)S(α)|A1, X; α}

where S(α) = ∂ log f(A|X; α)/∂α, and likewise that

E

{
∂

∂α
d(A,X; α)|A2, X; α

}
= −E [d(A,X; α)S(α)|A2, X; α} .

Suppose that E(Y |A,X) = q3 (A,X; β∗) A1A2 + q∗2 (X,A2) + q∗1 (X,A1) + h∗(X).

Then, because α̃ = α∗ under Ma,

E

{
∂

∂α
U∗

i (β∗, γ̃(β∗), α)

}

|α=α̃

= E

{
∂

∂α
d(A,X; α)ǫ(β∗, γ̃(β∗))

}

|α=α∗

= E

{
∂

∂α
d(A,X; α) [q∗2 (X,A2) − q2 (X,A2; γ̃(β∗))

+q∗1 (X,A1) − q1 (X,A1; γ̃(β∗)) + h∗(X) − h(X; γ̃(β∗))]}|α=α∗

= −E {d(A,X; α∗)S(α∗) [q∗2 (X,A2) − q2 (X,A2; γ̃(β∗))

+q∗1 (X,A1) − q1 (X,A1; γ̃(β∗)) + h∗(X) − h(X; γ̃(β∗))]}

= −E {d(A,X; α∗)S(α∗)ǫ(β∗, γ̃(β∗))}

Suppose now that model Mya2 holds and that g(x) = x. Define S1(α) = ∂ log f(A1|X; α)/∂α

where the law f(A1|X; α) may be misspecified. Then, with α = (α′
1, α

′
2)

′, we have

that

E

{
∂

∂α
d(A,X; α)|A1, X; α2

}
= −E {d(A,X; α)S2(α)|A1, X; α2}

= −E [d(A,X; α) {S(α) − S1(α)} |A1, X; α2}

= −E [d(A,X; α)S(α)|A1, X; α2}
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by the fact that S1(α) is a function of only A1 and X. It follows, because α̃2 = α∗
2

under Mya2, that

E

{
∂

∂α
U∗

i (β∗, γ̃(β∗), α)

}

|α=α̃

= E

{
∂

∂α
d(A,X; α)ǫ(β∗, γ̃(β∗))

}

|α=α̃

= E

{
∂

∂α
d(A,X; α) [q∗1 (X,A1) − q1 (X,A1; γ̃(β∗)) + h∗(X) − h(X; γ̃(β∗))]

}

|α=α̃

= −E {d(A,X; α̃)S(α̃) [q∗1 (X,A1) − q1 (X,A1; γ̃(β∗)) + h∗(X) − h(X; γ̃(β∗))]}

= −E {d(A,X; α̃)S(α̃)ǫ(β∗, γ̃(β∗))}

It is immediate that this result continues to hold when g(x) = exp(x).

Finally, suppose that model M∗
ya2 holds and that g(x) = exp(x). Then,

because in particular model Ma holds, we have for j = 1, 2 that

E

{
∂

∂α
d(A,X; α)|Aj , X; α

}
= −E [d(A,X; α)S(α)|Aj , X; α} .

It follows, because α̃ = α∗ under M∗
ya2, that

E

{
∂

∂α
U∗

i (β∗, γ̃(β∗), α)

}

|α=α̃

= E

{
∂

∂α
d(A,X; α)ǫ(β∗, γ̃(β∗))

}

|α=α̃

= E

{
∂

∂α
d(A,X; α) (exp [q∗1 (X,A1) − q1 (X,A1; γ̃(β∗)) + h∗(X) − h(X; γ̃(β∗))] − 1)

}

|α=α∗

= −E {d(A,X; α∗)S(α∗) (exp [q∗1 (X,A1) − q1 (X,A1; γ̃(β∗)) + h∗(X) − h(X; γ̃(β∗))] − 1)}

= −E {d(A,X; α∗)S(α∗)ǫ(β∗, γ̃(β∗))}

A.6 Relation beween statistical interactions and

sufficient cause interactions

Under the nonparametric structural equation model of Pearl (2000) whenever

there exists a binary outcome D with two binary causes A1 and A2, there always
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exists latent binary random variables U0, U1, U2, U3, U4, U5, U6, U7, U8 which are

not affected by A1 and A2 such that D is the deterministic function

D = U0

∨
U1A1

∨
U2A1

∨
U3A2

∨
U4A2

∨
U5A1A2

∨
U6A1A2

∨
U7A1A2

∨
U8A1A2 (5)

where
∨

is the Boolean OR operator (VanderWeele and Robins 2007, 2008).

Equation (5) is referred to as a sufficient cause representation of D by the vector

U = (U0, U1, U2, U3, U4, U5, U6, U7, U8) and the 9 conjunctions occurring in (5) are

referred to as the representation’s sufficient causes. The vector U will not in

general be unique (VanderWeele and Robins 2007, 2008), in the sense that (5)

will also hold with U replaced by another vector of binary variables U∗, with

U and U∗ having different distributions conditional on the measured variables

(A = (A1, A2) , X), where X denotes some other measured variables not caused by

A. However, certain sufficient cause representations can be empirically excluded,

the following lemma being one example.

Supplementary Lemma 1. Define Y = 1−D. Then, if β∗ 6= 0 in model A with

g the exponential function (i.e., there is a multiplicative interaction between A1

and A2 with Y = 1−D) then there cannot exist a sufficient cause representation

by a vector U satisfying

(i) U5 = U6 = U7 = U8 = 0 almost surely and

(ii) conditional on X, the variables U0, U1, U2, U3, U4,and A are jointly

independent.

Before proving the lemma we discuss its interpretation. A sufficient cause

representation in which (i) holds is said to exhibit no sufficient cause interac-

tion between A1 or its complement and A2 or its complement, because D can be
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writtten

D = U0

∨
U1A1

∨
U2A1

∨
U3A2

∨
U4A2. (6)

Suppose a scientist believed a scientific theory that the actual (physical) co-causes

(if any) C1, C2, C3, C4 needed for A1, A1, A2, and A2 respectively to cause D and

the background causes C0 were distributed independently of one another and of A

within levels of X. One would then be principally interested in a sufficient cause

representation in which U0, U1, U2, U3, U4 stood for C0, C1, C2, C3, C4. Suppose the

scientist then wanted to test the hypothesis that (6) held because he hypothesized

that there did not exist a physical causal mechanism that required the prescence of

A1 (or its complement) and A2 (or its complement) to cause D. Then, according

to the Lemma, he could test the hypothesis by testing whether β∗ = 0 in model A
with Y = 1−D and g the exponential function. Of course it may be exceedingly

rare for a scientist to believe that the physical cocauses (C0, C1, C2, C3, C4) were

jointly independent given X and thus that (ii) held, so the practical utility of the

result may be small.

Results contained in the following lemma concerning model A with an additive

link tend to be more useful than those in the previous lemma for testing for

sufficient cause interactions.

Supplementary Lemma 2 (VanderWeele and Robins). Define Y = D. If β∗ > 0

in model A with g the identity function (i.e., there is a additive interaction between

A1 and A2 with Y = D) then there cannot exist a sufficient cause representation

by any vector U satisfying

(i’)U2 = U4 = U6 = U7 = U8 = 0 almost surely,

(ii’) U5 = 0, almost surely
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(iii’) conditional on X, (U0, U1, U3) is independent of A.

Suppose our scientist now believed A1 and A2 never prevent disease so that

with U equal to the physical co-causes C, we can modify (5) and (6) by removing

terms containing either A1 or A2, which we do mathematically by imposing (i’).

Suppose the scientist also accepts hypothesis (iii’), which is the assumption that

within levels of X, there is no confounding for the effect of A on D. Finally,

suppose the scientist again wanted to test the hypothesis of no sufficient cause

interaction between A1 and A2 encoded in the (now modified) equation (6) with

U being the physical co-causes C. Given (i’), this hypothesis is equivalent to (ii’).

He could therefore test the hypothesis by estimating model A with g the identity

function. If he concludes β∗ > 0, the hypothesis of no sufficient cause interaction

is rejected. As it would not be unusual for a scientist to believe A1 and A2 never

prevent disease and that A is unconfounded, the practical utility of the second

Lemma may be considerable. Note in particular that assumption (iii’) does not

impose the often unrealistic assumption that U0, U1, U3 are jointly independent

given X.

Proof of Supplementary Lemma 1. By contradiction. Assume (i) and (ii)

hold. Define P (U0|X = x) = ax
0 , P (U1|X = x) = ax

1 , P (U2|X = x) = ax
2 ,

P (U3|X = x) = ax
3 and P (U4|X = x) = ax

4 . We then have by (i) and (ii) that

1 − E(D|X = x,A1 = 0, A2 = 0) = {1 − E(U0

∨
U2

∨
U4|X = x)}

= E(U0U2U4|X = x)

= E(U0|X = x)E(U2|X = x)E(U4|X = x)

= (1 − ax
0)(1 − ax

2)(1 − ax
4)
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and

1 − E(D|X = x,A1 = 0, A2 = 1) = {1 − E(U0

∨
U2

∨
U3|X = x)}

= (1 − ax
0)(1 − ax

2)(1 − ax
3)

and

1 − E(D|X = x,A1 = 1, A2 = 0) = {1 − E(U0

∨
U1

∨
U4|X = x)}

= (1 − ax
0)(1 − ax

1)(1 − ax
4)

and

1 − E(D|X = x,A1 = 1, A2 = 1) = {1 − E(U0

∨
U1

∨
U3|X = x)}

= (1 − ax
0)(1 − ax

1)(1 − ax
3)

So

E(Y |X = x,A1 = 1, A2 = 1)}E(Y |X = x,A1 = 0, A2 = 0)}

= (1 − ax
0)

2(1 − ax
1)(1 − ax

2)(1 − ax
3)(1 − ax

4)

= {E(Y |X = x,A1 = 0, A2 = 1)}{E(Y |X = x,A1 = 1, A2 = 0)},

which implies β∗ = 0, a contradiction.
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