Improved Total Synthesis of the Potent HDAC Inhibitor FK228 (FR-901228)

Thomas J. Greshock, Deidre M. Johns, Yasuo Noguchi, and Robert M. Williams* Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 University of Colorado Cancer Center, Aurora, Colorado 80045 rmw@lamar.colostate.edu

General Methods. All air or moisture sensitive reactions were performed under a positive pressured of argon in flame-dried glassware. Tetrahydrofuran (THF), toluene, diethyl ether (Et₂O), N,N-dimethylformamide (DMF), dichloromethane, acetonitrile, and triethylamine were obtained from a dry solvent system (activated alumina columns, positive pressure of argon). Column chromatography was performed on Merck silica gel Kieselgel 60 (230-400 mesh). Melting points were determined in open-end capillary tubes and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on Varian 300, 400 or 500 MHz spectrometers. Chemical shifts are reported in ppm relative to CHCl₃ at δ 7.27 (¹H NMR) and δ 77.23 (¹³C NMR) or DMSO-d₆ at δ 2.5 (¹H NMR) and δ 39.51 (¹³C NMR) or MeOH-d₄ δ 3.31 (¹H NMR) and δ 49.15 (¹³C NMR). Mass spectra were obtained on Fisons VG Autospec. IR spectra were obtained from thin films on a NaCl plate using a Perkin-Elmer 1600 series FT-IR spectrometer. Optical rotations were collected at 589 nm on a Rudolph Research automatic polarimeter Autopol III.

N,O-Dimethyl-1,1-dimethoxypropylhydroxylamide (9). To a solution of methyl 3,3dimethoxypropionate 8 (55.0 g, 0.37 mol) and N,O-dimethylhydroxylamine hydrochloride (39.8 g, 0.408 mol) in THF (750 mL) was added /PrMqCl (408 mL, 2.0 M in THF, 0.817 mol) over 1 hour at -10 °C to create a homogeneous reaction mixture. After stirring for 1.5 hours at 0 °C, the reaction was poured into a mixture of ice and saturated aq. NH₄CI. The reaction mixture was extracted with CH₂Cl₂, washed with brine, dried over anhydrous Na₂SO₄, and concentrated to dryness in vacuo to give crude mixture (colorless oil containing 30% MeOH elimination byproduct by ¹H NMR). To a solution of the crude mixture in MeOH (400 mL) was added anhydrous K₂CO₃ (9.5 g, 69.3 mmol) at room temperature. After stirring for 1.5 days, the solution was evaporated in vacuo. The residue was diluted with CH₂Cl₂ and washed with H₂O and brine. The organic extract was dried over anhydrous Na₂SO₄ and concentrated to dryness in vacuo The crude product was purified by sílica gel chromatography (2:1 to 4:1 EtOAc/hexanes) affording 9 as a yellow oil. It was subsequently found that the product can be purified by distillation under HVAC (65 - 75 °C). The methyl ester starting material distills at 42 °C under the same HVAC pressure. The mixed fractions were purified by distillation under HVAC pressure to provide additional desired product, which was combined with the product above to provide 9 as a mixture of amide rotamers (43.8 g, 247 mmol, 67%); ¹H NMR (400 MHz, CDCl₃) δ 4.78 (t, J = 6 Hz, 1 H), 3.61 (s, 3 H), 3.31 (s, 6 H), 3.10 (s, 3 H), 2.69 (d, J = 6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 161.6, 102.3, 61.4, 60.4, 54.2, 36.4, 31.9; IR (neat) 3565, 2940, 2833, 1663, 1601, 1444, 1389, 1191, 1124,

1069, 998, 921, 844, 785 cm⁻¹; ESI/APCI-HRMS (M-OCH₃) calcd for $C_6H_{12}NO_3$ 146.0812, found 146.0805.

__OTBDPS

4-*tert*-Butyldiphenylsilyloxy-1-butyne (10).¹ To a solution of 3-butyn-1-ol (10.8 g, 0.154 mol), DMAP (1.85 g, 15.1 mmol), and triethylamine (23 mL, 0.166 mol) in CH₂Cl₂ (250 mL) was added TBDPSCI (44.3 g, 0.161 mol) *via* canula at rt. After stirring at rt for 15 hours, the mixture was quenched with saturated *aq*. NH₄Cl (100mL), and extracted with CH₂Cl₂ (100 mL). The organic extract was washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to give the crude product. The crude product was purified by silica gel chromatography (hexanes to 9 : 1 hexanes/EtOAc) to give compound **10** as colorless oil (46.9 g, 0.15 mmol, 99 %), which is consistent with reported characterization data. ¹H NMR (400 MHz, CDCl₃) δ 7.72 - 7.68 (m, 4 H), 7.47 - 7.39 (m, 6 H), 3.81 (t, *J* = 7 Hz, 2 H), 2.47 (dt, *J* = 3, 7 Hz, 2 H), 1.97 (t, *J* = 3 Hz, 1 H), 1.08 (s, 9 H); ¹³C NMR (CDCl₃, 100 MHz) δ 135.8, 133.7, 129.9, 127.9, 81.7, 69.5, 62.5, 27.0, 22.8, 19.4; IR (neat) 3307, 3071, 3050, 2958, 2931, 2858, 1472, 1428, 1389, 1112, 1059, 823, 701, 613 cm⁻¹.

¹ Sinha, S. C.; Sinha, S. C.; Keina, E. J. Org. Chem. **1999**, 64, 7067-7073. Delorme, D.; Girard, Y.; Rokach, J. J. Org. Chem. **1989**, 54, 3635-3640.

7-(tert-butyldiphenylsilyloxy)-1,1-dimethoxyhept-4-yn-3-one (11). To a solution of alkyne 10 (26.9 g, 87.3 mmol) in THF (430 mL) cooled to -78 °C was added n-BuLi (52 mL, 96 mmol, 1.84 M solution in hexanes) over 1 hour. The reaction was stirred an additional 30 min at -78 °C, and then amide 9 (17.0 g, 96.0 mmol) in THF (50 mL) at -78 °C was added quickly via canula. The reaction was allowed to slowly warm to 0 °C over 14 hours. It was then poured onto a saturated aq. NH₄CI solution, diluted with EtOAc and extracted 3 x 50 mL EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated. The crude oil was purified by silica gel chromatography (20 : 1 hexanes/EtOAc + 1% Et₃N) to afford **11** (27.9 g, 65.5 mmol, 75%); ¹H NMR (400 MHz, CDCl₃) δ 7.68 - 7.63 (m, 4 H), 7.44 - 7.35 (m, 6 H), 4.91 (t, J =6 Hz, 1 H), 3.80 (t, J = 7 Hz, 2 H), 3.31 (s, 6 H), 2.83 (d, J = 6 Hz, 2 H), 2.60 (t, J = 7 Hz, 2 H), 1.04 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 183.6, 135.7, 133.3, 130.0, 128.0, 100.8, 92.3, 81.9, 61.7, 53.6, 49.0, 26.9, 23.3, 19.4; IR (neat) 3071, 2956, 2932, 2858, 2215, 1676, 1619, 1428, 1226, 1113, 1057, 703, 505 cm⁻¹; FAB-MS (MH⁺) calcd for C₂₅H₃₃O₄Si 425.2, found 425.2.

(*R*,*E*)-5-hydroxy-7,7-dimethoxyhept-3-enyl 4-methylbenzenesulfonate (S-1). To a solution of propargyl ketone 11 (14.0 g, 32.9 mmol) in *I*PrOH (300 mL) at rt was added

(*R*,*R*)-Ru-(TSDPEN) **12**² (505 mg, 0.82 mmol) as a solution in *i*PrOH (10 mL). The reaction mixture was stirred for 18 hours. Additional aliquots of **12** (505 mg, 0.82 mmol) as a solution in *i*PrOH (10 mL) were added after 18, 24, and 42 hours. Most of the starting material was consumed by TLC analysis after 4 days and the reaction was concentrated to a viscous oil. The mixture was purified by silica gel chromatography (10 : 1 hexanes/EtOAc, and then 4 : 1 hexanes/EtOAc) to afford the title compound **S**-1 (11.9 g, 27.9 mmol, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.69 - 7.67 (m, 4 H), 7.46 - 7.37 (m, 6 H), 4.68 (t, *J* = 6 Hz, 1 H), 4.49 (br t, *J* = 5 Hz, 1 H), 3.77 (t, *J* = 7 Hz, 2 H), 3.36 (s, 3 H), 3.34 (s, 3 H), 2.86 (br s, 1 H), 2.50 (dt, *J* = 2, 7 Hz, 2 H), 1.99 (dt, *J* = 2, 7 Hz, 2H), 1.06 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 133.8, 129.9, 127.9, 103.1, 82.7, 81.6, 62.6, 59.6, 53.8, 53.4, 39.9, 27.0, 23.1, 19.4; IR (neat) 2933, 2858, 1471, 1427, 1389, 1111, 1086, 1057, 915, 703, 511 cm⁻¹; ESI/APCI-MS (MNa⁺) calcd for C₂₅H₃₄O₄SiNa 449.21, found 449.27; [α]²⁰_D = +7.7 (*c* 1.3, CHCl₃).

(*R*,*E*)-7-(*tert*-butyldiphenylsilyloxy)-1,1-dimethoxyhept-4-en-3-ol (13). To a solution of sodium bis(2-methoxyethoxy)aluminum hydride (Vitride[®]) (0.53 mL, 2.67 mmol) in Et_2O (10 mL) cooled to 0 °C was added alkyne S-1 (758 mg, 1.78 mmol) as a solution in Et_2O (8 mL) dropwise. The reaction was stirred an additional 30 min at 0 °C, additional Red-Al (0.53, 2.67 mmol) was added, stirred for 30 min at 0 °C, and then 1 hour at rt. The reaction was quenched by the addition of saturated *aq.* NH₄Cl, diluted with EtOAc,

² Haak, K. J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem. Int. Ed. Engl. 1997, 36, 285-287.

and extracted 3 x 10 mL with EtOAc. The organic layers were combined, washed with water, brine, dried over MgSO₄, filtered, and concentrated. The crude oil was purified by silica gel chromatography (10 : 1 hexanes/EtOAc + 1% Et₃N) to afford **13** (0.76 g, 1.78 mmol, quant.) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.65 - 7.62 (m, 4 H), 7.42 - 7.33 (m, 6 H), 5.66 (dt, *J* = 7, 15 Hz, 1 H), 5.49 (dd, *J* = 7, 15 Hz, 1 H), 4.54 (t, *J* = 6 Hz, 1 H), 4.22 (m, 1 H), 3.68 (t, *J* = 7 Hz, 2 H), 3.33 (s, 3 H), 3.31 (s, 3 H), 2.64 (br s, 1 H), 2.27 (q, *J* = 7 Hz, 2 H), 1.84 - 1.73 (m, 2 H), 1.02 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 134.3, 134.1, 129.8, 128.2, 127.8, 103.6, 69.5, 63.7, 53.7, 53.2, 39.7, 35.8, 27.1, 19.4; IR (neat) 3457, 3070, 3047, 2931, 2858, 1471, 1427, 1387, 1189, 1110, 969, 938, 822, 703 cm⁻¹; ESI/APCI-MS (MNa⁺) calcd for C₂₅H₃₆O₄Si 451.23, found 451.27; [α]²⁰_p = +2.9 (*c* 2.25, CHCl₃).

(*R*,*E*)-7,7-dimethoxyhept-3-ene-1,5-diol (S-2). To a solution of silyl ether 13 (202 mg, 0.66 mmol) in THF (7 mL) was added TBAF (1.0 M in THF, 1.00 mL, 1.00 mmol) at room temperature. After stirring for 3.5 hours, the mixture was concentrated to dryness *in vacuo*. The crude product was purified by sílica gel chromatography (7 : 1 EtOAc/hexanes to 2 : 98 MeOH/EtOAc) affording the title compound S-2 (126 mg, 0.66 mmol, 99%) as a pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 5.65 (dt, *J* = 7, 15 Hz, 1 H), 5.56 (dd, *J* = 7, 15 Hz, 1 H), 4.55 (t, *J* = 6 Hz, 1 H), 4.24 (m, 1 H), 3.62 (m, 2 H), 3.38 (br s, 1 H), 3.34 (s, 3 H), 3.33 (s, 3 H), 2.69 (s, 1 H), 2.26 (q, *J* = 7 Hz, 2 H), 1.87 - 1.75 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 128.0, 103.3, 69.3, 61.7, 53.6, 53.3, 39.6,

35.7; IR (neat) 3393, 2931, 2833, 2360, 2340, 1420, 1387, 1191, 1126, 1052, 969 cm⁻¹; ESI/APCI-HRMS (MNa⁺) calcd for C₉H₁₈O₄Na 213.1097, found 213.1095; $[\alpha]_D^{25}$ -8.7 (*c* 2.7, CHCl₃).

(R,E)- 1, 1-dimethoxy-7-p-toluenesulfonyl-4-hepten-3-ol (14). To a solution of TsCl (4.12 g, 21.6 mmol), DMAP (176 mg, 1.44 mmol), and Et₃N (3.0 mL, 21.6 mmol) in CH₂Cl₂ (25 mL) at room temperature was added the diol S-2 (2.75 g, 14.4 mmol) in CH₂Cl₂ (5 mL). After stirring for 2 hours, the reaction mixture was poured onto a mixture of aq. NaHCO₃ and EtOAc. The aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuo. The crude product was purified by sílica gel chromatography (2 : 1 to 1 : 1 CH₂Cl₂/EtOAc) affording **14** as a pale yellow oil (3.50 g, 10.2 mmol, 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8 Hz, 2 H), 7.33 (d, J = 8 Hz, 2 H), 5.63 - 5.54 (m, 2 H), 4.54 (t, J = 5 Hz, 1 H), 4.20 (m, 1 H), 4.04 (t, J = 7 Hz, 2 H), 3.37 (s, 3 H), 3.35 (s, 3 H), 2.84 (br s, 1 H), 2.45 (s, 3 H), 2.38 (g, J = 7 Hz, 2 H), 1.78 (t, J = 5 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 145.0, 136.0, 130.1, 128.1, 124.9, 103.6, 69.7, 69.1, 53.9, 53.4, 39.5, 31.9, 21.8; IR (neat) 3447, 2955, 2832, 1598, 1456, 1359, 1176, 1189, 1123, 1056, 966, 918, 816, 664, 555 cm⁻¹; FABHRMS (MH⁺) calcd for $C_{16}H_{24}O_{6}^{33}S$ 345.1287, found 345.1292; $[\alpha]^{20}_{D} = -4.6$ (*c* 1.94, CH₂Cl₂).

(R,E)-3-hydroxy-7-(tosyloxy)hept-4-enoic acid (S-4). To a solution of 14 (2.34 g, 6.79 mmol) in wet CH₃CN (55 mL, 2% water by volume) at rt was added LiBF₄ (100 mg, 1.07 mmol) as a solution in wet CH $_3$ CN (3 mL) dropwise. Additional LiBF $_4$ (100 mg, 1.07 mmol x 19) was added over 10 days. The reaction was quenched by the addition of water, followed by saturated aq. NaHCO₃, diluted with CH₂Cl₂, extracted with CH₂Cl₂, washed with brine, dried over Na₂SO₄, filtered, and concentrated. The crude material was purified by silica gel chromatography (5 : 1 to 1 : 2 hexanes/EtOAc) to provide the corresponding aldehyde S-3 (2.02 g, 6.77 mmol, 99.7%), which was immediately carried on to the acid. To a solution of the aldehyde (1.77 g, 5.93 mmol) in tBuOH (22.5 mL) was added a solution of NaH₂PO₄ (8.18 g, 59.3 mmol) dissolved in water (7.5 mL). The reaction was cooled to 0 °C and a solution of 2-methyl-2-butene (22 mL, 44 mmol, 2 M in THF) was added, followed by gradual addition of NaClO₂ (2.68 g, 29.6 mmol). The reaction was stirred for 1.5 hours at 0 °C and 2 hours at room temperature. The reaction was cooled to 0 °C and additional NaH₂PO₄ (4.1 g, 29.7 mmol) and NaClO₂ (1.34 g, 14.8 mmol) were added. The reaction was allowed to warm to rt and stirred 8 hours. The reaction was quenched with 2 M HCl and extracted with CH₂Cl₂. The combined extracts were washed with brine, dried over Na₂SO₄, and concentrated. Water was removed from the crude product by concentrating from toluene. The crude oil was purified by silica gel chromatography (1: 1 hexanes/EtOAc + 1% HOAc) to afford the title acid **S-4** (1.24 g, 3.95 mmol, 67%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8 Hz, 2 H), 7.35 (d, J = 8 Hz, 2 H), 5.66 - 5.54 (m, 2 H), 4.48 (m, 1

H), 4.37 (br s, 1 H), 4.08 - 4.03 (m, 2 H), 2.55 – 2.30 (m, 4 H), 2.47 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 145.1, 145.0, 134.2, 133.2, 130.1, 128.1, 69.5, 68.5, 41.3, 31.8, 21.0; IR (neat) 3508, 2973, 2929, 1732, 1598, 1495, 1358, 1308, 1189, 1176, 1122, 1020, 967, 919, 706, 690, 665, 574, 555 cm⁻¹; ESI/APCI-MS (M-H⁺) calcd for C₁₄H₁₇O₆Si 313.07, found 313.13; [α]²⁰_D = +2.6 (*c* 2.95, CH₂Cl₂).

(*R*,*E*)-3-hydroxy-7-(trityIthio)hept-4-enoic acid (5). To a solution of the tosylate S-4 (1.36 g, 4.32 mmol) in THF (20 mL) at 0 °C was slowly added a mixture of HSCPh₃ (1.79, 6.48 mmol) and KO*t*Bu (1.45 g, 13.0 mmol) in THF (25 mL) via canula. The reaction was stirred for 3 hours at 0 °C. The reaction mixture was acidified to pH 2 by the addition of 2 M HCl and extracted with EtOAc. The combined extracts were filtered through celite and concentrated. The crude product was purified by silica gel chromatography (2 : 1 hexanes/EtOAc + 1% HOAc) to afford **5** (1.75 g, 4.19 mmol, 97%) and matches reported spectroscopic data; ¹H NMR (300 MHz, CDCl₃) δ 7.39 - 7.17 (m, 15 H), 5.56 (dt, *J* = 7, 15 Hz, 1 H), 5.40 (dd, *J* = 7, 15 Hz, 1 H), 4.43 (m, 1 H), 2.62 - 2.41 (m, 2 H), 2.18 (m, 2 H), 2.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 145.0, 131.7, 131.0, 129.8, 128.1, 126.8, 68.7, 66.8, 41.3, 31.6, 31.5; IR (neat) 3056, 2924, 1709, 1490, 1443, 1181, 1034, 972 cm⁻¹; ESI/APCI-HRMS (MNa⁺) calcd for C₂₆H₂₆O₃SNa 441.1495, found 441.1498; [α]²⁰_D = +6.3 (*c* 0.30, CHCl₃).

N-α-[(fluorenylmethoxy)carbonyl]-L-threonyl-L-valine, methyl ester (15).³ To a solution of *N*-Fmoc-L-Thr (8.59 g, 25.2 mmol) and L-Val-OMe HCl (4.22 g, 25.2 mmol) in CH₃CN (252 mL) was added BOP (16.7 g, 37.8 mmol) and *i*Pr₂NEt (13.2 mL, 75.5 mmol) at rt. After stirring for 30 min, the mixture was concentrated *in vacuo* to give the crude product. Purification by sílica gel chromatography (1 : 1 to 2 : 3 hexanes/EtOAc) afforded compound **15** as an amorphous white powder (10.8 g, 22.9 mmol, 91%), which matches reported characterization data; ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 2 H) 7.58 (d, *J* = 7.5 Hz, 2 H), 7.40 (t, *J* = 7.5 Hz, 2 H), 7.31 (t, *J* = 7.5 Hz, 2 H), 6.95 (d, *J* = 8.7 Hz, 1 H), 5.81 (d, *J* = 7.8 Hz, 1 H), 4.50 (dd, *J* = 8.7, 4.8 Hz, 1 H), 4.45 - 4.35 (m, 4 H) 4.25 - 4.17 (m, 2 H), 3.74 (s, 3 H), 2.19 (m, 1 H), 1.20 (d, *J* = 6.6 Hz, 3 H), 0.91 (d, *J* = 6.9 Hz, 3 H), 0.88 (d, *J* = 6.9 Hz, 3 H); FABHRMS (MH⁺) calcd for C₂₅H₃₁N₂O₆ 455.2182, found 455.2181.

N-(Allyloxycarbonyl)-D-Cysteinyl-(*S*-triphenylmethyl)-L-threonyl-L-valine methyl ester (16). A solution of *N*-Fmoc-L-Thr-L-Val-OMe 15 (12.1 g, 26.7 mmol) and Et_2NH (53.4 mL) in CH_2Cl_2 (121 mL) was stirred at rt for 4.5 hours. The reaction mixture was concentrated *in vacuo* to give the crude product (14.4 g). The crude amine (14.4 g) was

³ Li, K. W.; Wu, J; Xing, W.; Simon, J. A. J. Am. Chem. Soc. **1996**, 118, 7237-7238.

dissolved in DMF (20 mL) and CH₂Cl₂ (120 mL) and treated with N-Alloc-S-Trt-D-Cys⁴ (12.3 g, 27.5 mmol), HOBt (4.33 g, 32.1 mmol) and EDCI (6.14 g, 32.1 mmol) at 0°C. The reaction mixture was stirred at room temperature for 18 hours. The reaction mixture was concentrated in vacuo, poured into water (150 mL) and extracted with EtOAc (200 mL). The organic extract was washed with brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by sílica gel chromatography (2 : 1 to 1 : 1 CH₂Cl₂/EtOAc) to give compound **16** as an amorphous white solid (11.9 g, 17.9 mmol, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.44 -7.40 (m, 6 H), 7.33 - 7.20 (m, 10 H), 7.08 (br d, J = 9 Hz, 1 H), 6.80 (br d, J = 7 Hz, 1 H), 5.85 (ddt, J = 5, 11, 17 Hz, 1 H), 5.29 (d, J = 17 Hz, 1 H), 5.22 (d, J = 11 Hz, 1 H), 5.09 (d, J = 7 Hz, 1 H), 4.51 (d, J = 6 Hz, 2 H), 4.43 (dd, J = 2, 8 Hz, 1 H), 4.35 (m, 1 H), 4.29(dd, J = 2, 8 Hz, 1 H), 3.80 (m, 1 H), 3.73 (s, 3 H), 2.76 (dd, J = 7, 13 Hz, 1 H), 2.58 (dd, $J = 6, 13 \text{ Hz}, 1 \text{ H}), 2.15 \text{ (m, 1 H)}, 1.09 \text{ (d, } J = 6 \text{ Hz}, 3 \text{ H}), 0.86 \text{ (d, } J = 7 \text{ Hz}, 3 \text{ H}), 0.84 \text{ (d, } J = 7 \text$ J = 7 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 171.5, 171.0, 144.4, 132.5, 129.7, 128.3. 127.2. 118.3. 67.6. 66.3. 66.2. 57.5. 56.8. 54.3. 52.4. 34.0. 30.9. 19.3. 18.2. 17.8. IR (neat) 3289, 3059, 2966, 1733, 1647, 1444, 1213, 733, 700, 503 cm⁻¹; FABHRMS $(M-H^+)$ calcd for $C_{36}H_{42}N_3O_7S$ 660.2743, found 660.2741; Anal. calcd C: 65.33; H: 6.55; N: 6.35; S: 4.85. Obs, C: 64.98; H: 6.60; N: 6.54; S: 5.13; $[\alpha]_{D}^{20} = -50.0$ (*c* 0.68, CHCl₂).

⁴ Kruse, C. H.; Holden, K. G. J. Org. Chem. **1985**, 65, 1192-1194.

N-(Allyloxycarbonyl)-D-Cysteinyl-(S-triphenylmethyl)-L-threonyl-(O-p-

toluenesulfonyl)-L-valine methyl ester (S-5). To a solution of N-Alloc-S-Trt-D-Cys-L-Thr-L-Val-OMe 16 (11.5 g, 17.3 mmol) in pyridine (86 mL) was added tosylanhydride (17.0 g, 52.0 mmol) at 0°C. The mixture was stirred at 0 °C for 40 min. The resulting solution was quenched with saturated aq. NaHCO₃ (200 mL) and extracted with EtOAc (250 mL). The combined extracts were washed with aqueous 1 M HCl (150 mL x 6), brine (150 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give the crude product. The crude product was purified by silica gel chromatography (2:1 to 3: 2 hexanes/EtOAc) to give compound S-5 as a white powder (13.4 g, 16.5 mmol, 95%); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8 Hz, 2 H), 7.45 - 7.21 (m, 17 H), 6.86 (d, J = 8 Hz. 1 H), 6.62 (d, J = 8 Hz, 1 H), 5.88 (ddt, J = 5, 11, 17 Hz, 1 H), 5.28 (d, J = 17 Hz, 1 H), 5.21 (d, J = 11 Hz, 1 H), 5.14 (m, 1 H), 5.00 (d, J = 5 Hz, 1 H), 4.54 (dd, J = 4, 8 Hz, 1 H), 4.50 (m, 2 H), 4.31 (dd, J = 6, 8 Hz, 1 H), 3.69 (s, 3 H), 3.54 (m, 1 H), 2.77 (dd, J = 7, 13 Hz, 1 H), 2.62 (dd, J = 6, 13 Hz, 1 H), 2.45 (s, 3 H), 2.10 (m, 1H), 1.19 (d, J = 6 Hz, 3 H), 0.87 (d, J = 7 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 170.8, 167.5, 156.0, 145.3, 144.4, 133.5, 132.5, 130.1, 129.7, 128.4, 128.3, 127.2, 118.3, 67.6, 66.4, 58.0, 56.5, 54.4, 52.3, 33.4, 30.8, 21.9, 19.1, 18.2, 17.3; FABHRMS (MH⁺) calcd for C₄₃H₅₀N₃O₉S₂ 816.2988, found 816.2987; Anal. calcd C: 63.29; H: 6.05; N: 5.15; S: 7.86. Obs. C: 63.36; H: 6.39; N: 5.40; S: 7.65; $[\alpha]_{D}^{20}$ = +5.1 (*c* 0.70, CHCl₃).

N-(Allyloxycarbonyl)-D-Cysteinyl-(S-triphenylmethyl)-(Z)-dehydrobutyrinyl-L-

valine methyl ester (17). To a solution of N-Alloc-S-Trt-D-Cys-L-Thr(O-Ts)-L-Val-OMe S-5 (12.5 g, 15.3 mmol) in CH₃CN (306 mL) was added DABCO (17.2 g, 153 mmol) at rt. After stirring for 18 hours, the mixture was concentrated and rediluted with EtOAc and 1 M aqueous HCI (200 mL). The aqueous layer was extracted with EtOAc. The combined extracts were washed with brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo to give the crude product. The crude product was purified by sílica gel chromatography (2 : 1 hexanes/EtOAc) to give compound 17 as a white powder (9.84 g, 153 mmol, quant.); ¹H NMR (400 MHz, CDCl₃) δ 7.49 - 7.22 (m, 15 H), 7.04 (br s, 1 H), 6.77 (br q, J = 7 Hz, 1 H), 6.71 (br d, J = 7 Hz, 1 H), 5.90 (ddt, J = 5, 11, 17 Hz, 1 H), 5.31 (d, J = 17 Hz, 1 H), 5.24 (d, J = 17 Hz, 1 H), 5.02 (br s, 1 H), 4.55 (d, J = 5 Hz, 2 H), 4.50 (dd, J = 6, 8 Hz, 1 H), 3.73 (q, J = 6 Hz, 1 H), 3.68 (s, 3 H), 2.80 (dd, J = 7 Hz, 13 Hz, 1 H), 2.71 (dd, J = 7 Hz, 14 Hz, 1 H), 2.11 (m, 1 H), 1.69 (d, J = 7 Hz, 3 H), 0.91 (d, J = 7 Hz, 3 H), 0.89 (d, J = 7 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 169.2, 164.0, 156.5, 144.3, 133.0, 132.4, 129.7, 128.6, 128.4, 127.3, 118.6, 67.8, 66.6, 58.0, 54.8, 52.2, 33.2, 31.2, 19.2, 18.4, 13.9; IR (neat) 3278, 3083, 2964, 2875, 1740, 1700, 1518, 1444, 1245, 1185, 1149, 1035, 912, 733, 701 cm⁻¹; FABHRMS (MH⁺) calcd for C₃₆H₄₂N₃O₆S 644.2794, found 644.2778; Anal. calcd C: 67.16; H: 6.42; N: 6.53; S: 4.98. Obs. C: 66.77; H: 6.76; N: 6.74; S 5.34; $[\alpha]_{D}^{20} = +7.1$ (*c* 0.80, CHCl₃).

N-α-[(Fluorenylmethoxy)carbonyl]-D-Valyl-D-Cysteinyl-(S-triphenylmethyl)-(Z)dehydrobutyrinyl-L-valine methyl ester (18). To a mixture of N-Alloc-tripeptide 17 (9.16 g, 14.2 mmol), PdCl₂(PPh₃)₂ (200 mg, 0.29 mmol) and AcOH (1.95 mL, 34.2 mmol) in CH₂Cl₂ (142 mL) was added SnBu₃H (4.15 mL, 15.7 mmol) at rt. After stirring for 3 hours, saturated aq. NaHCO₃ (100 mL) was added, and the mixture was extracted with CH₂Cl₂ (100 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to give crude amide (14.2 g). The crude amine was dissolved in DMF (20 mL) and CH₂Cl₂ (142 mL), and then treated with N-Fmoc-D-Valine (5.29 g, 15.6 mmol), HOBt (2.31 g, 17.1 mmol), and EDCI (3.27 g, 17.1 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 19 hours and then concentrated in vacuo. The residue was diluted with water (100 mL), and extracted with EtOAc (100 mL). The combined organic layers were washed with brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by sílica gel chromatography (1 : 1 to 1 : 2 hexanes/EtOAc) to give compound **18**. This solid was washed with Et₂O – hexanes to remove the Bu₃SnH residue, and dried under vacuum to give 18 as a white powder (10.4 g, 11.8 mmol, 83% from **17**); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7 Hz , 2 H), 7.54 (d, J = 7 Hz , 2 H), 7.48 - 7.15 (m, 20 H), 6.85 (m, 2 H), 6.27 (br s, 1 H), 5.29 (br s, 1 H), 4.52 (dd, J = 6, 8 Hz, 1 H), 4.43 (dd, J = 7, 11 Hz, 1 H), 4.26 (dd, J = 7, 10 Hz, 1 H), 4.12 (m, 1 H), 4.02 -3.95 (m, 2 H), 3.67 (s, 3 H), 2.94 (dd, J = 6, 13 Hz, 1 H), 2.61 (dd, J = 6, 13 Hz, 1 H),

2.19 - 2.07 (m, 2 H), 1.74 (d, J = 7 Hz, 3 H), 1.00 - 0.84 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 172.0, 168.7, 164.1, 157.0, 144.3, 143.9, 141.5, 132.5, 129.6, 128.8, 128.3, 128.0, 127.2, 125.2, 125.1, 120.2, 67.4, 60.7, 58.0, 53.3, 52.1, 47.3, 32.8, 31.3, 30.7, 19.5, 19.2, 18.4, 17.8, 13.8; IR (neat) 3293, 360, 2963, 2875, 1740, 1645, 1506, 1448, 1244, 910, 738, 701 cm⁻¹; FABHRMS (MH⁺) calcd for C₅₂H₅₇N₄O₇S 881.3948, found 881.3972; Anal. calcd C: 70.88; H: 6.41; N: 6.36; S: 3.64. Obs. C: 70.92; H: 6.80; N: 6.45; S: 4.02; [α]²⁰_D = -3.6 (*c* 1.0, CH₂Cl₂).

D-ValyI-*D*-CysteinyI-(*S*-triphenyImethyI)-(*Z*)-dehydrobutyrinyI-L-valine methyl ester (4).² To a solution of Fmoc-tetrapeptide **18** (800 mg, 0.91 mmol) in anhydrous CH₃CN (36 mL) at 0 °C was added Et₂NH (470 μL, 4.54 mmol). The mixture was warmed to rt and stirred for 2 h. The resulting solution was concentrated and purified by silica gel chromatorgraphy (30 : 1, CH₂Cl₂/MeOH) to afford **4** (595 mg, 0.91 mmol, quant.), which matched the reported spectroscopic data. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7 Hz, 1 H), 7.51 (s, 1 H), 7.42 - 7.17 (m, 15 H), 6.69 (q, *J* = 7 Hz, 1 H), 6.67 (d, *J* = 8 Hz, 1 H), 4.46 (dd, *J* = 6, 8 Hz, 1 H), 3.75 (q, *J* = 7 Hz, 1 H), 3.63 (s, 3 H), 3.23 (d, *J* = 4 Hz, 1 H), 2.76 (dd, *J* = 7, 13 Hz, 1 H), 2.61 (dd, *J* = 7, 13 Hz, 1 H), 2.15 (m, 1 H), 2.07 (m, 1 H), 1.63 (d, *J* = 7 Hz, 3 H), 0.92 (d, *J* = 7 Hz, 3 H), 0.86 (d, *J* = 7 Hz, 3 H), 0.76 (d, *J* = 7 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 172.7, 169.1, 164.0, 144.5, 132.6, 129.7, 128.6, 128.3, 127.1, 67.4, 60.0, 57.8, 53.0,

52.1, 32.4, 31.3, 30.9, 19.7, 19.1, 18.4, 16.5, 13.8; IR (neat) 3310, 3057, 2962, 2873, 1741, 1647, 1496, 1444, 1372, 1267, 1207, 742, 701, 671 cm⁻¹; ESI/APCI-HRMS (MH⁺) calcd for $C_{37}H_{47}N_4O_5S$: 659.3262, found 659.3254; $[\alpha]^{20}_{D} = +40.6$ (*c* 1.0, CH₂Cl₂).

Pentapeptide (19).² To a mixture of tetrapeptide 4 (3.34 g, 5.02 mmol) and acid 5 (1.67 q, 3.99 mmol) in CH₃CN (40 mL) and CH₂Cl₂ (10 mL) maintained at rt by a water bath was added BOP (3.71 g, 8.38 mmol) and *IPr*₂NEt₂ (2.9 mL, 16.8 mmol). The reaction was stirred at rt for 15 hours. The resulting solution was quenched with aq. citric acid and extracted with EtOAc. The combined organic layers were washed with NaHCO₃, brine, dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by sílica gel chromatography (1 : 1 to 1 : 4, hexanes/EtOAc) to afford 19 (4.23 g, 3.99 mmol, quant.); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1 H), 7.43 - 7.12 (m, 30 H), 6.80 (d, J = 8 Hz, 1 H), 6.75 – 6.69 (m, 2 H) 6.64 (q, J = 7 Hz, 1 H), 5.49 (dt, J = 6, 15 Hz, 1 H), 5.34 (dd, J = 5, 15 Hz, 1 H), 4.45 (dd, J = 8.3, 6.1 Hz, 1 H), 4.33 (s, 1 H), 4.09 (t, J = 6.2 Hz, 1 H), 3.92 (m, 1 H), 3.64 (s, 3 H), 3.30 (d, J = 4.0 Hz, 1 H), 2.80 (dd, J = 7.0, 13.0 Hz)Hz, 1 H), 2.62 (dd, J = 6.0, 13.0 Hz, 1 H), 2.40 (dd, J = 3, 15 Hz, 1 H), 2.28 (dd, J = 9, 15 Hz, 1 H), 2.20 - 2.10 (m, 6 H), 1.68 (d, J = 6 Hz, 3 H), 0.94 - 0.81 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃,) δ 173.0, 172.0, 169.4, 164.4, 144.9, 144.3, 132.33, 132.30, 129.6, 129.5, 128.9, 128.3, 127.1, 126.8, 69.5, 67.5, 66.7, 59.6, 58.2, 53.3, 52.2, 42.9, 32.7, 31.52, 31.45, 31.1, 30.2, 19.5, 19.2, 18.5, 18.0, 13.7; IR (neat) 3395, 3294, 3057, 2963,

2930, 1738, 1640, 1522, 1491, 1443, 848, 742, 700, 669 cm⁻¹; FABHRMS (MNa⁺) calcd for $C_{63}H_{70}N_4O_7S_2Na$ 1081.4584, found 1081.4617; $[\alpha]^{20}_{D} = -2.6$ (*c* 1.0, CH₂Cl₂).

Hydroxyacid pentapeptide (S-6). To a solution of ester 19 (2.16 g, 2.04 mmol) in THF (4 mL) under argon at 0 °C was added a solution of LiOH H₂0 (146 mg, 6.13 mmol) in H₂O (1 mL). After stirring for 2 hours at 0 °C, the reaction was poured into a mixture of EtOAc (25 mL) and 2N HCI (5 mL). The aqueous layer was extracted with EtOAc, the combined organic layers were washed with brine, filtered through cotton, and concentrated. The crude oil was purified by silica gel chromatography (1:1 to 1:8 hexanes/EtOAc + 1% HOAc). Excess HOAc was azeotropically removed by concentrating from toluene. The product was further purified by recrystallization from hexanes/EtOAc to provide S-6 (1.56 g, 1.49 mmol, 73%) as an off-white powder that is consistent with reported spectroscopic data; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (m, 34 H), 6.66 (q, J = 7 Hz, 1 H), 5.44 (dt, J = 7, 15 Hz, 1 H), 5.32 (dd, J = 7, 15 Hz, 1 H), 4.38 - 4.25 (m, 2 H), 4.08 (d, J = 6 Hz, 1 H), 3.91 (t, J = 7 Hz, 1 H), 2.35 - 2.23 (m, 2 H), 2.15 - 1.98 (m, 4 H), 1.64 (d, J = 7 Hz, 3 H), 0.88 - 0.78 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 172.3, 170.9, 169.7, 164.8, 144.8, 144.2, 132.5, 129.5, 128.5, 128.2, 128.1, 127.9, 127.0, 126.6, 69.0, 67.2, 66.6, 58.1, 53.2, 53.1, 42.8, 32.5, 31.5, 31.2, 30.6, 30.3, 21.4, 19.2, 19.0, 18.1, 17.6, 13.5; IR (neat) 3304, 3056, 2964, 2928, 2875,

1717, 1445, 419, 1393, 1265, 1034, 847, 781, 701 cm⁻¹; ESI/APCI-HRMS (MNa⁺) calcd for $C_{62}H_{68}N_4O_7S_2Na$ 1067.4422, found 1067.4398; $[\alpha]^{20}_{D} = +6.8$ (*c* 1.0, CH₂Cl₂).

Depsipeptide (**3**).³ To a solution of PPh₃ (188 mg, 0.72 mmol) in THF (25 mL) was added *p*-TsOH (27.0 mg, 0.14 mmol) and DIAD (113 μ L, 0.57 mol) at rt. The mixture was stirred at rt for 20 min and then cooled to 0 °C. To the resulting solution at 0 °C was added acid **S-6** (30 mg, 0.028 mmol) in THF (5 mL) dropwise via syringe pump over 2 h. The mixture was then stirred an additional 2 h at 0 °C and concentrated. Purification by silica gel chromatography (2 : 1 to 1 : 1 to 1 : 2 to 1 : 4, hexanes/EtOAc) afforded depsipeptide **3** as a colorless oil (7.0 mg, 0.0068 mmol, 24%); ¹H NMR (400 MHz, CDCl₃ : CD₃OD, 10 : 1) δ 7.75 (d, *J* = 7 Hz, 1H), 7.72 (d, *J* = 7 Hz, 1 H), 7.39 - 7.05 (m, 32 H), 6.79 (q, *J* = 7 Hz, 1 H), 5.53 (dt, *J* = 15 Hz, 7 Hz, 1 H), 5.45 - 5.40 (m, 1 H), 5.23 (dd, *J* = 15 Hz, 7 Hz, 1 H), 4.51 (d, *J* = 5 Hz, 1 H), 4.18 - 4.12 (m, 1 H), 3.93 - 3.83 (m, 1 H), 2.57 - 2.38 (m, 1 H), 2.31 - 2.23 (m, 4 H), 2.20 - 2.10 (m, 2 H), 2.02 - 1.91 (m, 2 H), 1.93 - 1.83 (m, 1 H), 1.64 (d, *J* = 7 Hz, 3 H), 0.92 (d, *J* = 7 Hz, 3 H), 0.88 (d, *J* = 7 Hz, 3 H), 0.85 - 0.77 (m, 6 H); ESI/APCI-HRMS (MH⁺) calcd for C₆₂H₆₇N₄O₆S₂ 1027.4502, found 1027.4487.

FK228 (1). ³ To a solution of I₂ (14.8 mg, 0.058 mmol) in MeOH (19 mL) at rt was added depsipeptide **3** (20.0 mg, 0.019 mmol). The mixture was stirred at rt for 10 min. The resulting solution was quenched with 0.2 M aqueous citrate/ 0.2 M aqueous ascorbate pH 4 buffer (10 mL). The mixture was poured onto brine and extracted with CH₂Cl₂. The combined extracts were dried (Na₂SO₄) and concentrated. Purification by silica gel chromatography (1 : 20, MeOH/CH₂Cl₂) afforded FK228 **1** as a thin film (8.5 mg, 0.016 mmol, 81%); ¹H NMR (400 MHz, CDCl₃ : CD₃OD, 10 : 1) δ 8.00 (br s, 1 H), 7.73 (d, *J* = 7 Hz, 1 H), 7.53 (d, *J* = 8 Hz, 1 H), 6.30 (q, *J* = 7 Hz, 1 H), 5.76 - 5.60 (m, 3 H), 4.67 (dt, *J* = 7, 10 Hz, 1 H), 4.49 (dd, *J* = 4, 8 Hz, 1 H), 3.94 (m, 1 H), 3.36 (d, *J* = 2 Hz, 1 H), 3.14 - 3.04 (m, 3 H), 2.94 - 2.87 (m, 1 H), 2.74 - 2.56 (m, 4 H), 2.36 - 2.29 (m, 1 H), 2.20 - 2.13 (m, 1 H), 1.68 (d, *J* = 7 Hz, 3 H), 1.06 (d, *J* = 7 Hz, 3 H), 1.04 (d, *J* = 7 Hz, 3 H), 0.97 (d, *J* = 7 Hz, 3 H), 0.94 (d, *J* = 7 Hz, 3 H); ESI/APCI-MS (MNa^{*}) calcd for C₂₄H₃₆N₄O₆S₂Na 563.40, found 563.40.

400 MHz, CDCl3

0

-2

ŝ

4

ഹ

0-

Š

-00

Դ∾

0.939

3.3. ...

400 MHz, CDCI3

10

7

-の

S23

-4

-09

-80

エーシーシー

₽.61 ——— 2.23.3 2.02 ———	
0.04 0.04 0.04	
S.18	
7.001 — 5.29 —	
7.28.0 7.30.0 7.35.7	
CDCl3	
MeO 100 MHz,	

-40

-20

-0

20

-4

-09

80-

240

400 MHz, CDCl3

S30

0

2

- M

4

ഹ

ە-

-00

ച

10

1.96

1.15 2.05

5.69

___ 0.986

~~

].92 .

].04

- 128.0	
2.251 -	

E.EO1 -

- 23'3 - 23'9	
8.rð-	
£.63-	

32.7	
9 02	

خلالمرينا والمرامل

a da da se da da se da da da se A da se d A da se d

-40

-20

S31

S37

-40

-20

-0

20

-4

-09

0.721 7.821 7.821 7.821	

-40

-20

-0

-09

-8

400 MHz, CDCl3 : CD30D (10 : 1)

-0

- 2