Status of the transcription factors database (TFD)

David Ghosh

National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894, USA

ABSTRACT

The Transcription Factors Database is a specialized database focusing on transcription factors and their properties. This report describes the present status of this database and developments during the past year. Within this time, the size of this database has increased by a 2799 total records, and has become accessible through a number of new mechanisms.

Since the last description of the status of this database, there have been relatively few changes to its organization, although it is now accessible through a larger number of mechanisms. In addition to the previously described mechanisms, which include direct downloading of the raw files of the database, it is also now accessible through a variety of Internet gopher servers and electronic mail servers (1). In release 6.4 (April 1993) there are 1941, 1010, 505, 1572, 2060, 38, 2811, 7038, 5427 records in the clones, domains, factors, polypeptides, sites, methods, n_pointers, references, x_pointers tables. The size of the 6.4 release of the database is 10.9 Mbytes in the flat-file representation, and 8.5 Mbytes in the ASN.1 representation. The most recent data dictionary for TFD is presented in Figure 1. This design contains only a minor change, in the SITES table, from previously described designs (2). This change would permit improved searches on the sites.trn_unit field, and allow easier generation of maps of previously reported, experimentally determined, binding sites for a given promoter or transcription unit. In this regard, there now exist tools developed in the Prolog environment, which permit the display and analysis of patterns of computationally determined binding sites on a given genome sequence, based on the previously described PC-Genographics interface (3,4).

The SITES table of this database has increased in size from 1887 entries in release 4.0 to 2060 entries in release 6.0. The information in this table incorporates a variety of published compilations (5-9), and these various compilations account for approximately 30% of the SITES entries. New SITES entries are checked prior to inclusion to avoid exact sequence duplicates, so that an entry from a compilation is not made when the given sequence already has a representation in the SITES table. Although a list of these entries is not provided here due to excessive size, it is available electronically in the printable text file 'SITELIST.TXT', which is derived from the more important SITES fields, from the NCBI repository FTP server and other FTP servers.

Although the SITES table is an essential component of this database, and although transcription factor binding sites are often associated with information involving other aspects of gene regulation, TFD does not attempt to provide a general model for gene regulation events. Although links have been explored between this database and other databases including a promoter

database, TFD does have several defined boundaries. Specialized databases of signal transduction, RNA processing, intracellular addressing, translational regulation, and cell lineage development may become at some stage necessary, but this database limits its contents to information about transcription factors. It is also important to point out that by any definition, the term 'transcription factor' does not limit itself to sequence-specific DNA binding proteins. Although one of the most important components of the database is information relating to this category of molecular recognition, there have existed for some time in this database, entries for DNA-binding but non-sequence-specific polypeptides and RNA-binding proteins, and the database also includes entries representing various basal transcription factors and coactivators (10,11) which are currently being studied intensively. The main criterion is that the information represent, or directly pertain to, proteins that participate in some manner in the transcription machinery, which can include such processes as attenuation, elongation, and termination, as well as initiation. The database also includes many entries corresponding to RNA polymerase subunits, which are not considered as transcription factors according to the classical definition (12). The rationale for this inclusion involves reasons of relevance of polymerase polypeptides in the transcription machinery, as well as a potential utility of this information in the testing of object-oriented methodologies to this database problem. These entries might also be useful at some stage for studying the sequence-specific proteinprotein interactions that presumably occur within active polymerase complexes. Also it is important to consider that prokaryotic sigma factors, which are required for the formation of active polymerase complexes, have been suggested to possess sequence and potentially structural similarities to eukaryotic transcription factors (13).

Various software tools currently exist for using this database. Commercial sequence analysis packages (e.g. GCG, Intelligenetics GeneWorks, IBI MacVector) contain utilities allowing SITES analysis, and a number of public domain software packages (14,15) are available from FTP servers (16). One tool, 'threedb', allows mixed sequence analysis/SQL-like retrieval queries against amino acid sequence entries in the database, and has been used thus far for one step in the characterization of a sequence motif shared by two different classes of DNA-binding domains (17). Such flexible query methods may be of particular usefulness in performing targeted analyses of sequences involved in molecular recognition phenomena in transcription. General protein sequence analysis queries and text retrieval queries can be performed on this database through the use of the NCBI Blast and Retrieve email servers.

A major current problem of the material for this database relates to the limitations of relational database technology in organizing certain types of information. Object-oriented databases have been

3118 Nucleic Acids Research, 1993, Vol. 21, No. 13

Table	Field	Length	Description	Table	Field	Length	Description
clones	clone_id	6	Clones entry identifier	n_pointers	tablel	15	name of first TFD table for this pointer
lones	fac name	20	Name of factor	n pointers	ld_1	7	identifier for TFD entry 1
lones	clone type	7	Type of clone (cdna or genomic)	n pointers	table2	15	name of second TFD table for this pointer
lones	source	10	Source of clone	n_pointers	id_2	7	identifier for TFD entry 2
lones	clone_name	10	Name of plasmid				
lones	na seq1	200	Base pairs 1-200	polypeptides	polypep_id	6	Polypeptides entry identifier
lones	na seq2	200	Base pairs 201-400	polypeptides	fac_name	20	Name given to factor
lones	na seg3	· 200	Base pairs 401-600	polypeptides	subunit	10	Name of this subunit
lones	na seq4	200	Base pairs 601-800	polypeptides	organism	20	Species name corresponding to biological source
lones	na seq5	200	Base pairs 801-1000	polypeptides	aa_seq1	200	Residues 1-200
lones	segment	2	segment identifier	polypeptides	aa_seq2	200	Residues 201-400
lones	comments	80	Comments	polypeptides	aa_seq3	200	Residues 401-600
lones	main_ref	60	Primary reference	polypeptides	aa_seq4	200	Residues 601-800
clones	ref n	8	Eight-digit NLMUID	polypeptides	aa_seq5	200.	Residues 801-1000
	_			polypeptides	segment	2	Which 1000 residue entry of complete sequence
omains	domain_id	6	Domains entry identifier	polypeptides	seq_extent	10	Partial or complete
omains	fac name	20	Name of factor	polypeptides	comments	80	Comments
lomains	struc clas	20	Structural or motif classification	polypept ides	main_ref	60	Primary reference
lomains	domain num	2	Number of domain relative to amino terminus	polypeptides	ref_n	8	Eight-digit NLMUID
lomains	seq type	1	Individual or consensus sequence (I/C)				
lomains	aa start	4	Start position in protein sequence	references	title	200	Title of publication
omains	aalend	4	Stop position in protein sequence	references	author	200	Authors of publication
omains	aa seq	150	Amino acid sequence entry (one-letter code)	references	journal	100	Citation entry corresponding to publication
lomains	func clas	15	Functional classification	references	abstract	200	First 200 characters of abstract
lomains	comments	80	Comments	references	uid	8	Eight-digit NLMUID
lomains	main_ref	60	Primary reference				
iomains	ref_n	8	Eight-digit NLMUID	sites	site_id	6	Sites entry identifier
domains	organism	20	Organism source	sites	fac_name	25	Name of factor
				sites	seq_name	30	Name of sequence or element
actors	factor_id	6	Factors entry identifier	sites	na_seq	45	Nucleic acid sequence
actors	fac_name	20	Name of factor	sites	seq_type	1	Individual or consensus sequence (I/C)
actors	distrib	5	Tissue distribution of factor	sites	system	10	Organism system class
actors	system	5	System or organism	sites	trn_unit	30	Name of transcription unit
actors	clone	1	Existing genomic or cdna (Y/N)	sites	comments	50	Comments
actors	seq_spec	1	Sequence-specific (Y/N)	sites	main_ref	70	Primary reference
actors	dna_bindin	1	DNA-binding (Y/N)	sites	fac_source	16	Source of factor used to map site
actors	modifs	15	Modifications	sites	locat_ref	20	Reference point for coordinates in "location"
actors	function	25	Function	sites	location	20	Location relative to mRNA start
actors	comments	80	Comments	sites	method	11	Hethod used to map site
actors	main_ref	60	Primary reference	sites	n_prob	8	Precomputed probability of site occurrence
actors	source	21	Source for isolation of factor	sites	ref_n	8	Eight-digit MIMUID
actors	38W	6	Molecular weight of protein	sites	strand	1	Coding or noncoding (C/W)
factors	syns	16	Alternative names used for this factor	sites	binding	1	Binding or non-binding
actors	ref_n	8	Eight-digit NLMUID				
actors	derivation	15	Description of how identitiy of the factor as	x_pointers	tfd_table	15 6	Name of TFD table referenced by this pointer Identifier of the TFD entry
			a biochemical entity is derived	x_pointers	tfd_id		External database identifier
factors	organism	20	Organism source of the factor	x_pointers	x_db	10	External database identifier Release of database referenced in "x db"
			· · · · · · · ·	x_pointers	x_release	4	
ethods	full	50	experimental method	<pre>x_pointers</pre>	х_ас	10	Accession number of the X_db entry referenced
methods	tfdcode	2	two-letter code used by TFD			10	by this pointer Entry mame of the X db entry referenced by
				x_pointers	x_entry	10	this pointer

Figure 1. Data dictionary for TFD release 7.0. From left to right, the columns indicate table name, field name, length of field, and a brief description of field contents.

suggested to be able to better encode certain relationships such as containment than can relational databases (18). Although object-oriented technologies have a much less-developed theoretical framework than do relational technologies, the information currenly present in TFD may at some stage provide suitable material for the development of an object-oriented biological database. In addition to polymerases, another example of a specific entity which might find better representation in an object-oriented, rather than a relational, database is human TFIID, a multiprotein complex and activity comprised of TBP (TATAbinding protein) and a variety of accessory TAF (TBP-associated factor) polypeptides. In concert with the development of this highly specialized and information-rich subfield of molecular biology, this database can potentially develop into one research tool for the making of knowledge discoveries, in parallel with the making of scientific discoveries (19).

ACKNOWLEDGEMENTS

The mention of commercial products or organizations does not imply endorsement by NCBI or the U.S. Government.

REFERENCES

- 1. Gilbert, D. (1993) Trends In Bioch Sci 18, 107-8.
- 2. Ghosh, D. (1992) Nucleic Acids Res 20S, 2091-3.
- Hagstrom, R., Michaels, G.S., Overbeek, R., Price, M., Taylor, R., Yoshida, K., and Zawada, D. (1992) Argonne National Laboratory Technical Report ANL-92/11.
- 4. Michaels, G.S., Taylor, R., Munson, P., Kazic, T., Hagstrom, R., Price, R., and Overbeek, R. (1993) Comput Chem, in press.

- 5. Wingender, E. (1988) Nucleic Acids Res 16, 1879-902.
- 6. Locker, J., and Buzard, G. (1990) DNA Sequence 1, 3-11.
- 7. Turpaev, K.T. and Vasetskii, E.S. (1990) Soviet Genetics 26, 504-16.
- 8. Wingender, E. (1990) Adv Mol Genet 4, 95-108.
- 9. Faisst, S. and Mayer, S. (1992) Nucleic Acids Res 20, 3-26.
- 10. Roeder, R.G. (1991) Trends In Biochemical Sciences 16, 402-408.
- 11. Gill, G., and Tjian, R. (1992) Curr Opin Genet Dev 2, 236-42.
- Lewin, B. (1992) Gene Expression, Vol. 4, pp. 543-577 (Wiley Intersciences, New York).
- 13. Jaehning, J.A. (1991) Science 253, 859.
- 14. Prestridge, D.S. and Stormo, G. (1993) Comp Appl Biosci 9, 113-115.
- 15. Faulkner, D., Smith, T.F., and Ghosh, D. (1993) In preparation.
- 16. Signalscan is available from the FTP servers: beagle.colorado.edu; molbio.umn.edu. Dynamic is available from the FTP servers: mbcrr.harvard.edu; darwin.bu.edu; phloem.uoregon.edu; reseq.regent.etechnik.tu-muenchen.de; sunbcd.weizmann.ac.il.
- Toledano, M.B., Ghosh, D., Trinh, F., and Leonard, W.J. (1993) Mol Cell Biol 13, 852-860.
- 18. Cattell, R.T.T. (1991) Commun ACM 34, 31-33.
- Frawley, W.J., Piatetsky-Shapiro, G., and Matheus, C.J. (1991) In Knowledge Discovery in Databases (ed. Piatetsky-Shapiro and Frawley, AAAI Press, Menlo Park, CA), 1-27.