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Derivation of the generalized Hamilton's rule. Our analysis is a neighbor-modulated 

formulation of kin selection, which partitions fitness into the effect of an individual's own 

genotype and the effect of social neighbors (S1, 2). We consider the situation in which there are 

two genotypes: a cooperator and a noncooperator. The social neighborhoods of these genotypes 

contain varying frequencies of cooperators. Social selection changes the abundance of the two 

strains, but mutation, recombination, and horizontal gene transfer are assumed rare enough to not 

significantly affect genotype frequencies.  

Let the absolute fitness of a genotype be w = n'/n, where n and n' are the total number of 

individuals of that genotype before and after selection. Let the g be the genotypic value of 

individuals such that cooperators have g = 1 and noncooperators g = 0. Let G be an individual's 

social environment—the frequency of cooperators among other members of the social group. 

Because we are interested in social evolution, the fitness of individuals is affected by both their 

own genotype and that of their neighbors: w = w(g,G). Any smooth fitness function can be 

expanded in a Taylor series around (g = 0, G = 0) as 
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We let baseline fitness be b0 = a and the cost of cooperation when all neighbors are 

noncooperators be d0 = –c. The covariance between fitness and genotype Cov(w, g) (S1) is then  
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Because a is a constant, Cov(a, g) = 0. Cov(g, g) = Var(g). Dividing by Var(g),  
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We let rj = 

! 

"
G

j
g
 = E(Gj

coop) – E(Gj
non) = mj

coop – mj
non, where mj

(i) is the jth moment of the 

distribution of G around G = 0 for genotype i. The regression definition of kin selection 

relatedness r = !Gg (S1) is equivalent to the first-order term r1. Higher order terms rj = 
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be thought of as higher-order relatednesses. We can write the vector of moments as mi = {m1
(i), 

m2
(i), ... } and the vector of relatednesses as r = {r1, r2, ... } = mcoop – mnon. If we let b = {b1, b2, ... 
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Selection favors cooperation when !wg > 0. That is, when  

 r • b – c + m • d > 0.  (S1)  

In the special case where all fitness effects are completely additive (Fig.  1A), w = a + b1G – cg. 

Then b = {b1, 0, 0, ... } and d = {0, 0, ... }. Substituting into equation (S1) recovers the standard 

expression for Hamilton's rule: r1b1 – c > 0. Mean fitness is 
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Bacterial strains. Myxococcus xanthus strains were obtained from G. J. Velicer (Indiana 

University). GJV1 is a descendant of the standard laboratory strain DK1622 (S3). GJV10 (S4) is 

a derivative of GJV1 with an integrated pDW79 plasmid that confers resistance to kanamycin. In 

this paper we refer to GJV10 as the cooperator strain. GJV206.3 is a laboratory-evolved cheater 

strain that is resistant to rifampicin (S5). Strains were stored at –80 C in 20% (v/v) glycerol.  

Sporulation assay. Cells were grown in 8 ml CTT growth media (S3) at 32 ºC while 

shaking at 300 rpm. Log-phase cells were centrifuged 15 min at 4500 !g and resuspended in 

TPM starvation media to a density of 5 ! 109 cells/ml. Resuspended cells were mixed at 

cooperator frequencies of 0%, 1%, 10%, 50%, 90%, 99%, or 100% of total cells. 100 µl (5 ! 108 

cells/ml) of each cell suspension was plated onto 1.5% TPM agar. Cells developed for 5 days at 

32 ºC and 90% rh. Fruiting bodies were harvested with a sterile scalpel into 1 ml dH20, heated 2 

hr at 50 ºC to kill any remaining vegetative cells, and then sonicated to disperse spores. Spores 

were serially diluted in dH2O and plated in 0.5% CTT agar. Densities of GJV10 spores were 

measured from colony counts on plates containing 40 µg/ml kanamycin (Sigma, St. Louis). 

Densities of GVB206.3 spores were measured from colony counts on plates containing 5 µg/ml 

rifampicin (Sigma, St. Louis). Replicate experimental blocks were conducted on separate days 

with cells grown independently from the same frozen stock. For each strain, absolute fitness 

during development is equivalent to sporulation efficiency: the number of cells surviving as 



 

spores divided by the number of cells plated. The inclusive fitness effect was calculated as mean 

cooperator fitness minus mean cheater fitness.  

Statistics and calculations. All statistics and calculations were performed using R 2.8.1 (R 

Development Core Team, Vienna, Austria, http://www.R-project.org) unless otherwise indicated. 

The equation for developmental fitness was determined by ANCOVA (lm procedure) on log10-

transformed fitness data. The best-fit statistical model included significant terms for intercept, 

slope (G), genotype effect on intercept (g), slope by genotype interaction (g ! G), and a quadratic 

term (G2). w(g, G) was obtained by transforming the fitted regression equation to a linear fitness 

scale.  

Values of a, b, c, and d were determined from the coefficients of the Taylor series of w(g, 

G) up to order 30, obtained using the Series command in Mathematica 7.0 (Wolfram 

Research, Champaign, IL). We emphasize that we did not fit a 30-order polynomial to our data; 

we simply represented its five-parameter statistical model in terms of its Taylor series. The 

different components of b and d are not independent of each other. m, mnon, and r were 

calculated from the moments of the experimental distribution. If G is the initial frequency of 

cooperators among developing cells within a group, then moment k of genotype i was calculated 

as E(Gk), where the expectation is taken over all cells of genotype i. The inclusive fitness effect 

!wg was calculated as in equation (S1). Error estimates were determined by bootstrap. 

Coefficients of the full statistical model were determined for 1000 instances of resampled data. 

For each of these equations, a, b, c, d, and !wg were calculated as described above.  

Lacking empirical data on the distribution of genotypes among naturally occuring M. 

xanthus fruiting bodies, we assumed for convention’s sake an island model of population 

structure (S6) in which genotypes follow a beta distribution among groups (Fig. S2, for 

example). Beta distributions of within-group cooperator frequency were implemented using the 

dbeta command in R with parameters " = 2Nm

! 

g  and ! = 2Nm(1–
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g ), where 
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cooperator frequency and 2Nm is a distribution parameter. These were then normalized to obtain 

the distribution of G for each genotype separately: G dbeta(G)/
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g  for cooperators and (1–G) 
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g ) for noncooperators. Moments mk
(i) were calculated by numerically integrating 

Gk over the probability distribution of genotype i. We varied the migration parameter 2Nm but 



 

report population structure in terms of first-order relatedness for ease of comparison. For each 

combination of parameters we calculated the inclusive fitness effect and mean fitness as 

described above.  

To determine the fit of Hamilton’s rule to nonadditive data, we simulated island models of 

population structure with 500 groups of 100 individuals using the rbeta command in R and 

other parameters as described above. Each individual was assigned a fitness based on its own 

genotype and that of its neighbors using the fitness functions described in the text. Hamilton’s 

rule was then fit to these distributions as a partial regression with fitness structure w = a – cg + 

bG using the lm command.  



Supplementary Figure 1. Limitations of Hamilton’s rule with strong nonadditivity. Solid 
lines in the top panels show an example nonadditive fitness function. Dashed lines 

show the fitness function estimated by Hamilton’s rule given the distribution shown in 

the bottom panel. Blue: cooperators. Red: noncooperators. Hamilton’s rule is effectively 

a linear regression fit to nonlinear data. This limits the amount of variation it can explain 

and in some cases leads to biologically nonsensical results like negative mean fitness at 

some cooperator frequencies [dashed blue line in (B)]. Hamilton’s rule also confounds 

fitness effects with population structure: it identifies different b and c values for (A) and 
(B) even though they have identical fitness functions. 
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Supplementary Figure 2. Kin selection relatedness in asexual microbes. (A) Hypotheti
cal distributions of cooperative genotypes among the social neighbors of cooperators 

(solid blue line) and noncooperators (solid red line). Dashed lines show distribution 

means. (B) The r in Hamilton’s rule is r
1
: the difference between the means of the distri

butions. (C) Higher order relatednesses are the differences between the higherorder 

moments of the distributions. Shown is fifthorder relatedness r
5
. 



0 1

Frequency of cooperators

among social neighbors

F
it
n
e
s
s

C

F
it
n
e
s
s

B
F
it
n
e
s
s

A

Supplementary Figure 3. The functional form of nonadditive benefits determines the 
range of social groups in which cheaters gain a net fitness advantage over cooperators. 

Red line: cheater fitness. Blue line: cooperator fitness. Shaded area: cheaters have 

greater fitness than cooperators in allcooperator social groups. (A) Decreasing returns 

from cooperation. (B) Linear returns. (C) Increasing returns. Larger shaded areas 

require more population structure to prevent invasion of cheaters. 



Supplementary Figure 4. Identifying the causes of frequencydependent social selec
tion. (A, B) In the island model of population structure, kin selection relatedness (r

1
) is 

independent of global cooperator frequency, but r (black) and m (blue) are not. Because 
selection in the Myxoccoccus example is dominated by terms of order 1015, it is these 
components of population structure that create frequencydependent selection. (C, D) 

Hamilton’s rule misleadingly places the cause of frequencydependent selection in its 

fitness terms (b and c) instead of its population structure term (r). Solid lines show the 
Myxococcus fitness function estimated in Fig. 2A, now plotted on a linear scale. Dashed 
lines show the fitness function estimated by Hamilton’s rule for the population structures 

in the panels above. The small difference in r between (C) and (D) iscaused by random
ness in the simulated population structures. 
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