
Supplementary Text S1: Columnar model, connectivity layout,

and learning rules

Neuronal model

The elementary computational units of the model are firing-rate neurons i, whose mean discharge ri ∈
[0, 1] is given by:

ri(t) = f
(
Vi(t)± η

)
(1)

where Vi(t) is the membrane potential at time t, f is the transfer function (when not specified f0(x) = x),
and η denotes random noise uniformly drawn from [0, 0.1]. The membrane potential Vi varies according
to:

τi ·
dVi(t)

dt
= −Vi(t) + Ii(t) (2)

where τi = 10 ms is the membrane time constant, and Ii(t) is the input synaptic drive. Eq. 2 is integrated
by using a time step ∆t = 1 ms. For a given neuron i receiving inputs from an afferent population J , the
synaptic drive Ii(t) is taken as:

Ii(t) = max
j∈J
{wij · rj(t)} (3)

where wij ∈ [0, 1] indicates the synaptic weight of the projection from the presynaptic neuron j to the
postsynaptic neuron i. See [1, 2] for plausible neuronal implementations of max operators.

Column network connectivity

Every column of the model assembles three units s, p, v plus a population of minicolumns, each composed
of two units q and d (Fig. 1B).

Intra-column connectivity layout

Neurons s, p respectively in layer V-VI and II-III, project onto units d of layer V-VI by means of one-
to-all non-plastic synapses. Each neuron q in layer II-III sends a constant one-to-one projection to
the corresponding d neuron in the same minicolumn. Each neuron v in layer II-III receives all-to-one
projections from neurons q in layer II-III of the column (Fig. 1B).

The activity of neurons s, p, v, q varies according to Eq. 3. The discharge of every neuron q induces a
multiplicative effect on s→ d and p→ d synapses. The synaptic drive of a d neuron is taken as:

Id(t) = max
{
wds · rs(t) , wdp · rp(t)

}
· wdq · rq(t) (4)

where wds = wdp = wdq = K = 1 denote the weight matrices of s → d, p → d, and q → d synapses,
respectively.
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Inter-column connectivity layout and input-output of the network

Before learning, the connection patterns are general for all columns of the model. They are adapted
during the learning process to specialize the network in two subpopulations C1 and C2 (Sec. Spatial
learning: encoding topological representations). The model network relies on plastic connectivity and
considers both sub-cortical projections and cortical collaterals (Fig. 1B):

• Neurons s of the model can receive three types of afferent information: (i) direct spatial inputs
from hippocampal place (HP) cells via projections wsh; (ii) indirect (pre-processed) state-related
inputs from other cortical neurons s via collaterals wss; (iii) putative proprioceptive information φ
encoding changes in motion direction (see below).

• Neurons p receive: (i) recurrent projections wpp from other neurons p of the network; (ii) collaterals
wpd from neurons d of other PFC columns (used to encode forward associations between places).

• Neurons q receive: (i) recurrent projections wqq from other neurons q of the network; (ii) collaterals
wqv from neurons v of the network (used to encode reverse place associations).

• Neurons v receive: (i) sub-cortical motivation-dependent signals via projections wvm (used during
learning to associate a column to a rewarding location); (ii) collaterals wvv from other neurons v
of the network.

• Infragranular neurons d form the outputs of the column and project to motor-related areas [3].
During exploration, each neuron d becomes selective to a specific (allocentric) motion direction.

Spatial learning: encoding topological representations

The cortical network starts with weak synaptic weights randomly initialized within [0, 0.1]. As exploration
proceeds, all plastic projections wsh, wqv, wpd, wss, wpp, wqq, wvm and wvv are learned to encode
topological maps. As shown in Fig. 1A, the cortical network model performs a two-stage processing
of state-related information. During spatial learning, a subpopulation C1 of cortical columns becomes
primarily selective to spatial inputs received directly from hippocampal place (HP) cells, whereas another
subpopulation C2 processes state-related inputs from recurrent projections from C1. For sake of clarity,
we first describe spatial learning at the level of C1 columns and then at the more abstract level encoded
by C2.

State learning in C1 population (wsh)

The state learning scheme reinforcing afferent connections from the hippocampal place cells to s units
begins when the place field representation gets stable, that is when the place field density for all places
s ∈ S visited by the simulated animal is above threshold:

∀s ∈ S
∑
h∈HP

H
(
rh(s)− η

)
> ζ (5)

where rh(s) ∈ [0, 1] is the response of a neuron h ∈ HP when the animal is visiting the location s ∈ S, η
denotes the noise level activity, ζ = 6 and H is the Heaviside function (i.e. H(x) = 1 if x > 0, H(x) = 0
otherwise). In other word, the place field representation is considered stable when at least ζ = 6 place
cells are active at any places visited by the animal.

Then, at each location visited by the animal at time t the cortical network is updated if-and-only-if
the activity of neurons s of all existing columns is below threshold:∑

s∈C1

H
(
rs(t)− ρ

)
= 0 (6)
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where rs is the firing rate of neuron s ∈ C1 and ρ = 0.3. If the novelty condition holds (Eq. 6), then a
new column becomes selective to that location by potentiating the projections wsh from all active place
cells to the neuron s of the column:

wsh = H
(
rh(t)− ρ

)
· rh(t) (7)

where rh(t) denotes the firing rates of place cells h ∈ HP. If the location visited at time t is not novel (i.e.
Eq. 6 does not hold), a winner-take-all scheme selects the most active neuron s of the cortical network and
an unsupervised Hebbian learning rule regulates the strength of its hippocampal afferents wsh according
to:

∆wsh = α · rs(t) ·
(
rh(t)− wsh

)
(8)

where α = 0.2 is the learning rate.

State connectivity learning in C1 population (wpd and wqv)

The model exploits PFC excitatory collaterals [3, 4] to encode the spatial connectivity between places.
During exploration, projections wpd and wqv (Fig. 1B) are modified to learn forward and reverse place
associations, respectively. Let c, c′ ∈ C1 denote the columns coding for the rat position before and after
a state transition, respectively. One minicolumn, i.e. a pair of q and d neurons in c, becomes selective
to this transition. In particular, the neuron d is associated to the locomotion orientation taken by the
animal to perform the transition. The weight wp′d of the projection from d ∈ c to p′ ∈ c′ and the weight
wqv′ from v′ ∈ c′ to q ∈ c are modified according to the following LTP/LTD plasticity rule:

∆wp′d = (1− λ) · (βLTP − wp′d)− λ · βLTD · wp′d (9)

where βLTP = 0.9, βLTD = 0.5, and the term (1 − λ) indicates whether the simulated animal succeeded
or failed the transition from c to c′ (λ = 0 or λ = 1, respectively). If, for example, a new obstacle
prevents the simulated rat from achieving a previously learned transition from column c to c′, then a
depression of the synaptic efficacy wp′d occurs. Note that the learning rule defined by Eq. 9 leads to
wpd, wvq ∈ [0, βLTP ].

State learning in C2 population (wss, wpp and wvv)

The example of Fig. S1 illustrates how the cortical network C2 is established and interconnected to the
population C1 during spatial exploration. Recall that the activity of neurons s2 ∈ C2 is driven by both the
collateral excitatory inputs from neurons s1 ∈ C1, but it also integrates a putative proprioceptive signal φ
used to encode the probability of steady changes in egocentric locomotion direction. For instance, φ ≈ 1
if the animal turns systematically by an angle greater than a threshold of 15◦ at a given location, whereas
φ ≈ 0 if the animal goes approximately straight. The signal φ modulates the electroresponsiveness of
neurons s2 ∈ C2. In the model, this modulation is implemented at the level of the transfer function of
neurons s2, which is taken as:

f(x) = x · γ(1−φ) (10)

with the constant parameter γ = 1.1. Note that f(x) approximates the identity transfer function f0(x)
when φ ≈ 1.

The network C2 starts with weak connectivity and unsupervised learning modifies the synaptic weight
distributions. The novelty condition to update the C2 network is slightly different from Eq. 6 because it
takes into account both the activity of units s2 ∈ C2 and the proprioceptive signal φ:

φ(t) +
∑
s2∈C2

H
(
rs2(t)− ρ

)
= 0 (11)
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If Eq. 11 holds, a new column of C2 becomes interconnected to the most active column of the network
C1 as follows. Let s1 ∈ C1 be the most active unit when the novelty condition (Eq. 11) occurs, and let
s2 ∈ C2 indicate the state neuron of the newly recruited column in C2 (Fig. S1). The s1 → s2 projection
is potentiated by:

ws2s1 = H
(
rs1 − ρ

)
· rs1 (12)

At each time step t, the following learning scheme shapes the interconnections between the most active
column in C1 and the most active column in the population C2:

∆ws2s1 = η · rs1 · rs2 · H
(
rs1 − ws2s1

)
· (1− φ) (13)

∆wv1v2 = 1− wv1v2 (14)

∆wp1p2 = 1− wp1p2 (15)

with η = 0.6. A consequence of this encoding scheme is that all C1 columns that are sequentially activated
when the simulated animal moves along a straight path (e.g. an alley) tend to be interconnected to the
same column in C2.

The activity of neurons v2, p2 ∈ C2 influences the discharge of neurons v1, p1 ∈ C1 through recurrent
connections wv1v2 , wp1p2 , respectively. In the model, this is achieved by modulating the transfer function
of units v1 ∈ C1 as follows (the same holds for the transfer function of units p1 ∈ C1):

f(x) = x · γψ (16)

where γ is a constant factor set to 1.1 and ψ = H
(

max
v2∈C2

{wv1v2 · rv2}
)
. The term ψ allows the activity

of neurons v1, p1 ∈ C1 to be enhanced in the presence of a discharge of neurons v2, p2 ∈ C2, respectively.
By contrast, f(x) reduces to f0(x) when no activity from v2, p2 ∈ C2 occurs.

State connectivity learning in C2 population (wpd, wqv, wpp and wqq)

After learning, transitions in the C2 state-space representation are likely to map steady discontinuities
in the environment structure (e.g. a L-turn in an alley of a maze). The example of Fig. S1 shows
how recurrent projections wqv, wpd, wpp, and wqq are updated when a state transition occurs in the C2

representation:

• Let c2, c
′
2 ∈ C2 be the columns encoding the states before and after a transition, respectively.

• Let (q2, d2) ∈ c2 be the minicolumn selective for the c2 → c′2 transition.

• Let c1, c
′
1 be the columns of C1 that are active before and after the transition, respectively.

• Let (q1, d1) ∈ c1 be the minicolumn selective for the c1 → c′1 transition.

At each time step t the interconnectivity between these units is updated according to:

∆wp′2d2 =
wp′2p′1 · rp′1

rd2
− wp′2d2 (17)

∆wq2v′2 =
wq2q1 · rq1

rv′2
− wq2v′2 (18)

∆wp′2p′1 = 1− wp′2p′1 (19)

∆wq2q1 = 1− wq2q1 (20)
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This mechanism allows the C2 network to adapt its topology while accounting for the goal-distance
information encoded by neurons C1. Neuron q2 ∈ C2 will mirror the activity of q1 ∈ C1, whereas p′2 ∈ C2

will mirror p′1 ∈ C1. As a consequence, the information propagated at the level of the C1 network will
also be available in C2. Thus, planning (see below) can be consistently achieved in parallel by C1 and C2

based on a bidirectional flow of information between these two cortical populations.

Exploiting the topological representation for navigation planning

Fig. S2 illustrates a simple example of activation diffusion process mediated by the columnar network
model during planning. A putative motivation signal first elicits the activity of neurons v in the columns
of C1 and C2 associated to the goal location (Fig. S2A). The reward-based activity of neurons v is
then back-propagated through the reverse state associations encoded by collaterals wvq ∈ C1, C2. Each
synaptic relay along the neural pathway formed by wvq projections attenuates the back-propagating
activity (wvq < 1). Thus, the activation diffusion mechanism produces an exponential decrease of the
intensity of the goal signal that propagates through the network of columns. It is worth noting that the
recurrent dynamics induced by wv1v2 and wq2q1 increases the time constant of the exponentially decaying
propagation (Eqs. 16 and 17). For example, after 10 synaptic relays the activity of a neuron v ∈ C1

would be rv ≈ 0.35 without recurrent dynamics vs. rv ≈ 0.9 with the C2 modulation (Fig. S2B). Hence,
the goal-dependent signal can spread over a larger number of columns before reaching the critical level
of neuronal noise.

Since the receptive fields of C1 columns tend to be evenly distributed, the intensity of the goal signal
at a given place encodes the distance to the rewarding location. The learning rule implemented for
collateral weights in C2 (Eq. 17) allows this distance-to-goal coding property to be conserved at the level
of the C2 population.

The activity of d neurons integrates this reverse activity flow with the current state in both C1 and
C2 populations (Eq. 4). In particular, the occurrence of the q input is a necessary condition for a neuron
d to fire. In the presence of the q input, either the hippocampal signal relayed by the neuron s or the
cortical input transmitted by neuron p is sufficient to trigger the discharge of a unit d (Eq. 4). When
the back-propagated goal signal reaches the column selective for the current position, the coincidence of
the state-related hippocampal input conveyed by s neurons and the goal-related input transmitted by
q neurons activates the neuron d, which in turns triggers the forward propagation of a pathway signal
through projections wpd. The activity of d neurons also conveys distance-to-reward information (because
d neurons are partially driven by q neurons). Thus, at each step of the forward propagation, the motor
action associated to the most active neuron d can be selected and the sequence of actions from the current
position to the goal can be iteratively readout (Fig. S2A).
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