SUPPLEMENTARY INFORMATIONS

SUPPLEMENTARY METHODS

1. Other yeast strains

CM3260 (MATa, trpl-63, leu2-3, 112 gcn4-101, his3-609), and isogenic Y18 (aftl::TRP1) and Y18aft2A
(aftl::TRP1, aft2:: kanMX4) were described (Blaiseau et al, 2001); CKY263 strain and isogenic derivative erol-
1 (CKY598) are gift from Chris Kaiser (Massachusetts, USA) (Frand & Kaiser, 1998); fet3A, grx3A and grx4A
are from the EUROSCAREF collection; grx3Agrx4A was constructed by integrating URA3 at the GRX4 locus of
grx3A; gshlAgrx3Agrx4A was constructed by integrating LEU?2 at the GSHI locus of grx3Agrx4 A.

2. Growth conditions for the microarray analyses

The response to toxic GSH levels was established by comparing the mRNA profiles of HGT1 cells grown in the
presence of 50 uM GSH during 5 min, 30 min, and 4 hrs to the same cells grown without GSH. GSH was added
to the culture media when cells were in the exponential growth phase (ODgy, ~ 0.3). The response to GSH
depletion was established by comparing the mRNA profiles of gsh/A cells grown in SD medium lacking GSH to
the same cells grown in the presence of 1 uM GSH, which corresponds to the minimum GSH concentration
supporting a wild-type growth of gshlA cells (not shown). To achieve GSH depletion, gshIA cells were grown in
YPD overnight, re-inoculated at an ODyy, = 0.1 in SD medium containing 1 uM GSH and grown up to the
stationary phase. Cells were then washed, re-inoculated at an ODgy, = 0.1 in SD medium containing (reference
sample) or not (experimental sample) 1uM GSH and grown for either 3 or 6 divisions.

3. Microarray statistical analyses

Raw data sets from the 5 experimental conditions were combined and normalized by the Lowess algorithm
method. Principal Component Analysis (PCA) and Condition Tree based on Hierarchical clustering were
performed using the unfiltered data sets. Average log ratios were calculated, since each condition had four (2
replicate x 2 dye swaps) slides. Data from the three and six division GSH depletion samples were highly similar
(supplementary fig S2, A and B) and were therefore treated as replicate samples of the same condition. Genes
were considered statistically differentially expressed when flagged as present in 2 out of the 20 arrays (that is
present in at least one replicate), with statistically significant differences established by the 1-way test ANOVA,
family-wise error rate of 0.05 and multiple testing corrections (Bonferroni-Holm, step-down method). These two
criteria identified 961 genes in the 4 conditions (one for the gshlA cells, three for HGT1 cells), out of which
those with an expression change of = 2 fold were considered induced or repressed. A lower cutoff of = 1.7 fold
was used for the 5 min HGT1 condition.

4. Primers used for quantitative RT-PCR

FET3 (TCAGCATGCCTTCATTCCTACCG, ACCGGCAAAGCAGGAGAATGTO), KAR?2
(TGATAACTTTGAAACCGCCATTG, GTAATTGGATAAGCGACCTTGGA), ACTI
(CTATTGGTAACGAAAGATTCAG, CCTTACGGACATCGACATCA).

5. Calculation of the GSH redox potential

Egsy Was calculated by the Nernst equation at 30 °C: Eqgy = E g - 60.1 mV/2 log [GSH]Y[GSSG], using the
recorded GSH and GSSG concentrations in mM/cell, and the standard redox potential (E’ ;) of GSH at pH 7.0
(-240 mV) (Schafer & Buettner, 2001).
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Table S1. Genes induced/repressed in HGT1 cells after 5 min exposure to 50 pM GSH

Average normalized ratios are in relation to HGT1 cells grown in the presence of GSH (50 uM) during 5 min
versus HGT1 cells grown in the absence of GSH. Values are averages of 2 biological and technical experiments
including dye swaps between experimental (with 50 uM GSH) and reference (without GSH) samples. Genes
with average expression ratios = 1.7 were considered up regulated, while those with average expression ratios =
0.59 down regulated.

*Yeast genes induced during ER stress generated by DTT and tunicamycin in either or both of the two
microarray-based mRNA profiling studies performed (Kimata et al, 2006; Travers et al, 2000).

$Genes repressed during ER stress (Kimata et al, 2006).

Aftlp-dependent genes are indicated in bold letters; Aft2p dependent genes are indicated in italics; Aftlp and
Aft2p co-regulated genes are underlined (Rutherford et al, 2003).

Genes present in more than one functional category are indicated with grey letters.

Table S2. Genes induced/repressed in HGT1 cells after 30 min exposure to 50 uM GSH

As table S1, except that HGT1 cells grown in the presence of GSH (50 uM) during 30 min, genes with average
expression ratios = 2 were considered up regulated, while those with average expression ratios < 0.5 down
regulated.

Table S3. Genes induced/repressed upon GSH depletion.

Average normalized ratios are in relation to gsh/A strain grown in the absence of GSH for 3 and 6 divisions
versus gshlA grown in the presence of 1uM GSH. The transcript profiles were established using the pooled 3
and 6 division GSH-withdrawn duplicate samples that were highly similar (see supplementary fig. S2). Values
are thus averages of 8 biological and technical experiments including dye swaps between experimental (without
GSH) and reference (1 uM GSH) samples. Genes with average expression ratios = 2 were considered up
regulated, while those with average expression ratios < 0.5 down regulated.

Aftlp-dependent genes are indicated in bold letters; Aft2p dependent genes are indicated in italics; Aftlp and
Aft2p co-regulated genes are underlined (Rutherford et al, 2003).

*Aftlp/Aft2p-regulated genes regulated by Yaplp (Wheeler et al, 2003).

Genes that are present in more than one functional category are indicated in grey letters.
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Figure S1. GSH is rapidly degraded in HGT1 cells. (A) WT and HGT1 cells were grown in SD medium to an
ODg = 0.3-0.4 at which time GSH (100 xM) was added. 1 ml culture taken before GSH addition, or 30 or 240
min after, was filtered rapidly through a 0.2uM filter. The filtrate was used for GSH estimation by direct
introduction mass spectrometry on a LTQ-orbitrap Discovery (Thermo Fisher Scientific) mass spectrometer, as
detailed elsewhere (Godat et al). Values are the mean of three independent samples. Error bars correspond to
means + S.D. The values on the y-axis are arbitrary units (AU), and correspond to the surface areas of GSH
peaks. (B) WT, duglA, dug?A dug3A and ecm38A (y-glutamyl transpeptidase) overexpressing HGT1 were re-
inoculated in fresh SD medium at an ODg, ~ 0.1, and grown for 1 hr before adding 50 uM GSH; growth was
recorded by measuring the ODy, at regular intervals. (C) WT, duglA, dug2A and dug3A were grown in SD
medium in the presence of 100 uM GSH, and the concentration of GSH was determined by direct introduction
mass spectrometry on a LTQ-Orbitrap (Godat et al). Samples preparation is as described for the GSH estimation
by LC-tandem MS. Values are the mean of three independent samples. Error bars correspond to means + S.D. Y
axis values are arbitrary units (AU) that correspond to the surface areas of the GSH peaks extracted from mass
spectra.
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Figure S2. Microarray data replicate analysis by Principal Component analyses (PCA) (A) and
Hierarchical Clustering (B). Clustering was performed on the entire unfiltered expression dataset that
comprised 6403 x 10 x 2 = 128060 genes from the 5 different experimental conditions, including biological
replicates and technical dye swap experiments. The 5 conditions comprised the three time points performed with
HGT1 cells grown with 50 uM GSH (5 min, 30 min and 4 hrs) and the 2 time points performed with gshlA
grown in the absence of GSH (3 and 6 cell divisions). Each colored circle (A) or bar (B) represents average data
from a biological replicate and the corresponding technical dye swap array.
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Figure S3. Comparison of the transcriptional response of HGT1 cells exposed to GSH during 5 and 30
min. The list of differentially expressed genes in HGT1 cells exposed to 50 uM GSH during either 5 or 30 min
was compared using a Venn diagram. The table displays the 35 commonly regulated genes in the two conditions
sorted out into major functional categories. The complete lists of regulated genes, along with average normalized

ratios are given in supplementary tables S1 and S2.
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ERAD 8 Amino acid/ nitrogen metabolism 4
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Figure S4. The transcriptional response to GSH toxic levels overlaps with the ER stress unfolded protein
response. (A) The list of 375 expressed genes after a 30 min exposure of HGT1 cells to 50 uM GSH was
compared to the list of the 438 expressed genes in response to DTT or tunicamycin identified elsewhere (Kimata
et al, 2006; Travers et al, 2000) by Venn diagram. (B) The functional categories enriched within the 115
commonly regulated genes. (C) The list of 375 expressed genes after a 30 min exposure of HGT1 cells to 50 uM
GSH was compared to the list of the 226 expressed in ire/A HGT1 cells under the same experimental conditions.
(D) The functional categories enriched within the 65 commonly regulated genes.
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Figure S5. (A) GSH toxic levels activate Aftl in an iron-dependent fashion. WT cells co-expressing pRS314-
TEF-HGTI and pTEF-AFTI-GFP in the exponential phase were incubated with the indicated amount of GSH
during 30 min and GFP staining was examined by fluorescence microscopy (left panel). DAPI nuclear staining
(middle panel) and visible light image (right panel) are shown. (B) Excess GSH increases total cellular iron.
WT cells transformed with pRS314-TEF-HGT1 were inoculated in 250 ml of SD medium without or with GSH
(100 uM), grown 1 hr to an ODg,, = 0.3-0.4, and their iron content determined (moles Fe/cell). Values are the
mean of three independent samples. Error bars correspond to means + S.D. (C) Iron high affinity uptake
inactivation does not change GSH toxicity. WT, fet3A, aftl A, and aft] Aaft2 A transformed with pRS314 (V) or
pRS314-TEF-HGTI (HGT1) grown to saturation in SD medium, serially diluted and spotted onto SD plates
containing the indicated amount of GSH. FeCl; (100 uM) was added into plates shown in the lower panel to
support aftl Aaft2A growth. (D) WT, grx3A, or grx3Agrx4 A transformed with either pRS316 (Vv), pPRS316-Grx4-
His, pRS426-Grx4-His, pRS316-Grx4 or pRS426-Grx4, as indicated, were processed for western blot with an
anti-His antibody (left) (the image derives from a larger one that was trimmed), or monitored for growth in SD
medium by turbidity as the indicated time (hrs) to assess transgenes functionality (right). Data are from one
experiment. (E) Grx4 over expression slightly decreases induction of FET3 by excess GSH. WT cells
transformed with pRS314-TEF-HGTI (HGT1) and pRS426 (V) or pRS426-Grx4-His as indicated were
incubated 1 hr in SD medium containing the indicated amount of GSH (uM) and processed for FET3 expression
measured by RT-PCR, which is given as FET3/ACTI signal ratio. Values are the mean of triplicate samples of
the same experiment = S.D. (F) Grx4 over expression increases GSH toxicity. WT cells transformed with
either pRS314 (V), pRS314-TEF-HGTI1 (HGT1) or pRS426-Grx4-His as indicated, were grown to saturation in
SD medium, serially diluted and spotted onto SD plates containing the indicated amount of GSH.
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Figure S6. The effect of toxic GSH levels on the secretory pathway (A) Exponentially growing HGT1 and
WT cells were incubated 10 min in PBS containing Peroxyfluor-1 (PF1) (10 uM), washed and incubated into
PBS containing or not GSH (100 uM) during the indicated time, or supplemented with H,0, (200 uM, 5 min).
Cells were analyzed by fluorescence microscopy. Data are typical of three independent experiments. (B) WT and
cells expressing the temperature sensitive ERO1 allele erol-1 carrying or not pRS416-TEF-HGT! (HGT1) or
vector control (V) were grown to the exponential phase in SD medium lacking GSH, serially diluted and spotted
onto SD plates containing the indicated amount of GSH, and incubated at the non-restrictive temperature. (C)
WT and irelA cells carrying pRS416-TEF-HGTI (HGT1) were inoculated into SD medium containing the
indicated amount of GSH. Growth was monitored by turbidity.
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Figure S7. (A) GSH depletion activates Aftl. gshlA cells carrying pTEF-AFTI-GFP were cultured in SD
medium containing 100 uM GSH until saturation, collected and re-inoculation in SD media containing the
indicated amount of GSH, grown for 3 divisions (6-7 hrs) and analyzed for GFP staining. (B) Iron rescues GSH
auxotrophy. YPD-grown gshlA cells were depleted of GSH by growth for six divisions in SD medium lacking
GSH, serially diluted, spotted onto SD plates containing or not FeCl; (100 uM) or GSH (1 mM), and incubated
under aerobic (left) or anaerobic (right) conditions. (C) GSHI and GRX3/GRX4 are synthetic lethal. WT
(S288C background, EUROSCARF (BY4741) and its derived mutants gshiA, grx3Agrx4A and
gshlAgrx3Agrx4A were depleted of GSH by growth for 8 division in SD medium lacking GSH; 2 10° cells of the
corresponding cultures were spotted on plates containing the indicated amount of GSH. Data are assembled from
different plates.
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