Online supplemental materials

Supplementary Figure 2 Expression of transcription factors in $Nfil3^{-/-}$ T_H1 cells. Quantitative real-time RT-PCR was performed to determine the level of expression of T_H1 transcription factors. Data show the mean and s.d. from three experiments. n.s.: not significant.

Supplementary Figure 3 Altered IL-9, IL-10, and IL-3 production in *Nfil3^{-/-}* T_H2 cells (A) Intracellular staining for IL-9 of T_H2 and T_H-9 cells. Restimulated cells were stained and analyzed by flow cytometry. Data are representative of three experiments with similar results. (B) Increased expression of *119* mRNA in *Nfil3*^{-/-} T_H^2 cells. Expression of mRNA was determined by quantitative real-time RT-PCR. Data show the mean and s.d. from three experiments (*p < 0.001). (C) Intracellular staining for IL-10 of T_H1 and T_H2 cells. Restimulated cells were stained and analyzed by flow cytometry. Data are representative of four experiments with similar results. (**D**) Decreased expression of *II10* mRNA in *Nfil3^{-/-}* $T_{H}2$ cells. Expression of mRNA was determined by quantitative real-time RT-PCR. Data show the mean and s.d. from four experiments (*p < 0.001). (E) Decreased secretion of IL-10 by T_H1 and T_H2 cells restimulated with anti-CD3/CD28 for 24 hours. Cytokine concentration was determined by ELISA and data show the mean and s.d. from four experiments (*p < 0.01). (F) Intracellular staining for IL-3 of T_H2 cells. Restimulated cells were stained and analyzed by flow cytometry. Data are representative of four experiments with similar results. (G) Decreased expression of *Il3* mRNA in *Nfil3-/-* T_H2 cells. Quantitative real-time RT-PCR was performed to determine the level of expression of *Il3* mRNA. Data show the mean and s.d. from four experiments (*p < 0.1). (H) Decreased secretion of IL-3 by Nfil3^{-/-} T_H2 cells restimulated with anti-CD3/CD28 for 24 hours. Cytokine concentration was determined by ELISA and data show the mean and s.d. from four experiments (*p < 0.1).

Supplementary Figure 4 Normal IL-4 signaling, *Il4ra* expression, and proliferation of *Nfil3^{-/-}* T cells.

(A) Purified splenic CD4⁺ T cells from WT and *Nfil3^{-/-}* mice were unstimulated (shaded histogram) or stimulated (open histogram) with IL-4 for 20 min and analyzed for intracellular expression of phospho-STAT6 by flow cytometry. Three experiments were performed with similar results. (B) Expression of *Il4ra* gene in T_H0 and T_H2 cells was determined by quantitative real-time RT-PCR. Data show the mean and s.d. from three experiments. (C) Thymidine incorporation by CD4⁺ T cells from WT (gray bars) and *Nfil3^{-/-}* mice (black bar) in response to stimulation indicated. Mean values of [³H]-thymidine incorporation are indicated. Two experiments were performed with similar results.

Supplementary Figure 5 IL-4 does not negatively regulate *II13* and *II5* expression in differentiated T_H^2 cells. Quantitative real-time RT-PCR was performed to determine the level of expression of *Nfil3*, *II13*, *II5* genes after neutralization of IL-4 by α IL-4 antibody in T_H^2 T cells. Data show the mean and s.d. from three experiments. *p<0.01, n.s. not significant.

Supplementary Figure 6 Altered T_H^2 cytokine production in *Nfil3*-/- T cells cultured under neutral conditions. (A) Increased IL-13 and IL-4 production in *Nfil3*-/- T cells. CD4+ T cells cultured under neutral conditions were restimulated with PMA/ionomycin, and cytokine production was determined by intracellular staining. Data are representative of three experiments with similar results. (B) Increased expression of *Il13* and *Il4* mRNA in *Nfil3*-/- T cells. Expression of mRNA was determined by quantitative real-time RT-PCR. Data show the mean and s.d. from three experiments (*p < 0.0001, **p < 0.005, ***p <0.02, ****p < 0.002).

Supplementary Figure 7 GATA3 is not required for *Nfil3* expression. (A) Quantitative realtime RT-PCR was performed to determine the level of expression of *Nfil3* in GATA3-knocked down T_H^2 cells. Data show the mean and s.d. from three experiments. (B) Western blot analysis of GATA3 protein in GATA3-knocked down D10.G4.1 cells. Three experiments were performed with similar results.

Supplementary Figure 8Altered T_H^2 cytokine production by NFIL3 overexpressionand Nfil3 knockdown during the late stage of T_H^2 differentiation.

(A) Splenic CD4⁺ T cells from *Nfil3^{-/-}* mice cultured under T_H^2 conditions for 6 days were infected with retroviruses carrying NFIL3 or empty vector. Infected cells were cultured for an additional 2 days under T_H^2 conditions and then restimulated with PMA/ionomycin in the presence of Brefeldin A to examine cytokine production by intracellular staining. Data are representative of two experiments with similar results. (B) Splenic CD4⁺ T cells from *Nfil3^{+/+}* mice cultured under T_H^2 conditions for 6 days were infected with lentivirus carrying *Nfil3* shRNA or scramble shRNA. Infected cells were cultured for an additional 2 days under T_H^2 conditions and then restimulated with PMA/ionomycin in the presence of Brefeldin A to examine cytokine production by intracellular staining. Data are representative of two experiments with similar results.

Supplementary Figure 9 GATA3 binding activity to CGRE is not affected by NFIL3. Splenic CD4⁺ T cells from WT and *Nfil3^{-/-}* mice cultured under $T_H 1$ and $T_H 2$ conditions for 7 days were crosslinked and soluble chromatin complexes were immunoprecipitated by anti-GATA3 antibody or control IgG. The region including CGRE in the co-precipitated DNA was amplified by PCR. The β -globin gene was used as a negative control. The average and s.d. of enrichment from three experiments were indicated (* *p* < 0.05, ** *p* < 0.005).

Supplementary Figure 10 JunB binding to the *Il4* promoter in $T_H 1$ and $T_H 2$ cells. Splenic CD4⁺ T cells from WT and *Nfil3^{-/-}* mice cultured under $T_H 1$ and $T_H 2$ conditions for 7 days were crosslinked and soluble chromatin complexes were immunoprecipitated by anti-JunB antibody or control IgG. The *Il4* promoter region in the co-precipitated DNA was amplified by PCR. The average and s.d. of enrichment from three experiments were indicated (* p < 0.005, ** p < 0.0005).

Supplementary Figure 11 Chromatin modification in the *Il4* promoter region.

Splenic CD4 T cells from WT and *Nfil3*^{-/-} mice cultured under T_H^2 conditions for 7 days were crosslinked and soluble chromatin complexes were immunoprecipitated by anti-acetyl Histone H3, anti-di + tri methyl Histone H3, or control IgG. The promoter region of the *Il4* gene in the coprecipitated DNA was amplified by PCR. The average and s.d. of enrichment from three experiments were indicated (n.s.: not significant).

Supplementary Figure 12 JunB transduction into $Nfil3^{-/-}$ T_H2 cells does not restore IL-4 production.

(A) Splenic CD4⁺ T cells from *Nfil3^{-/-}* mice cultured under T_H^2 conditions for 6 days were infected with lentiviruses carrying JunB or empty vector. Infected cells were cultured for an additional 2 days under T_H^2 conditions and then restimulated with PMA/ionomycin in the presence of Brefeldin A to examine cytokine production by intracellular staining. Data are representative of two experiments with similar results. (B) Relative expression of *Junb* in *Nfil3^{-/-}* T_H^2 cells after transduction of JunB-expressing virus. The average and s.d. from two experiments were indicated (*p < 0.001).

Primer	Sequence (5' to 3')
Nfil3 forward	GAACTCTGCCTTAGCTGAGGT
Nfil3 reverse	ATTCCCGTTTTCTCCGACACG
Hprt1 forward	GTTGGATACAGGCCAGACTTTGTTG
<i>Hprt1</i> reverse	GATTCAACTTGCGCTCATCTTAGGC
<i>Il13</i> forward	CCTGGCTCTTGCTTGCCTT
Il13 reverse	GGTCTTGTGTGATGTTGCTCA
<i>Il4</i> forward	GGTCTCAACCCCCAGCTAGT
<i>Il4</i> reverse	GCCGATGATCTCTCTCAAGTGAT
<i>Il5</i> forward	CTCTGTTGACAAGCAATGAGACG
<i>Il5</i> reverse	TCTTCAGTATGTCTAGCCCCTG
<i>Il9</i> forward	AAGGATGATCCACCGTCAAAATG
<i>Il9</i> reverse	ACCCGATGGAAAACAGGCAAG
<i>Il3</i> forward	GGGATACCCACCGTTTAACCA
<i>Il3</i> reverse	AGGTTTACTCTCCGAAAGCTCTT
<i>Il10</i> forward	GCTCTTACTGACTGGCATGAG
<i>Il10</i> reverse	CGCAGCTCTAGGAGCATGTG
Ifng forward	GAACTGGCAAAAGGATGGTGA
Ifng reverse	TGTGGGTTGTTGACCTCAAAC
Gata3 forward	CTCGGCCATTCGTACATGGAA
Gata3 reverse	GGATACCTCTGCACCGTAGC
Junb forward	TCACGACGACTCTTACGCAG
Junb reverse	CCTTGAGACCCCGATAGGGA
Stat6 forward	CTCTGTGGGGGCCTAATTTCCA
Stat6 reverse	CATCTGAACCGACCAGGAACT
Bhlhe41 forward	TGTGTAAACCCAAAAGGAGCTT
Bhlhe41 reverse	TGTTCGGGCAGTAAATCTTTCAG
<i>Maf</i> forward	AGCAGTTGGTGACCATGTCG
<i>Maf</i> reverse	TGGAGATCTCCTGCTTGAGG
Jund forward	GGCGGGATTGAAACCAGGG
Jund reverse	AGCCCGTTGGACTGGATGA
Fosl1 forward	ATGTACCGAGACTACGGGGAA
Fosl1 reverse	CTGCTGCTGTCGATGCTTG
Fosl2 forward	CCAGCAGAAGTTCCGGGTAG
Fosl2 reverse	GTAGGGATGTGAGCGTGGATA
<i>Nfatc1</i> forward	TCTTCGAGTTCGATCAGAGCG
<i>Nfatc1</i> reverse	TGACACTAGGGGACACATAACTG
Mina forward	CAGTAGGGCCAGATAAGAATCCAT
Mina reverse	CATGTGCATCTGCCTCACATT
<i>Tbx21</i> forward	AGCAAGGACGGCGAATGTT
<i>Tbx21</i> reverse	GGGTGGACATATAAGCGGTTC
Stat1 forward	TCACAGTGGTTCGAGCTTCAG
Stat1 reverse	GCAAACGAGACATCATAGGCA

RT-PCR

Stat4 forward	TGGCAACAATTCTGCTTCAAAAC
Stat4 reverse	GAGGTCCCTGGATAGGCATGT
Runx3 forward	CAGGTTCAACGACCTTCGATT
Runx3 reverse	GTGGTAGGTAGCCACTTGGG
Il4ra forward	TGGATCTGGGAGCATCAAGGT
Il4ra reverse	TGGAAGTGCGGATGTAGTCAG
Irf4 forward	TCCGACAGTGGTTGATCGAC
Irf4 reverse	CCTCACGATTGTAGTCCTGCTT
Sfpi1 forward	ATGTTACAGGCGTGCAAAATGG
Sfpil reverse	TGATCGCTATGGCTTTCTCCA
Pias1 forward	GCGGACAGTGCGGAACTAAA
Pias1 reverse	ATGCAGGGCTTTTGTAAGAAGT

ChIP

Primer	Sequence (5' to 3')
CGRE forward	TGGGACACTGATCCAGCGGTCCAG
CGRE reverse	CTCAAGACAAGCAGAAGGCATGCG
<i>Il13</i> promoter forward	GCTGGCTGCTCAGGAGCTT
<i>Il13</i> promoter reverse	GGACAGGGTTTCCAGGTTCTG
Il13 intron forward	GTGAGTAGCACACACAGCCCCTCC
Il13 intron reverse	TGATAAACAGTGGTCGCCACTCC
<i>Il4</i> promoter forward	GGGAGGGGTGTTTCATTTTC
<i>Il4</i> promoter reverse	CAATAGCTCTGTGCCGTCAG
β-globin forward	GCCTTGCCTGTTCCTGCTC
β-globin reverse	CAGACCATAAACTGTATTTTTTTTTTGAGCC