SUPPLEMENTAL DATA

Analysis of the host microRNA response to *Salmonella* uncovers the control of major cytokines by the *let-7* family

Leon Schulte, Ana Eulalio, Hans-Joachim Mollenkopf, Richard Reinhardt, Jörg Vogel

Content of Supplemental Data:

Tab S1	454 read mapping-efficiency
Tab S2	Read abundance of significantly regulated miRNAs (RAW 264.7)
Tab S3	Read abundance of significantly regulated miRNAs (HeLa)
Fig S1	Scatter plots 454 results (SPI-mutant infection)
Fig S2	Analysis of miRNA-expression over time (RAW 264.7 cells)
Fig S3	Regulation of <i>let-7</i> and miR-155 in HeLa cells
Fig S4	Apoptosis and cytotoxicity assays (RAW 264.7 cells)
Fig S5	<i>let-7</i> regulation in TLR4 ^{-/-} macrophages exposed to <i>Salmonella</i>
Fig S6	Identification of <i>let-7</i> target sites within IL-6 and IL-10 3' UTRs
Fig S7	Cytokine expression upon ectopic <i>let-7</i> regulation (RAW 264.7)
Fig S8	<i>let-7</i> expression in MEF cells

Table S1. Small RNA libraries

Salmonella strain ^a	cell type ^b	time-point (h) ^c	total number of reads ^d	% of mapped reads ^e
	RAW 264.7	0	43958	76.725
WT	RAW 264.7	4	47015	76.744
ΔSPI1	RAW 264.7	4	33712	75.917
ΔSPI2	RAW 264.7	4	40090	69.104
Δ SPI1/2	RAW 264.7	4	41276	79.763
WT	RAW 264.7	24	47932	72.766
ΔSPI1	RAW 264.7	24	42484	81.261
ΔSPI2	RAW 264.7	24	40434	79.032
Δ SPI1/2	RAW 264.7	24	41084	82.640
	HeLa	0	48691	76.004
WT	HeLa	4	49258	74.260
WT	HeLa	8	40293	66.857
WT	HeLa	24	60039	51.566
-	HeLa	24	48319	82.175

^a Salmonella strain used for infection

^b infected host cell type

 $^{\rm c}$ time-point post infection at which samples for cDNA library preparation were taken

^d obtained number of 454 reads per library

^e percentage of reads in the library that could be mapped to Sanger miRBase sequences

time-point ^a	0	24	24	24	24	24
strain ^b	-	WT	SPI1	SPI2	SPI1/2	-
	% of all reads ^c					
mmu-miR-155	0.41	10.51	9.20	8.53	9.81	0.54
mmu-miR-146a	0.12	0.49	0.30	0.25	0.41	0.14
mmu-miR-146b	0.11	0.42	0.41	0.35	0.45	0.12
mmu-miR-21	0.76	2.59	6.84	7.65	7.19	0.69
mmu-let-7a	1.33	0.51	0.52	0.55	0.04	1.01
mmu-let-7c	0.90	0.38	0.54	0.61	0.68	0.84
mmu-let-7d	0.64	0.30	0.30	0.35	0.24	0.66
mmu-let-7f	2.27	1.06	1.63	1.80	1.31	2.21
mmu-let-7g	1.20	0.60	0.82	0.82	0.70	1.27
mmu-let-7i	0.36	0.14	0.44	0.42	0.50	0.35
mmu-miR-98	0.14	0.06	0.07	0.06	0.05	0.15
mmu-miR-27b	5.59	6.25	3.89	3.60	4.35	7.61
mmu-miR-27a	3.75	1.32	4.39	4.17	4.21	5.14
mmu-miR-222	0.53	0.91	0.61	0.59	0.70	0.35
mmu-miR-1928	0.15	0.27	0.13	0.17	0.18	0.14
mmu-miR-30a	0.06	0.04	0.12	0.15	0.11	0.05
mmu-miR-101a	0.04	0.06	0.16	0.16	0.19	0.07
mmu-miR-151-3p	0.05	0.02	0.10	0.08	0.05	0.03
mmu-miR-142-5p	0.30	0.43	0.60	0.60	0.71	0.35
mmu-miR-182	0.25	0.32	0.44	0.51	0.42	0.23
mmu-miR-185	0.25	0.15	0.13	0.09	0.08	0.28
mmu-miR-190	0.01	0.00	0.00	0.00	0.00	0.01
mmu-miR-191	1.37	1.37	2.02	1.81	1.65	0.92
mmu-miR-30e	0.11	0.09	0.27	0.31	0.33	0.10
mmu-miR-19b	0.23	0.16	0.53	0.53	0.55	0.24
mmu-miR-22	0.16	0.35	1.04	1.10	1.05	0.25
mmu-miR-26b	1.37	0.68	0.55	0.48	0.67	1.05
mmu-miR-92a	1.98	0.83	0.72	0.66	0.50	1.13
mmu-miR-96	0.03	0.02	0.13	0.12	0.13	0.05
mmu-miR-340-5p	0.06	0.08	0.11	0.07	0.09	0.05
mmu-miR-320	0.30	0.18	0.10	0.10	0.09	0.20
mmu-miR-103	1.33	1.08	0.92	0.80	1.08	1.57
mmu-miR-107	0.61	0.43	0.38	0.34	0.39	0.70
mmu-miR-222	0.53	0.91	0.61	0.59	0.70	0.35
mmu-miR-7a	0.10	0.22	0.37	0.32	0.41	0.12
mmu-miR-362-3p	0.10	0.11	0.05	0.04	0.07	0.13
mmu-miR-378	0.51	0.25	0.24	0.22	0.17	0.45
IIIMU-MIK-425	0.08		0.31	0.29	0.29	0.10
IIIMU-MIK-1939	0.85	1.54	0.95		0.54	1.52
mmu-mik-1961	0.17	0.09	0.05	0.05	0.07	0.15
mmu-miR-805	0.21	0.01	0.02	0.00	0.01	0.09

Table S2. Abundance of significantly regulated miRNAs in RAW 264.7 cells

^a time-point post infection at which samples for cDNA-library preparation were taken

^b applied *Salmonella* strain

^c percent of reads in the respective library that match to the miRNA indicated; values in the shadowed fields below denote regulations greater two-fold

Table S3. Abundance of significantly regulated miRNAs in HeLa cells

time-point ^a	0	24	24		
strain ^b	-	WT	-		
	% of all reads ^c				
hsa-miR-1308	0.075	0.29	0.10		
hsa-let-7a	1.08	0.59	1.22		
hsa-let-7b	0.43	0.21	0.50		
hsa-let-7d	0.18	0.08	0.18		
hsa-let-7f	0.92	0.62	0.96		
hsa-let-7i	0.36	0.18	0.42		
hsa-miR-16	8.43	4.27	9.10		
hsa-miR-17	7.16	3.09	6.88		
hsa-miR-20a	4.70	3.41	6.82		
hsa-miR-93	0.81	0.59	1.18		
hsa-miR-106a	0.09	0.04	0.10		
hsa-miR-196a	0.52	0.31	0.65		
hsa-miR-224	0.29	0.26	0.63		
hsa-miR-151-5p	0.74	0.39	0.84		
hsa-miR-886-5p	0.13	0.02	0.06		
hsa-miR-1297	0.27	0.16	0.32		

^a time-point post infection at which samples for cDNA-library preparation were taken

^b applied *Salmonella* strain

^c percent of reads in the respective library that match to the miRNA indicated

Infection of RAW 264.7 cells with attenuated *Salmonella* mutants induces a similar miRNA expression pattern as wild-type infection (see Fig 1). Infections were carried out using strains (A) Δ SPI1, (B) Δ SPI2, and (C) Δ SPI1/2. Small RNA libraries of uninfected cells at 0 h, cells infected with wild-type *Salmonella* at 24 h pi and mock treated cells at 24 hours p.i., were analyzed by 454 sequencing, and microRNA expression changes were calculated by comparison of cDNA hits in the libraries (24 h infection vs 0 h, 24 h mock vs 0 h). The graphs show log2 fold changes in infected cells (y-axis) versus log2 fold changes in mock-treated cells (x-axis).

F

Time-course analysis of *let-7* and miR-155 expression in RAW 264.7 cells.

Comparative 454 sequencing (A-D) and qRT-PCR analysis (E) of miR-155 and *let-7a* at 4, 8 and 24 hours p.i. in RAW 264.7 cells. (F) Comparative qRT-PCR-analysis of let-7a and miR-98 expression at 4, 8 and 24 hours p.i. in RAW 264.7 cells. qRT-PCR results are shown as mean-values and standard deviations derived from three independent experiments. All fold-changes refer to the 24 h mock control.

Validation of let-7 regulation in HeLa cells. Comparative 454 sequencing (A) and qRT-PCR (B) analysis of miR-155 and *let-7* family at 4, 8 and 24 hours pi in HeLa cells. (C) Northern-blot validation of let-7 regulation upon infection of HeLa cells with wild-type or Δ SPI1/2 *Salmonella* for 24 h (compared to 24 h mock-treatment). All fold-changes refer to the 24 h mock control.

Effect of Salmonella TTSS mutants and miRNA-mimics on apoptosis and necrosis.

Induction of apoptosis (A) and cytotoxicity (B) in RAW 264.7 cells infected with the indicated *Salmonella* strains or stimulated with LPS. Fold-changes refer to the 0 h control.

Apoptosis induction was assessed by FACS-quantification of Annexin V-positive / PI-negative cells. Cytotoxicity was determined indirectly by photometric quantification of LDH-activity in cell-culture supernatants. Mean values and standard deviations derived from three independent experiments are shown. Significant induction of apoptosis and cytotoxicity (compared to mock-treatment) was observed for *Salmonella* wild-type and SPI2-mutant infection as well as for LPS-treatment (*P*-value < 0.05), however not for SPI1- and SPI1/2-mutant infection (*P*-value > 0.05).

Figure S5

Expression of let-7 in Salmonella-exposed primary macrophages.

Expression of let-7 in bone-marrow derived primary macrophages obtained from wild-type (A) or TLR4-/- (B) animals as determined by qRT-PCR. Cells were differentiated with murine colony-stimulating factor (MCSF) alone (-HKS) or with MCSF + heat killed *Salmonella* (+HKS). Average fold-regulation of let-7 upon HKS-treatment and standard deviations derived from three independent experiments are shown. Let-7 regulation upon HKS-challenge of TLR4 +/+ cells was significantly different compared to the respective regulation observed in TLR4 -/- cells (*P*-values < 0.05).

Figure S6

IL-6 and IL-10 3'UTRs contain binding sites for let-7.

MEF cells were transfected with a mixture containing the psicheck2 (control) plasmid or the *Renilla* luciferase reporter plasmids carrying the 3' UTR of IL-10, or mutants thereof, in combination with microRNA mimics (A). Let-7 binding sites within the IL-6 (B) and IL-10 (C) 3' UTRs are conserved among mammalian genomes. Numbers above the *Homo sapiens* sequence in both alignments refer to the nucleotide position within the human 3' UTR. Sequence alignment was performed using the Multalin web-interface (http://multalin.toulouse.inra.fr/multalin/; Corpet F. 1988 Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research 16 (22): 10881-10890).

Analysis of IL-6 and IL-10 reporter regulation and cytokine secretion upon artificial modulation of let-7 and miR-155 levels in *Salmonella* infected RAW 264.7 cells. Overexpression of let-7a, let-7d and miR-155 using pre-miR precursor molecules was verified by

TaqMan qRT-PCR, compared to a lipofected control (A). let-7 over-expression caused repression of IL-6 and IL-10 reporters (B, D) and decrease of IL-6 and IL-10 abundance in cell-culture supernatants(C, E). # Significant difference compared to C-miR treatment. ## No significant difference compared to C-miR treatment.

Inhibition of miRNAs was carried out using fluorescein (FITC) labelled LNAs. Following separation of the FITC-positive and –negative fractions by cell-sorting, IL-6 and IL-10 reporter activity (F) and cytokine secretion (G, H) in the FITC-positive fraction (FITC+) was compared to the negative fraction (FITC-). # Significant difference compared to scrambled LNA treatment. ## No significant difference compared to scrambled LNA treatment.

Figure S8

Validation of let-7 and miR-155 expression in MEF cells. Expression of let-7a and miR-155 in MEF cells upon infection as detected 24 h post infection with wild-type or Δ SPI1/2 *Salmonella* by qRT-PCR. Fold-changes refer to the 24 h mock control.