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Supporting Information 
 

Supplementary Notes 1: accuracy of prediction algorithms for 

peptide binding affinities to HLA and Mamu alleles 

For each HLA and Mamu allele we have analyzed the accuracy of four predictive 

algorithms available from the Immune Epitope Database (IEDB): ANN and SMM 

(versions 2009-09-01 and 2007-12-27). Accuracy was tested against experimental data 

(downloaded from the IEDB) of measured peptide binding affinities (IC50) to HLA and 

Mamu molecules. Only those HLA and Mamu alleles were kept in the analysis for which 

there was enough experimental data (at least 50 binders and 50 non-binders). 

First we tested how good the predictive algorithms are in classifying peptides into 

binders  (IC50 < 500 nM) and non-binders (IC50≥500 nM). We counted the number of true 

positives TP (correctly predicted binders), true negatives TN (correctly predicted non-

binders), false positives FP (incorrectly predicted binders) and false negatives FN 

(incorrectly predicted non-binders). The accuracy of the algorithm is defined as 

.    (S1) 

Most algorithms for which there were sufficient experimental data were very accurate 

(more than 80%, Table S1). Commonly used measure of accuracy is also Matthews 

correlation coefficient: 

,    (S2) 

where P (M) and P’ (M’) are numbers of experimental binders (non-binders) and 

predicted binders (non-binders) respectively. The closer the MCC is to the value 1, the 

higher the accuracy of the prediction algorithm. Most algorithms had a MCC value in the 

range of 0.6 to 0.9 (Table S1). 

 Second we tested how good the predictive algorithms are at determining the 

actual value of the binding affinity, IC50. Because binding affinities span a huge range of 

values, a commonly used difference of logarithms 

,  (S3) 
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was taken as a measure of the accuracy of predicted binding affinity of the i-th peptide. 

When experiments reported that binding affinity has a value greater than some value, 

LIC50, we defined 

. (S4) 

Similarly, when experiments reported that binding affinity has value lower than some 

value, HIC50, the accuracy was defined as  

 . (S5) 

Overall accuracy of the predictive algorithm was determined from average bias  

and average root mean square error : 

 .  (S6) 

Table S1 reports accuracies of all 4 predictive algorithms for each HLA-B allele and 

Mamu allele for which there was enough experimental data available. HLA-A alleles 

were not studied, because they are not associated with control of HIV23. In assessing 

the accuracy of the algorithms using Eqs. S1‐S6, we did not include experimental 

data for which even a bound (less than or greater than) for IC50 was not reported. 

If average bias  ( ), then the predictive algorithm on average 

overestimates (underestimates) the value of binding affinity. Average bias of predictive 

algorithms can affect values of predicted fraction of peptides that can bind to a certain 

allele.  In Table S1, alleles for which there are no accurate predictive algorithms (all 4 

predictive algorithms have large normalized bias ) are marked with 

white. The most accurate algorithm (bold font in Table S1) for those alleles is taken to be 

the one with the least value of normalized bias ( ).  In Table S1, alleles for 

which there is at least one accurate predictive algorithm (normalized bias 

) are marked with yellow.  If there is more than one accurate predictive 

algorithm for a given allele, the most accurate predictive algorithm (bold font in Table 

S1) was selected to be the one with the least value of average root mean square error , , 

among the accurate predictive algorithms (for all of which  was very small).  
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Different choices of threshold for normalized bias that separate accurate and inaccurate 

predictive algorithms lead to only small changes in Table S1.  For example, if we choose 

the threshold to be 0.08, we get one more allele (HLA-B*1517) with at least one accurate 

predictive algorithm and the most accurate algorithm would change for two alleles (HLA-

B*1517 and HLA-B*4403). 

 For each HLA and Mamu allele we used the most accurate predictive algorithm to 

predict the fraction of peptides derived from human and macaque proteome that can bind 

to given allele. There were ~107 (~106) unique peptide sequences in human (macaque) 

proteome. We used only HLA-B alleles  (marked with yellow in Table S1) for which 

there is at least one accurate predictive algorithm available to determine the typical 

binding fraction for HLA-B alleles (median – 0.013 and average – 0.015). 
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Supplementary Table S1: 
Accuracy of predictive algorithms for 9-mer peptide binding by HLA-B and Mamu 

alleles 

allele BF predictive algorithm N ACC MCC    
0.016 ann (2009-09-01) 94.1 0.840 0.108 1.065 0.101 
0.018 ann (2007-12-27) 93.9 0.841 -0.061 1.074 0.057 
0.017 smm (2009-09-01) 92.8 0.807 0.150 1.419 0.105 

HLA-B*0702 

0.024 smm (2007-12-27) 

2301 

92.3 0.795 0.079 1.409 0.056 
0.011 ann (2009-09-01) 91.2 0.759 0.246 1.553 0.159 
0.023 ann (2007-12-27) 89.5 0.744 -0.260 1.603 0.162 
0.012 smm (2009-09-01) 89.0 0.701 0.254 1.733 0.147 

HLA-B*0801 

0.038 smm (2007-12-27) 

1560 

88.9 0.724 -0.191 1.700 0.112 
0.028 ann (2009-09-01) 87.3 0.713 0.243 1.519 0.160 
0.035 ann (2007-12-27) 87.8 0.727 -0.061 1.470 0.041 
0.023 smm (2009-09-01) 85.4 0.668 0.248 1.640 0.151 

HLA-B*1501 

0.036 smm (2007-12-27) 

2342 

86.4 0.694 0.005 1.564 0.003 
0.068 ann (2009-09-01) 88.2 0.586 0.699 1.934 0.361 
0.077 ann (2007-12-27) 89.2 0.598 0.391 1.823 0.214 
0.313 smm (2009-09-01) 88.2 0.541 0.301 1.789 0.168 

HLA-B*1503 

0.451 smm (2007-12-27) 

390 

89.5 0.580 0.266 1.898 0.140 
0.050 ann (2009-09-01) 95.4 0.904 0.234 1.244 0.188 
0.059 ann (2007-12-27) 95.0 0.895 -0.104 1.323 0.078 
0.079 smm (2009-09-01) 93.5 0.863 0.125 1.437 0.087 

HLA-B*1517 

0.141 smm (2007-12-27) 

678 

94.1 0.877 -0.105 1.450 0.072 
0.009 ann (2009-09-01) 94.7 0.730 -0.034 1.081 0.031 
0.008 ann (2007-12-27) 94.9 0.760 -0.205 1.110 0.185 
0.010 smm (2009-09-01) 93.5 0.667 -0.004 1.329 0.003 

HLA-B*1801 

0.012 smm (2007-12-27) 

1161 

94.0 0.707 -0.120 1.355 0.089 
0.014 ann (2009-09-01) 95.3 0.792 -0.024 0.775 0.031 
0.017 ann (2007-12-27) 94.9 0.797 -0.106 0.843 0.125 
0.016 smm (2009-09-01) 93.8 0.728 -0.028 0.972 0.029 

HLA-B*2705 

0.017 smm (2007-12-27) 

1701 

93.5 0.714 -0.013 0.988 0.013 

BF – fraction of 9-mer peptides (derived from human and macaque proteome) that are 
predicted to bind to HLA-B and Mamu alleles  
N – number of available experimental measurements used to test prediction algorithms 
ACC – % accuracy of classifying peptides into binders and non-binders (Eq. S1) 
MCC – Matthews correlation coefficient  (Eq. S2) 

,  – average bias and error of predicted binding affinity value IC50 (Eq. S6) 
 
Detailed description of each quantity is available in Supplementary Notes 1. HLA-B and 
Mamu alleles for which prediction algorithms are sufficiently accurate (Supplementary 
Notes 1) are highlighted with yellow color. The most accurate predictive algorithm is 
marked with bold font. 



5 

Supplementary Table S1: continued 
Accuracy of predictive algorithms for 9-mer peptide binding by HLA-B and Mamu 

alleles 

allele BF predictive algorithm N ACC MCC    
0.024 ann (2009-09-01) 79.8 0.611 0.455 1.893 0.241 
0.027 ann (2007-12-27) 80.8 0.622 0.203 2.041 0.100 
0.034 smm (2009-09-01) 77.5 0.558 0.476 2.129 0.224 

HLA-B*3501 

0.042 smm (2007-12-27) 

652 

77.6 0.566 0.482 2.104 0.229 
0.016 ann (2009-09-01) 94.4 83.2 -0.088 0.861 0.103 

 ann (2007-12-27)      
0.022 smm (2009-09-01) 92.7 78.3 -0.183 1.083 0.170 

HLA-B*3901 

 smm (2007-12-27) 

478 

     
0.011 ann (2009-09-01) 96.0 0.845 0.082 0.945 0.087 
0.010 ann (2007-12-27) 95.2 0.814 -0.011 1.181 0.009 
0.015 smm (2009-09-01) 94.2 0.783 0.078 1.320 0.059 

HLA-B*4001 

0.010 smm (2007-12-27) 

1832 

93.2 0.728 0.222 1.455 0.153 
0.013 ann (2009-09-01) 91.8 0.837 0.335 1.217 0.275 
0.019 ann (2007-12-27) 81.6 0.640 -0.621 1.850 0.336 
0.019 smm (2009-09-01) 84.4 0.686 0.061 1.637 0.037 

HLA-B*4002 

0.028 smm (2007-12-27) 

256 

82.8 0.657 -0.219 1.763 0.124 
0.003 ann (2009-09-01) 95.8 0.640 -0.124 0.937 0.133 
0.004 ann (2007-12-27) 96.6 0.742 -0.216 0.987 0.219 
0.001 smm (2009-09-01) 94.5 0.456 -0.105 1.063 0.099 

HLA-B*4402 

 smm (2007-12-27) 

1052 

     
0.006 ann (2009-09-01) 87.3 0.662 -0.103 1.382 0.075 
0.007 ann (2007-12-27) 86.5 0.659 -0.676 1.648 0.410 
0.006 smm (2009-09-01) 86.5 0.640 -0.047 1.597 0.029 

HLA-B*4403 

0.011 smm (2007-12-27) 

260 

81.9 0.535 -0.340 1.789 0.190 
0.013 ann (2009-09-01) 95.2 0.885 -0.077 0.944 0.081 
0.011 ann (2007-12-27) 87.1 0.700 -0.366 1.526 0.240 
0.012 smm (2009-09-01) 89.2 0.736 0.022 1.534 0.015 

HLA-B*4501 

0.025 smm (2007-12-27) 

249 

85.9 0.670 0.057 1.810 0.032 

BF – fraction of 9-mer peptides (derived from human and macaque proteome) that are 
predicted to bind to HLA-B and Mamu alleles 
N – number of available experimental measurements used to test prediction algorithms 
ACC – % accuracy of classifying peptides into binders and non-binders  (Eq. S1) 
MCC – Matthews correlation coefficient (Eq. S2) 

,  – average bias and error of predicted binding affinity value IC50 (Eq. S6) 
 
Detailed description of each quantity is available in Supplementary Notes 1. HLA-B and 
Mamu alleles for which prediction algorithms are sufficiently accurate (Supplementary 
Notes 1) are highlighted with yellow color. The most accurate predictive algorithm is 
marked with bold font. 
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Supplementary Table S1: continued 
Accuracy of predictive algorithms for 9-mer peptide binding by HLA-B and Mamu 

alleles 

allele BF predictive algorithm N ACC MCC    
0.002 ann (2009-09-01) 89.4 0.609 0.160 1.461 0.109 
0.004 ann (2007-12-27) 89.3 0.669 -0.353 1.601 0.221 
0.001 smm (2009-09-01) 87.8 0.531 0.158 1.675 0.094 

HLA-B*5101 

0.007 smm (2007-12-27) 

849 

87.8 0.594 -0.185 1.651 0.112 
0.008 ann (2009-09-01) 92.5 0.848 0.052 1.636 0.032 
0.006 ann (2007-12-27) 89.0 0.780 -0.228 1.745 0.130 
0.017 smm (2009-09-01) 86.7 0.732 0.210 1.993 0.105 

HLA-B*5301 

0.025 smm (2007-12-27) 

399 

86.0 0.721 0.165 1.908 0.086 
0.010 ann (2009-09-01) 91.8 0.818 0.313 1.414 0.222 
0.009 ann (2007-12-27) 87.1 0.729 -0.370 1.742 0.212 
0.024 smm (2009-09-01) 89.1 0.754 0.174 1.775 0.098 

HLA-B*5401 

0.027 smm (2007-12-27) 

404 

87.4 0.723 0.015 1.786 0.008 
0.007 ann (2009-09-01) 96.6 0.837 0.000 0.640 0.001 
0.008 ann (2007-12-27) 95.2 0.777 -0.230 0.901 0.255 
0.005 smm (2009-09-01) 94.1 0.696 -0.045 0.899 0.050 

HLA-B*5701 

0.006 smm (2007-12-27) 

1162 

94.5 0.723 -0.087 0.871 0.100 
0.016 ann (2009-09-01) 95.3 0.838 0.052 0.956 0.054 
0.012 ann (2007-12-27) 95.0 0.830 0.016 1.010 0.016 
0.017 smm (2009-09-01) 94.0 0.792 -0.039 1.194 0.033 

HLA-B*5801 

0.014 smm (2007-12-27) 

1947 

93.9 0.788 0.093 1.205 0.077 
0.020 ann (2009-09-01) 87.4 0.749 0.150 1.597 0.094 
0.021 ann (2007-12-27) 85.8 0.718 -0.201 1.768 0.114 
0.028 smm (2009-09-01) 85.5 0.712 -0.001 1.909 0.001 

Mamu-A*01 

0.028 smm (2007-12-27) 

692 

85.0 0.701 0.027 1.892 0.014 
0.046 ann (2009-09-01) 83.5 0.677 0.421 2.135 0.197 
0.031 ann (2007-12-27) 82.3 0.646 0.060 2.322 0.026 
0.064 smm (2009-09-01) 82.3 0.645 0.109 2.057 0.053 

Mamu-A*02 

0.064 smm (2007-12-27) 

249 

82.3 0.645 0.101 2.175 0.046 

BF – fraction of 9-mer peptides (derived from human and macaque proteome) that are 
predicted to bind to HLA-B and Mamu alleles 
N – number of available experimental measurements used to test prediction algorithms 
ACC – % accuracy of classifying peptides into binders and non-binders (Eq. S1) 
MCC – Matthews correlation coefficient (Eq. S2)  

,  – average bias and error of predicted binding affinity value IC50 (Eq. S6) 
 
Detailed description of each quantity is available in Supplementary Notes 1. HLA-B and 
Mamu alleles for which prediction algorithms are sufficiently accurate (Supplementary 
Notes 1) are highlighted with yellow color. The most accurate predictive algorithm is 
marked with bold font. 
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Supplementary Table S1: continued 
Accuracy of predictive algorithms for 9-mer peptide binding by HLA-B and Mamu 

alleles 

allele BF predictive algorithm N ACC MCC    
0.021 ann (2009-09-01) 91.3 0.823 -0.034 1.532 0.022 
0.018 ann (2007-12-27) 90.5 0.806 -0.056 1.685 0.033 
0.044 smm (2009-09-01) 89.1 0.778 0.147 1.908 0.077 

Mamu-A*11 

0.054 smm (2007-12-27) 

367 

88.6 0.767 0.129 1.864 0.069 
0.004 ann (2009-09-01) 88.6 0.763 0.104 1.101 0.095 
0.001 ann (2007-12-27) 71.3 0.403 1.141 2.397 0.476 
0.005 smm (2009-09-01) 83.5 0.658 0.069 1.392 0.050 

Mamu-B*17 

0.003 smm (2007-12-27) 

589 

69.8 0.356 0.350 1.862 0.188 

BF – fraction of 9-mer peptides (derived from human and macaque proteome) that are 
predicted to bind to HLA-B and Mamu alleles 
N – number of available experimental measurements used to test prediction algorithms 
ACC – % accuracy of classifying peptides into binders and non-binders (Eq. S1) 
MCC – Matthews correlation coefficient (Eq. S2)  

,  – average bias and error of predicted binding affinity value IC50 (Eq. S6) 
 
Detailed description of each quantity is available in Supplementary Notes 1. HLA-B and 
Mamu alleles for which prediction algorithms are sufficiently accurate (Supplementary 
Notes 1) are highlighted with yellow color. The most accurate predictive algorithm is 
marked with bold font. 
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Supplementary Table S2: 

Alleles with significant association of HIV control or progression: 

 

allele OR 95% CI p value 
HLA-B*0702 1.90 [1.41 , 2.56] 1 x 10-3 
HLA-B*2705 0.45 [0.30 , 0.67] 3 x 10-3 
HLA-B*3501 1.95 [1.38 , 2.76] 7 x 10-3 
HLA-B*5701 0.28 [0.19 , 0.42] 1 x 10-8 
HLA-B*5703 0.13 [0.07 , 0.26] 2 x 10-7 

 

OR (see Fig. 3 caption) – ratio of odds of progressing to high viral loads to controlling 

HIV to less than 2,000 copies of the virus/ml plasma when expressing a particular 

HLA allele. The results are corrected for the effects of HLA-B*0702, HLA-B*3501, 

HLA-B*2705 and HLA-B*5701. 

 

95% CI – 95% confidence interval for OR 
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Supplementary Table S3: 

 
Parameters of Model shown in Fig 2: 

Parameter Symbol Value Units References 
Initial target cell 
concentration 

 3 x 104 cells ml-1 35 

Maximum virus 
replication 

 2000 virions (cell day)-1 41,42 

Virus clearance  20 day-1 41 
Mutation rate  2.2 x 10-5 mutations (base 

cycle)-1 
43 

Target cell 
production 

 1000 (cell day)-1  

Target cell death 

€ 

kd  0.1 day-1  
Target cell 
infection 

€ 

kt  6.5 x 10-7 ml (virus day)-1 36 

Infected cell 
death 

 0.15 day-1 44
 

Presentation of 
pMHC on 
infected cells, 
APCs 

,  
10 day-1 

 
 

Peptide off-rate ,  1 day-1 45 
Activated CD8+ 
expansion  

 3 day-1 46 

Rate of CTL 
activation/killing 

 4 x 10-6 ml (cell day)-1  

Memory cell 
activation 

 8 x 10-6 ml (cell day)-1  

Effector CD8 cell 
death 

 0.5 day-1 
 

47 

Differentiation of 
effector to 
memory cell 

 0.008 day-1  

Memory cell 
death 

 0.015 day-1 48 
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Supplementary Table S4: 

 

Parameters of simplified model shown in Figure S7: 

Parameter Symbol Value Units 
Target cell 
concentration 

 104 cells ml-1 

Infected cell death  0.1 day-1 
Presentation of 
pMHC on infected 
cells, APCs 

,  
800 day-1 

 
 

Peptide off-rate ,  40 day-1  
Activated CTL 
expansion 

 0.2 day-1 

Rate of CTL 
activation/ infected 
cell killing 

 6 x 10-5 ml (cell day)-1 
 

 

Parameters not listed are the same as in Table S3. 
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Supplementary Figure S1: 

a)       HLA-B*5701   ann (2009-09-01) b)       HLA-B*2705   ann (2009-09-01) 
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Figure Legend S1: Scatter plots show comparison between experimentally measured and 

predicted binding affinities of 9-mer peptides to HLA-B*5701 allele (a) and HLA-

B*2705 (b). For both alleles the best predictive algorithm (Table S1) was used. Green 

data points correspond to measurements, which report exact binding affinity. Red data 

points correspond to measurements, which report that IC50 is larger than that 

corresponding to it’s value on the abscissa. Solid lines represent threshold value 500nM, 

which divides binder and non-binder peptides. Dashed lines would represent perfect 

match between predicted and experimentally measured binding affinities. The numbers 

reported in each quadrant correspond to the number of displayed data points. These 

numbers are used to calculate accuracy (ACC) and Matthews correlation coefficient 

(MCC). 
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Supplementary Figure S2: 
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Figure Legend S2: Distribution of the number of important contacts for TCR recognition 

of antigenic peptides is invariant to variations in interaction free energy (Ec) between 

TCRs and MHC as long as these interactions are not too strong or too weak. As shown 

previously9,10 too strong or weak TCR-MHC interactions result with high probability in T 

cell deletion in the thymus, because such T cells are negatively selected or not positively 

selected, respectively. ΔEc = 0 corresponds to results in the main text, while stronger 

(weaker) binding is denoted with ΔEc < 0 (ΔEc > 0). TCRs were selected against 1000 

self peptides.  In these calculations we varied the TCR-HLA interaction (Ec) by actually 

varying the difference between this quantity and the negative selection threshold (En).  

Therefore, this study is equivalent to leaving the value of TCR-HLA interactions the same 

and varying the value of the binding threshold for negative selection. In this case red 

(green) bars corresponds to weaker (stronger) binding threshold for negative selection.
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Supplementary Figure S3: 
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Figure Legend S3: Weaker binding free energy threshold for antigen recognition than 

the negative selection threshold in the thymus results in more cross-reactive TCRs. 

Histogram of important contacts for TCR recognition of antigenic peptides for different 

binding thresholds of antigen recognition for TCRs selected against 1000 self peptides. 

The green histogram corresponds to the recognition threshold, Er, being equal to the 

negative selection threshold (En). When threshold for recognition is weak (red 

histogram), most TCRs are very cross-reactive, because single amino acid mutation on 

the antigenic peptide is not enough to make the binding interaction free energy weaker 

then recognition threshold. Experimental evidence suggests that the negative selection 

threshold in the thymus is the same as recognition threshold in the periphery12.
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Supplementary Figure S4: 

a)       HLA-B*0801   smm (2009-09-01) b)       HLA-B*0801   smm (2007-12-27) 
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Figure Legend S4: The predictive algorithms for HLA-B*0801 are not very accurate 

(see also Table S1). Scatter plots show comparison between experimentally measured and 

predicted binding affinities of 9-mer peptides to HLA-B*0801 allele for two predictive 

algorithms: smm (2009-09-01) on left and smm (2007-12-27) on right. Green data points 

correspond to measurements, which report exact binding affinity. Red data points 

correspond to measurements, which report that IC50 is larger than that corresponding to 

it’s value on the abscissa. Solid lines represent threshold value 500nM, which divides 

binder and non-binder peptides. Dashed lines would represent perfect match between 

predicted and experimentally measured binding affinities. Newer algorithm (a) on 

average tends to overestimate IC50 value, which results in predicting fewer peptide 

binders. Older algorithm (b) on average tends to underestimate IC50 value, which results 

in predicting more peptide binders. The numbers reported in each quadrant correspond to 

the number of displayed data points. These numbers are used to calculate accuracy (ACC) 

and Matthews correlation coefficient (MCC).
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Supplementary Figure S5: 

 
 

Figure Legend S5: Selection against a greater diversity of peptides (M) in the thymus 

results in selected TCRs with peptide contact residues that are more enriched in amino 

acids that interact weakly with other amino acids. The ordinate is the ratio of the 

frequencies of occurrence of an amino acid in the peptide contact residues of selected 

TCRs (fa
(sel)) to preselection TCRs (fa). The abscissa is a list of amino acids ordered 

according to the average interaction free energy (as per the MJ interaction potential) with 

which it interacts with all other amino acids (L – the strongest, K – the weakest). This 

qualitative result is robust to changes in the interaction potential as can be deduced from 

analytical and computational results noted in 9,10. 
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Supplementary Figure S6: 

 
Figure Legend S6: Random energy-like model for generating , the matrix describing 

recognition of pMHCs by CD8+ T cells.  The degree of cross-reactivity in the simulation 

depends on the uniform distribution from which interaction strengths between individual 

epitope residues and the TCRs are randomly selected (right).  A higher upper limit of the 

pairwise distribution corresponds to a higher mean and broader distribution of the overall 

(summed) TCR-pMHC interaction strengths (left).  As recognition is considered to occur 

above a threshold, a broader distribution results in more frequent recognition of pMHCs 

by T cells in the model, and thus higher cross-reactivity.  
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Supplementary Figure S7: 

 
 

Figure Legend S7: Schematic of a model for host-pathogen dynamics that is simpler 

than that shown in Fig. 2 (henceforth termed, simplified model).  The virus mutates, 

infects target CD4+ T cells, and is cleared. Infected CD4+ T cells produce more free 

virus, and die. Infected cells present viral peptides in complex with HLA molecules 

for a period (until peptides unbind from HLA). Activated (effector) CD8+ T cells 

produced by recognition of viral epitopes on APCs proliferate and kill infected cells 

bearing their cognate peptide‐HLA complex 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Supplementary Figure S8: 
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Figure Legend S8: Simulation results using the simplified model.   HIV viral loads 

versus time for different cross‐reactivities (CR) of the CD8+ T cell repertoire, 

corresponding to the model in Fig. S7. Black curve: highly cross‐reactive case. Red 

curve: lower cross‐reactivity. Each curve is averaged over 500 simulations (each 

simulation represents a person). 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Supplementary Figure S9: 
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Figure Legend S9: As in Fig. 2c, but for the simplified model (schematic in Fig S7). 

When more clones recognize the infecting and emerging strains (left, bottom), the 

emerging mutant strain (green) is kept in check (left, top).  However, when cross-

reactivity is low, the likelihood that the mutant strain goes unrecognized is higher 

(bottom, right), and the mutant strain achieves a large percent contribution of the total 

virus population (top, right). 
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Supplementary Figure S10: 
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Figure Legend S10: Anticorrelation of simulated peak viral loads with percent 

contribution of the dominant epitope to the total CTL response for the model in Fig. S7. 

Percent contribution is calculated as the number of activated CTLs recognizing the 

immunodominant epitope over the total number of activated CTLs in the simulation. The 

immunodominant epitope is defined as the epitope recognized by the largest number of 

CTL clones.  Lower percent contributions are achieved when the CD8+ T cell repertoire 

is less cross-reactive, which also correlates with higher viral loads, as found 

experimentally by Altfeld and coworkers30.  The black points and bars correspond to the 

average and standard deviation of 500 simulations for each level of T cell cross-

reactivity, with the level of cross-reactivity increasing from left (probability of .28 that a 

given epitope is recognized by a particular CTL) to right (probability 1). Varying other 

parameters in the model, including peptide presentation rate, does not capture this 

behavior (Fig. S16). 
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Supplementary Figure S11: 
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Figure Legend S11: Peak viral load versus average number of CD8+ clones recognizing 

a pMHC in each simulation in the simplified model (schematic in Fig. S7). “Escape” is 

taken to mean that the population size of a mutant viral strain has become larger than that 

of the infecting strain at some point during the simulation time (0 to 80 days).  As 

exemplified in Fig. 2c, the smaller the number of clones recognizing each pMHC 

(corresponding to lower cross-reactivity), the higher the chance of escape. 
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Supplementary Figure S12: 

 
 

Figure Legend S12: Insensitivity of qualitative results to changes in CD8+ T cell 

activation rate for the simplified model (schematic in Fig. S7).  Left panels show 

simulation results with varying cross reactivity for activation rate  ( given in 

Table S4), while right panels show results for . Insensitivity of qualitative results to 

parameter variation was found for other rate constants in the model also (not shown). 
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Supplementary Figure S13: 
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Figure Legend S13: Anticorrelation of simulated viral loads with percent contribution of 

the dominant epitope to the total CTL response, as in Fig. S10, but corresponding to the 

model discussed in the main text (Fig. 2a).  Viral load and % contribution were calculated 

at day 200 in the simulations, to approximate viral load setpoint.  Both models give 

qualitatively similar results.  Thus, the result that a cross-reactive repertoire results in low 

viral loads and high % contribution of responses to the dominant epitope is insensitive to 

the choice of dynamical model.  
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Supplementary Figure S14: 
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Figure Legend S14: As in Fig. S11, but for the model described in the main text 

(schematic in Fig. 2a).  As the number of clones recognizing a pMHC increases, the 

setpoint viral load and probability of escape decrease. 
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Supplementary Figure S15: 

 
 

Figure Legend S15: Insensitivity of qualitative results to changes in CD8+ T cell 

activation rate for the model described in the main text (schematic in Fig. 2a).  Left 

panels show simulation results with varying cross reactivity for activation rate  (  
given in Table S3), while right panels show results for .  The setpoint viremia level 

depends strongly on , but the qualitative correlation between viral load and % 

contribution of the immunodominant epitope (a and b) and the number of clones targeting 

a given pMHC (c and d) is the same. The same insensitivity of qualitative results to 

parameter variation was found for other rate constants in the model also (not shown).  

Note that for a lower activation rate (right panels), the probability of escape is reduced 

(fewer green points), because of the lower overall immune pressure exerted by the same 

number of T cells.
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Supplementary Figure S16: 
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Figure Legend S16: Setpoint viral load versus % contribution of immunodominant 

epitope, as in Figs. S10 and S13, but where the rate of peptide presentation  (not cross-

reactivity), is varied.  Points correspond to  values of 200, 100, 40, 20, 10, 5, and 1 

(day-1), with faster presentation of pMHC corresponding to reduced peak viral loads. One 

potential effect of B57 binding fewer peptides is that the cell-surface concentration of 

immunogenic peptides could increase, because competition with other peptides for 

binding to MHC would be reduced.  This would then be an additional mechanism for 

control of viral load. Increasing  has the effect of raising cell-surface concentration of 

pMHC and reducing viral load.  As the figure shows, varying only this parameter leads to 

correlation of high % contribution with high viral loads, in contrast to the result of 

Altfeld, coworkers30. Variation of other rate constants in the model gave similar results or 

had no effect on % contribution (not shown).  Therefore, only varying the cross-reactivity 

recapitulates the experimental results. 
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The issue of peptide presentation could be important if HLA molecules like HLA-

B*5701 presented far fewer HIV epitopes and so, due to less competition, these epitopes 

were presented faster, and hence, in greater amounts.  We have used the predictive 

algorithms and the published HIV proteome (HXB2) to estimate the number of HIV 

epitopes that can bind to the alleles we have identified from our data (Fig. 3) to be 

associated with control or progression.  Approximately 40 peptides can bind to HLA-

B*5701 and HLA-B*0702 and approximately 60 peptides can bind to HLA-B*2705 and 

HLA-B*3501. Thus, the number of HIV peptides that can bind to these alleles does not 

correlate with disease outcome.   
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Supplementary Figure S17: 
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Figure Legend S17: The predictive algorithms for HLA-B*3501 are less accurate than 

that fo HLA-B*5701, HLA-B*0702, and HLA-B*2705 (see also Table S1). Scatter plots 

show comparison between experimentally measured and predicted binding affinities of 9-

mer peptides to HLA-B*3501 allele for the most accurate predictive algorithm ann 

(2007-12-27). Green data points correspond to measurements, which report exact binding 

affinity. Red data points correspond to measurements, which report that IC50 is larger 

than that corresponding to it’s value on the abscissa. Solid lines represent threshold value 

500nM, which divides binder and non-binder peptides. Dashed lines would represent 

perfect match between predicted and experimentally measured binding affinities. The 

algorithm on average tends to overestimate IC50 value, which results in predicting a 

smaller peptide binding fraction than reality.  The numbers reported in each quadrant 

correspond to the number of displayed data points. These numbers are used to calculate 

accuracy (ACC) and Matthews correlation coefficient (MCC). 
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Supplementary Methods: Host-pathogen interaction dynamics 

for simplified model 
 The following dynamical model is similar to that in Fig. 2a, but is without the 

effects of target cell limitation, finite CTL expansion, and CD8+ memory.  Similar 

models have been studied previously49. The following equations describe the model 

(schematic in Fig. S7): 

      (S7) 

    (S8) 

      (S9) 

          (S10) 

        (S11)
 

        (S12)  

Rate parameters for the more complex model in the main text (Fig. 2) and the 

model above are given in Tables S3 and S4, respectively. Rate constants governing virus 

and CD4+ dynamics are generally adopted from the literature. Approximate rate constants 

for virus and CD4+ cell turnover are available from studies in which patient viral loads 

were perturbed by antiretroviral treatment or plasma apheresis, and the data were fit by 

dynamical models41,50,51.  Predicted rate constants for infected CD4+ cell death range 

from about 0.1 to 1 (day-1)44.  This rate constant accounts for cell death due to virus 

cytotoxicity as well as clearance by effector CTLs and antibodies, and thus is considered 

an upper bound for  in our model, which describes infected cell death by means other 

than CTL killing.  Estimates for the percentage of infected cell death attributable to the 

CTL response range from 10% to 90%18,52. Constants for reactions involving CD8+ cells 

are chosen to give realistic peak and setpoint (in the model described in the main text 

only) viral loads. The mutation rate from the literature in units of mutations (base cycle)-1 
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is converted to ~.22/(L*M) mutations (amino acid day)-1 using an estimate of 1 day for a 

replication cycle53 and ~104 base pairs for the size of the virus. In the chronic infection 

model, the number of cell divisions (D) is taken to be 820.   

If the parameters in the model are chosen such that the virus is able to take hold 

and expand54, the qualitative results related to the effects of cross-reactivity are 

insensitive to the choice of rate constant parameters.  This is demonstrated in Fig. S12 for 

100-fold variation of the rate constant governing T cell activation, and results were found 

to be similarly insensitive to variations in the other rate constants (data not shown).     
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Supplementary Discussion 1: T cells restricted by HLA-B*5701 

encounter a smaller diversity of TCR contact residues in the 

thymus. 
Our study showed that the protective allele HLA-B*5701 binds fewer peptides 

derived from human proteome compared to other alleles (Table S1). Even if the reason 

why HLA-B*5701 molecules bind fewer self peptides was due to greater restrictions in 

the tolerance to different amino acids at the anchor residues only, HLA-B*5701 

molecules would present a smaller diversity of TCR contact residues in the thymus. This 

is because the number of self peptides presented in the thymus is much smaller than all 

possible sequences of TCR contact residues derived from the human proteome. Thus, the 

probability that any HLA allele presents peptides derived from different parts of the 

proteome with identical TCR contact residues constrained by the same anchor residues is 

small. Therefore, since HLA-B*5701 presents fewer self-peptides, T cells restricted by 

this allele will encounter a smaller diversity of TCR contact residues during development 

in the thymus. 
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Supplementary Discussion 2: Additional tests of predictions 

from the thymic selection model 
In our recent work on thymic selection and T cell repertoire development9,10, we 

constructed a coarse-grained model that was not quantitative, but yielded qualitative 

insights that could be directly tested against experiments.  Our computational and 

theoretical studies predicted that, if developing T cells encounter many self peptides in 

the thymus, their peptide contact residues would be statistically enriched in amino acids 

that tend to interact weakly with other amino acids (Fig. S5 and 9,10). To test this 

prediction we analyzed available crystal structures of TCR-peptide-MHC complexes and 

found that amino acids determined by bioinformatic studies to be weakly interacting are 

indeed enriched in TCR peptide contact residues (a detailed discussion of the analyses of 

crystal structures and comparisons to the theoretical predictions are provided in 9).  

We then predicted that, because of the preponderance of weakly interacting amino 

acids in the peptide contact residues of mature TCRs, peptide recognition should be 

mediated by many weak interactions each of which contributes significantly to the 

binding affinity.  Thus, most point mutations to peptide amino acids would abrogate 

recognition; i.e., specificity.  In contrast, if there is one type of self peptide in the thymus 

(as in the Kappler-Marrack experiments7,8), TCRs with strongly interacting amino acids 

in the peptide contact residues would survive selection (Fig. S5 and 9).  Antigenic peptide 

recognition by such TCRs would be due to a few strong interactions mediated by these 

TCR contact residues.  Only mutations at peptide amino acids involved in these strong 

interactions would abrogate recognition, thus making TCR recognition of peptides cross-

reactive to mutations at the other sites.  These predictions are also supported directly by 

calorimetric measurements carried out using T cells derived from mice that express one 

and many types of self peptides in the thymus7. 
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