Supporting Information

ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers

Kathrin Schirner, Laura K. Stone and Suzanne Walker*

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA

*Corresponding author: suzanne_walker@hms.harvard.edu

strain	genotype	reference
B. subtilis		
PY79	Prototrophic derivative of B. subtilis 168	(1)
KS001	PY79 $amyE::P_{hyperspank}$ tarGH ^{Sa} spc	this work
KS002	PY79 $\Delta tagGH^{Bs}$::cat amyE:: $P_{hyperspank}$ tarGH ^{Sa} spc	this work
KS003	PY79 tagH Δaa276-527	this work
KS004	PY79 $amyE::P_{hyperspank} tagGH^{Bs} spc$	this work
KS005	PY79 $\Delta tagGH^{Bs}$::cat amyE:: $P_{hyperspank}$ tagGH ^{Bs} spc	this work
E. coli		
XL1blue	recA1 endA1 gyrA96 thi-1 hsdR17(r _K -, m _K +) supE44 relA1 lac [F', proAB, lacIqZ Δ M15::Tn10(tetr)]	Promega
plasmid	genotype	reference
pDR111	amyE::P _{hyperspank} spc	D. Rudner
pKM074	bla cat	D. Rudner
pMAD	ori ^{BsTs} lacZ amp mls	(2)
pKS001	pDR111 tarGH ^{Sa}	this work
pKS002	pDR111 <i>tarGH^{Bs}</i>	this work

Table S1. Strains, plasmids and oligonucleotides.

primer	sequence	features / use
1	catggtcgacacataaggaggaactactaTGAAAGTGTGGTT TAATG	RBS; SalI; amplification of <i>tarG</i> ^{Sa}
2	ctgagtctagaTTACAAGAAGTCTGCAAATTG	XbaI; amplification of <i>tarG^{Sa}</i>
3	cagtctagaacataaggaggaactactATGAACGTTTCGGT AAAC	RBS, XbaI; amplification of <i>tarH^{Sa}</i>
4	ctagtcgcatgcTTATTTAATAACGAAGCG	SphI; amplification of <i>tarH^{Sa}</i>
5	gactatctagaCTTTACACGGGCGTTTC	XbaI; up-stream region of $tagG$, for deletion of $tagGH^{Bs}$
6	agtcaggatccGTATACGCAACAAATCATTC	BamHI; up-stream region of $tagG$, for deletion of $tagGH^{Bs}$
7	acagtcggccgCATACACTGACTTTGATGTTG	EagI; down-stream region of $tagH$, for deletion of $tagGH^{Bs}$
8	ctgaggtcgacCGTGAAGGAATTGTAATACG	Sall; down-stream region of $tagH$, for deletion of $tagGH^{Bs}$
9	CTTACAggatecGGTTGTTCACATTCCTTTTATT G	BamHI; up-stream region including 5' end of <i>tarH^{Bs}</i> for truncation
10	GATGAtctagaTTATTTCTTCTTTTTTGCGGAAAC G	XbaI; upstream region including 5' end of $tarH^{Bs}$; stop codon for truncation after aa 275
11	CGATGtctagaTAAAAAAAGGCTATTGGATGAA TG	XbaI; downstream region of <i>tarH^{Bs}</i>
12	GTAGTgaattcGAAGTCTTTATCAGGCTAAGG	EcoRI; downstream region of <i>tarH^{Bs}</i>
13	catgaagcttacataaggaggaactactaGTCTAAGGAAGAT AAAAAATG	HindIII; amplification of <i>tagGH</i> from <i>B. subtilis</i>
14	gctagtcgctagcGACATTCATCCAATAGCC	NheI; amplification of <i>tagGH</i> from <i>B. subtilis</i>
12 13 14	GTAGTgaattcGAAGTCTTTATCAGGCTAAGG catgaagcttacataaggaggaactactaGTCTAAGGAAGAT AAAAAATG gctagtcgctagcGACATTCATCCAATAGCC	$tarH^{Bs}$ HindIII; amplification of $tagGH$ from <i>B. subtilis</i> NheI; amplification of $tagGH$ from <i>B. subtilis</i>

Table S2.	Minimal inhibitory	concentrations (of various	antibiotics	against s	strains	PY79,
KS001 an	d KS002.						

	Targocil	Kanamycin	Carbenicillin	Tunicamycin	PenicillinG	Erythromycin
wt	$> 200 \ \mu M$	0.2-0.3 µg/ml	0.16 µg/ml	0.125 µg/ml	0.03 µg/ml	0.06 µg/ml
KS001	$> 200 \ \mu M$	0.2-0.3 µg/ml	0.16 µg/ml	0.125 µg/ml	0.03 µg/ml	0.06 µg/ml
KS002	1.25 μM	0.2-0.3 µg/ml	0.16 µg/ml	0.125 µg/ml	0.03 µg/ml	0.06 µg/ml

Methods

Growth curves

The growth curve was obtained by diluting cultures into LB with or without 1 mM IPTG in a 96-well microtiter plate incubated at 37° C whilst shaking and taking OD₆₀₀ measurements every 10 min or 30 min in a GloMax Multi Detection System (Promega).

Construction of a complementation strain

The genes *tagGH* from *B. subtilis* were amplified using primers 13+14 and the PCR product was cloned into pDR111 giving pKS002. The plasmid was transformed into *B. subtilis*, where it integrated into the *amyE* locus, giving strain KS004.

Then *tagGH* was deleted from KS004 as described for constructing KS002. Deletion of $tagGH^{Bs}$ was confirmed by PCR.

Transformation of *B. subtilis* was done according to the method of Anagnostopoulos and Spizizen (23) as modified by Jenkinson (24).

Construction of a TagH truncation mutant in B. subtilis

To construct *B. subtilis* PY79 with a truncated TagH, approximately 1000 bp up-stream of *tagH* was amplified using primers 9+10, including the 5' end of *tagH* until bp 525 (encoding for K275) after which a stop codon was inserted. A fragment of the downstream region starting with the stop codon of *tagH* was amplified using primers 11+12. Both fragments were ligated together, used as a PCR template and re-amplified using primer pair 9+12. This fragment was the cloned into pMAD (2). *B. subtilis* was transformed with the resulting plasmid selecting for erythromycin resistance on plates containing 200 µg/ml chromo-chloro-indolyl-galactopyranoside (X-gal) at 30°C. A single blue colony was picked and inoculated in LB containing erythromycin, grown for 3 h at 30°C and then shifted to 43°C. After 6 h, dilutions were plated on plates containing erythromycin and X-gal. A single blue colony was picked, inoculated in LB and grown over night at 30°C. Dilutions were plated on X-gal plates and white colonies were patched on plates containing either erythromycin or on X-gal. Erythromycin-sensitive white colonies were selected, and truncation of *tagH* was confirmed by PCR and sequencing.

References

- 1. Youngman, P., Perkins, J. B., and Losick, R. (1984) Construction of a cloning site near one end of *Tn*917 into which foreign DNA may be inserted without affecting transposition in *Bacillus subtilis* or expression of the transposon-borne *erm* gene, *Plasmid 12*, 1-9.
- 2. Arnaud, M., Chastanet, A., and Debarbouille, M. (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria, *Appl Environ Microbiol* 70, 6887-6891.

Supporting Figure S1. The ATPase component is partially conserved between *S. aureus* and *B. subtilis*

a. Alignment of TarH^{sa} (NWMN-H) and TagH^{Bs} (168-H). The barrel indicates a predicted transmembrane helix. b. Topology prediction of TarH from *S. aureus*. c. Topology prediction of TagH from *B. subtilis* PY79.

Supporting Figure S2. KS002 is dependent on the presence of IPTG in the medium.

a. Growth curve of strains PY79 (\Box), KS001 (O) and KS002 (\triangle) in LB in the presence (closed symbols) and after washing away IPTG (open symbols). b. Time course microscopy of TarGH^{sa} expression and depletion in KS001 and KS002. Arrows indicate malformed cell poles in KS003. Samples were taken from conditions and at the time points indicated. Scale bar 5 µm.

Supporting Figure S3. The WTA of wild-type, KS001 and KS002 is indistinguishable.

a. Gel showing the WTA pattern of *B. subtilis* PY79, KS001 and KS002. b. LC/MS data confirming the identity of the WTA monomers as glucosylated glycerol phosphates.

а

Supporting Figure S4. The endogenous WTA transporter TagGH^{Bs} complements the *tagGH* deletion.

a. Morphology of strains KS004 and KS005 grown in LB in the presence and absence of 1 mM IPTG. Scale bar 5 $\mu m.$ b. Growth curve of wild-type, KS004 and KS005 in LB in the presence and after washing out IPTG.

Supporting Figure S5. Truncation of TarH has no effect on cell growth and morphology of *B. subtilis*.

a. Growth curve of wild-type (\Box) and strain KS003 (\times)with a truncation of TagH. b. Phase contrast microscopic images of wild-type and KS003. Scale bar 5 μ m.