Supporting information

Advancing Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging for Capillary Electrophoresis Analysis of Peptides

Junhua Wang,[†] Hui Ye,[†] Zichuan Zhang,[†] Feng Xiang,[†] Gary Girdaukas,[†] and Lingjun Li^{*,†,‡}

School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706

E-mail: Ili@pharmacy.wisc.edu

Figure S1	P2
Figure S2	P3-6
Figure S3	P7-8
Table S1	P9
Table S2	P10

^{*} To whom correspondence should be addressed. Tel: (608) 265-8491, Fax: (608) 262-5345.

[†] School of Pharmacy, University of Wisconsin-Madison

[‡] Department of Chemistry, University of Wisconsin-Madison

Figure S1. The biological replicates of two blue crab pericardial organ (PO) tissue extracts by off-line CE-MALDI-FT-MS analysis using the improved interface (spectra at beginning deposition time=7.5 min, middle time=13 min, and ending time=18.5 min for PO_1 (left) and PO_3 (right) samples). The peak intensities vary but the profiles are similar. The spectra demonstrate reproducible separations for extremely complex mixtures of biological replicates, verifying the good reproducibility of the new CE-MALDI MS interface.

Figure S2. CE-MALDI TOF/TOF mass spectral analysis of a peptide mixture.

(A-B) Representative MALDI-TOF/TOF mass spectra showing the isolation of peptides

by CE in **Figure 3**. A= (m/z 1172 (peak 2), eluted at 517.5 s, pixel info: x=259, y=1); B= (m/z

1335 (peak 5) and *m/z* 1637 (peak 6) co-eluted at 612.5 s, pixel info: x=372, y=1).

(C-G) MS/MS spectral identification of peptide sequences based on the fragmentation pattern matching.

Figure S3. Relative quantitation of peptide abundances by CE-MALDI MS.

(A) Region of interest (ROI) table of the peaks at m/z 1161 and m/z 1169, originating from peptide GAHKNYLRF (m/z 1105.59, peak 3 in **Figure 4**). The ROIs were carefully aligned with each other (\pm 1 pixel). The "volume" (or "population") by "means" in these two areas are used to represent the total intensities of the extracted ions from the two peaks. The intensity for m/z 1161 is 180, for m/z 1169 is 108 and the calculated ratio is 1.67.

(B) The MALDI-FTMS spectrum showing the experimental ratio of peaks m/z 1161/1169, and the ratio is calculated to be 1.75 according to peak amplitudes (intensities). This value correlates well with the imaging data. Both are 10%-15% below the theoretical ratio of 2:1.

From Figure 3, the migration order nicely follows the equation of q/M1/2,³ which is proportional to their net charges (q), and inversely proportional to the square root of their masses (M). The peptides' net charges are calculated based on the Henderson-Hasselbalch equation via the website

http://www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-prope rty-calculator-notes.asp, as given in **Table S1**.

Table S1.	The iden	tities, s	sequences,	net	charges,	and	concentrations	of th	e peptide	peaks in
Figure 3.										

Peak ID	m/z	sequence	Net charge	Conc.
1	1105.59	GAHKNYLRF	+3	7.0*10 ⁻⁷ M
2	1172.67	IARRHPYFL	+2.8	7.5*10 ⁻⁷ M
3	1037.55	SGGFAFSPRLamide	+2	6.5*10 ⁻⁷ M
4	1084.45	CYFQNCPRGamide	+2	3.7*10 ⁻⁷ M
5	1335.72	APSGAQRLYGFGLamide	+2	2.5*10 ⁻⁷ M
6	1637.72	AGCKNFFWKTFTSC	+2	5.5*10 ⁻⁷ M
7	956.37	PFCNAFTGCamide	+1	5.0*10 ⁻⁷ M

Net charge calculation via (at pH 4.9)

http://innovagen.net/custom-peptide-synthesis/peptide-property-calculator/peptide-property-c alculator.asp

Peak ID	+ light	+ heavy	ROI ratio	Mass shift	Label site(s)
			Light/heavy		
(1) <i>m/z</i> 599.31	627	631	1.926	+28/32	N-terminal
(2) <i>m/z</i> 784.41	812	816	2.268	+28/32	N-terminal
(3) <i>m/z</i> 1105.59	1161	1169	1.673	+56/64	N-terminal & K
(4) <i>m/z</i> 976.46	1004	1008	1.727	+28/32	N-terminal
(5) <i>m/z</i> 1335.72	1363	1367	1.862	+28/32	N-terminal
(6) <i>m/z</i> 1282.67	1310	1314	1.965	+28/32	N-terminal
(7) <i>m/z</i> 1046.54	1074	1078	2.156	+28/32	N-terminal
(8) <i>m/z</i> 1104.64	1188	1200	2.211	+84/96	N-terminal & K ×2
(9) <i>m/z</i> 1067.56	1095	1099	1.727	+28/32	N-terminal
(10) <i>m/z</i> 689.36	745	753	2.227	+56/64	N-terminal & K

Table S2. Experimental ratios of the isotopically labeled peptides observed from the CE-MALDI imaging area, the ratios vary from 1.67 to 2.27.