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SI Methods
Simulation Results.A star network with 101 nodes was used as a test
case to compare our rules of thumb with the outside–in strategy
assuming perfect detection. The test network consisted of a
central node with five arms, each of length 20 nodes. Baseline
parameters for the simulations were pd = 0.1, pm = 0.7, and
pe = 0. To test the effect of a network with heterogeneous in-
fection and recovery parameters, the baseline parameters pd and
pm were allowed to vary randomly above or below the baseline
level in increments of 0.05 and 0.1, respectively, up to a maxi-
mum amount in each time step. Different amounts of variation
were tested. We tested variations in pd of 0, 0.05, and 0.1 and
variations in pm of 0, 0.1, 0.2, and 0.3 (Table S2). The rule of
thumb and the outside–in management strategy were simulated
30 times each on 30 randomly generated test networks. It was
assumed that all patches were initially infected in each simula-
tion. Each simulation was run for 700 time steps and the average
time to eradication was computed. For each parameter combi-
nation, we also varied the number of nodes managed per time
step. We tested scenarios in which 1, 2, or 5 nodes could be
managed per time step (Figs. S1–S3).
Our rules of thumb outperform the outside–in strategy re-

gardless of the probabilities of infection and recovery and re-
gardless of the number of patches that are managed in each time
step. Increasing the variation in the probability of recovery made
our rule of thumb show slightly increased performance relative
to the outside–in strategy, although increasing the variation in
the probability of infection did not seem to affect the scale of the
improvement for the values tested.
The time to eradication decreases as more patches are able to

be managed in each time step. We found that the relative benefits
of our rules of thumb are greater when fewer patches are man-
aged in each time step. The reason that our rule of thumb out-
performs the outside–in strategy is because reinfections are less
likely to occur using our rule of thumb. The longer the time it
takes to eradicate the infection, the more opportunity there is for
reinfections to take place, and the greater the benefit of our rule
of thumb over the outside–in strategy. By managing multiple
patches in a time step, the time to eradication is reduced, which
makes the performance of the two strategies more similar.

Factored POMDP. Using the Bellman principle of optimality and
the previously defined FPOMDP parameters (Methods in main
text), we can calculate the optimal t-step value function from the
(t − 1)-step value function,
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where Pr(s | b) represents the probability of being in state s given
a belief state b, and baz is the belief state assuming action a and
observation z and P is the state–action transition matrix. Eq. S1
minimizes the expected sum of instantaneous costs when there is
no time left to manage for the infection. Similarly when there are
t steps to go, Eq. S2 minimizes the instantaneous costs and the
future expected costs for the remaining t − 1 steps. Interested

readers could refer to Cassandra et al. (1) for further ex-
planations of the dynamic programming equations.
The optimal solution π can be represented in two different

ways. We can either apply directly the strategy function for each
belief state we are in or represent the optimal strategy as a policy
graph. The policy graph automatically generates all of the pos-
sible transitions over time given the performed action and the
new observation, whereas the use of strategy functions requires
updating the belief state using Bayes’ rule given the performed
action and the new observation. After performing action a and
observing z, the updated belief baz can be calculated from the
previous belief b:

baz ðs′Þ ¼ Prðs′jb; a; zÞ; [S3]

baz ðs′Þ ¼
Oðzja; s′Þ∑s′∈S Pðs′js; aÞbðsÞ

Prðzja; bÞ ; [S4]

with

Prðzja; bÞ ¼ ∑
s∈S

∑
s″∈S

Oðzjs″; aÞPðs″js; aÞbðsÞ: [S5]

Algebraic Decision Diagram. The components of our optimization
models (transition probabilities, rewards, and costs) are com-
putationally represented with algebraic decision diagrams (2).
Fig. S6 illustrates how the dynamic of node 3 (s3) connected to
node 2 (s2) can be defined following our discrete-time SIS model
assuming a line network and no management occurs (e.g., the
action is do nothing). Our decision tool automatically generates
the transition probabilities for each node and action on the basis
of the structure of the network.

Analytic Approximation. We highlight the similarities between
managing invasive species or disease (model 1) and managing
a threatened species (model 2). For both POMDP models, the
sets of states, actions, observations, and observation functions can
be defined in the same way.
The main difference between both models resides in the effect of

the manage action on the state transition model (P). Although
managing an invasive species or a disease decreases the local
probability of persistence (pm1 < p01), managing a threatened
species increases its local probability of persistence (pm2 > p02).
Also for an invasive species or disease we would expect a proba-
bility of persistence equal to or close to 1 when not managed,
whereas a threatened species by definition will have a probability of
persistence <1 (1 ≥ p01 > p02). Note that “survey” and do nothing
have the same effect on the state dynamic for both models and the
ability to detect the state infected is defined in the same way.
In the case of a disease or a pest the optimization objective is to

maximize the expected number of susceptible nodes (model 1) or
maximize the expected number of infected nodes (model 2) over
time. This information is expressed by defining the cost or reward
functions R1(s, a) = r1(s) + c1(a) and R2(s, a) = r2(s) + c2(a)
with s in Si, a in Ai, and ri the immediate reward of being in
a state and the cost of performing an action ci. Actions have the
same cost for both models but the cost or reward of being in
a state is defined differently for both models. Here we use
r1(infected) = −V and r2(infected) = V and r1(susceptible) = −r2
(susceptible) = 0, with V a positive value representing the
economic benefits of a persisting threatened species or the
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economic loss of a persisting disease or invasive species. The
objective can also be expressed as the minimization of the ex-
pected number of infected nodes (model 1) or the expected
number of susceptible nodes in the case of a threatened pop-
ulation (model 2). In absence of detection of the species/disease,

these two models share a same solution structure: manage, sur-
vey, and do nothing.
From ref. 3 we know that the time we should spend managing

is dependent on the belief of persistence of the species at the
boundary between managing and surveying bm/s,

Tm ¼ logðbm=sÞ
logð pmÞ

with pm the probability of persistence of the species when man-
aged and

bm=s ≈
ðcm − csÞ

½2cmdp0 þ V ðpm − p0Þð1þ ð1− dÞp0ð1þ p0Þ− dp0pmÞ�

with p0 the probability of persistence of the species when not
managed, and d the probability of the species being detected if
present when we survey.
Similarly the time we should spend surveying is defined by

Ts ¼
log

�
bs=nð1− p0ð1− dð1− bm=sÞÞÞ=bm=sð1− p0ð1− dð1− bs=nÞÞÞ

�
log½ð1− dÞp0�

with bs/n defined as

with T the time we should spend surveying. For an n-population
POMDP, the cost of managing (cm), the cost of surveying (cs),
and the economic value of the species (V) remain unchanged as
we manage or survey only one population at a time. Note that V
can be easily transformed into the economic cost of losing
a species (c). A species persists in the network when it is not
extinct from the whole network; therefore we can define p0 as
p0 = 1 − pe

n
.

Similarly we can redefine the probability of persistence of the
species across the network when one population is managed (pm)
as pm = 1 − pe

n−1pm.
We then define the probability of a species being detected, if

present, when we survey one node (d). We first define the
probability of not detecting the species across the network if
one node is surveyed as (1 − ds)(1 − dn)

n−1. The probability of
detecting at least one species across the n populations is d =
1 − (1 − ds)(1 − dn)

n−1
.

We have redefined the key parameters defined in Chadès et al.
(3) and provide an approximate solution to how long we should
manage and survey n independent populations (Fig. S5).
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Fig. S1. Time to eradication on a star network of 101 nodes when 1 node can be managed at a time under 12 scenarios (Table S2). Error bars represent SD.

bs=n ≈
csð1− pmÞð1− p0Þ�

p0dðV ðpm − p0 þ pT0 ð1− pTmÞ− pmð1− p0Þ− cmð1− pmÞð1− p0ÞðT − 1ÞÞÞ�;
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Fig. S2. Time to eradication on a star network of 101 nodes when 2 nodes can be managed at a time under 12 scenarios (Table S2). Error bars represent SD.

Fig. S3. Time to eradication on a star network of 101 nodes when 5 nodes can be managed at a time under 12 scenarios (Table S2). Error bars represent SD.

Fig. S4. Management recommended over time under imperfect detection of an infected node on a star network of four nodes (Inset) when no prior in-
formation is available about the infection of the network. The red line represents the probability of eradication of the infection across the whole network and
starts at 1/16. The other colored lines represent the probability of eradication of each node. mi, manage node i; si, survey node i; and dn, do nothing.
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Fig. S5. Comparison of resource allocation for (Upper) managing and (Lower) surveying of an approximate analytical solution for a hypothetical highly
threatened species. n represents the number of populations. We used the following parameters: probability of local persistence 0.7 if not managed and 0.85
when managed and probability of detection of 0.2 when managed and 0.78 when surveyed. The whooping crane and Mexican spotted owl are given as
examples of potential economic loss (V) and estimated cost of management (cm) derived from refs. 3–5.

Fig. S6. Graphical representation of the dynamic of node 3 (B) connected to node 2 assuming a line network (A) and no management. pe is the probability of
local extinction. pd represents the probability of dispersal.
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Table S1. Parameters used for our general case study

MDP/POMDP parameters Value

Probability of a node being infected if one neighbor is infected (pd) 0.1
Probability of a node becoming susceptible if infected and not managed (pe) 0.01
Probability of a node becoming susceptible if it has been managed (pm) 0.7
Probability of detecting an infected node when “manage” or “do nothing” is used (dn) 0.1
Probability of detecting an infected node when “survey” is used (ds) 0.7
Cost of managing one node (cm) 100
Cost of surveying one node (cs) 50
Cost of a node being infected (c) 100

We derived our rules of thumb assuming a hypothetical infection for our SIS network model.

Table S2. Robustness of Chadès et al.’s rules (this study) for a star network of 101 nodes when varying the management option under
different uncertain scenarios

Simulation scenarios Maximal variation in dispersal (pd) Maximal variation in recovery (pm)

Improvement under different management
options: no. treatments avoided (%)

1 node 2 nodes 5 nodes

A 0 0 90.68 (31.2) 20.36 (10.7) 5.68 (3.3)
B 0.05 0 90.68 (31.2) 20.36 (10.7) 5.68 (3.3)
C 0.1 0 90.68 (31.2) 20.36 (10.7) 5.68 (3.3)
D 0 0.1 98.32 (32.6) 21.65 (11.1) 5.68 (3.3)
E 0.05 0.1 90.20 (30.8) 20.23 (10.5) 5.33 (3.1)
F 0.1 0.1 98.61 (32.5) 21.79 (11.2) 5.08 (3.0)
G 0 0.2 105.08 (33.2) 22.35 (11.1) 6.40 (3.6)
H 0.05 0.2 115.45 (34.9) 23.51 (11.6) 5.66 (3.2)
I 0.1 0.2 115.29 (34.8) 23.60 (11.5) 5.98 (3.3)
J 0 0.3 135.81 (37.2) 24.97 (11.5) 6.89 (3.6)
K 0.05 0.3 151.81 (39.8) 27.59 (12.8) 6.72 (3.5)
L 0.1 0.3 134.15 (36.7) 26.30 (12.0) 7.65 (3.9)
Average performance of Chadès et al.’s rules (this study) 111.42 (34.1) 22.97 (11.3) 6.07 (3.4)
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Table S3. Optimal starting node, centrality measures, and connectance for nine small networks

Node/optimal starting
node Closeness centrality

Eigenvector
centrality

Subgraph
centrality

Betweenness
centrality

Connectance = 0.143
1* 0.375* 6.19901E-06 1.639827167 0
2* 0.375* 6.19901E-06 1.639827167 0
3 0.545454545 0.000474185 2.970722293 18
4 0.6 0.020593476 2.405064022 18
5 0.545454545 0.467122568 3.548827737 16
6 0.4 0.446541381 2.785170056 0
7 0.4 0.446541381 2.785170056 0

Connectance = 0.222

1* 0.666666666666667* 1.11022E-16 1.589091778 0
2 1 0 2.178183557 2
3* 0.666666666666667* 4.44089E-16 1.589091778 0

Connectance = 0.111

1* 0.266666666666667* 5.47939E-08 1.590664613 0
2 0.347826087 6.2538E-06 2.230519482 14
3 0.444444444 0.000467986 2.332523605 24
4 0.533333333 0.021049118 3.09935418 32
5 0.470588235 0.020587331 2.406658041 16
6 0.421052632 0.021042808 3.045334013 16
7 0.4 0.020581076 2.354238711 4
8 0.444444444 0.020581132 2.35586695 8
9 0.307692308 0.000455588 1.641877645 0

Connectance = 0.11

1 0.25* 6.60899E-12 2.387727503 1
2 0.3 3.54822E-10 2.43854041 7
3 0.375 5.58534E-08 3.184818517 37
4 0.3 3.54822E-10 2.43854041 7
5 0.409090909 6.19972E-06 2.336976825 40
6 0.409090909 0.000461732 2.283417888 40
7 0.375 0.020581077 2.354295345 36
8 0.321428571 0.467110059 3.547158417 28
9* 0.257142857 0.446535126 2.785135174 0

10* 0.257142857 0.446535126 2.785135174 0

Connectance = 0.083

1 0.323529412 0 2.336885376 22
2 0.275 −3.60822E-16 2.284499388 10
3 0.239130435 −3.60822E-16 2.282898901 4
4 0.275 2.77556E-16 2.284499388 10
5 0.323529412 2.77556E-17 2.336885376 22
6 0.392857143 1.33227E-15 3.079961857 64
7 0.392857143 −5.55112E-17 2.335398156 60
8 0.366666667 −1.11022E-16 2.338600345 56
9 0.323529412 −1.11022E-15 3.1848471 49
10* 0.261904762 −1.66533E-15 2.438540723 9
11* 0.22* −1.22125E-15 2.387727512 1
12* 0.261904762 −1.44329E-15 2.438540723 9

Connectance = 0.088

1* 0.184615384615385* −1.11128E-15 2.387727503 1
2* 0.214285714 2.4434E-15 2.438540407 10
3 0.255319149 1.6714E-12 3.184818151 55
4* 0.214285714 2.55963E-15 2.438540407 10
5 0.285714286 3.54855E-10 2.336942307 64
6 0.307692308 5.65615E-08 2.281299105 70
7 0.315789474 6.42527E-06 2.279650222 72
8 0.307692308 0.000487437 2.28184756 70
9 0.285714286 0.02253151 2.363206665 64

10 0.255319149 0.557314127 3.875563984 54
11 0.218181818 1.005338126 4.335579023 10
12 0.184615384615385* 0.513687999 3.027562192 0
13 0.218181818 1.005338126 4.335579023 10
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Table S3. Cont.

Node/optimal starting
node Closeness centrality

Eigenvector
centrality

Subgraph
centrality

Betweenness
centrality

Connectance = 0.09

1 0.303030303 3.54845E-10 1.748050626 0
2 0.416666667 5.72728E-08 4.792724749 60
3 0.303030303 3.54846E-10 1.748050626 0
4 0.303030303 3.54846E-10 1.748050626 0
5 0.303030303 3.54845E-10 1.748050626 0
6 0.434782609 6.20112E-06 2.445293933 50
7 0.416666667 0.000461734 2.28673399 48
8 0.37037037 0.020581079 2.354351998 42
9 0.3125 0.46711006 3.547159041 32
10* 0.25* 0.446535126 2.785135179 0
11* 0.25* 0.446535126 2.785135179 0

Connectance = 0.076

1 0.282051282 −4.2466E-15 2.228942914 20
2 0.35483871 −9.4369E-16 2.283073466 36
3 0.44 0 2.448751983 48
4 0.523809524 8.88178E-16 4.913204096 90
5 0.407407407 9.99201E-16 2.44717798 36
6 0.314285714 1.47105E-15 2.23394323 20
7 0.244444444 1.52656E-16 1.590721201 0
8 0.379310345 −1.11022E-16 2.397908291 20
9 0.282051282 5.68989E-16 1.595554054 0

10 0.35483871 1.33227E-15 1.751455123 0
11 0.35483871 1.33227E-15 1.751455123 0
12* 0.224489795918367* −1.65146E-15 1.590637769 0

Connectance = 0.062

1 0.245614035 5.06539E-16 2.22894323 26
2 0.304347826 6.93889E-16 2.283103048 48
3 0.378378378 6.66134E-16 2.450528038 66
4 0.466666667 8.43769E-15 4.974437299 150
5 0.358974359 2.10942E-15 2.44895403 48
6 0.28 4.71845E-16 2.233972806 26
7 0.325581395 8.32667E-16 1.753172953 0
8 0.378378378 1.77636E-15 2.450528038 66
9 0.304347826 1.69309E-15 2.283103048 48

10 0.245614035 2.60209E-15 2.22894323 26
11* 0.2* 9.01189E-16 1.590637771 0
12* 0.2* 2.68015E-16 1.590637771 0
13 0.341463415 1.11022E-16 2.399683719 26
14 0.259259259 4.16334E-17 1.595583006 0
15 0.222222222 2.84495E-16 1.590721512 0

*Optimal starting node.
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