Supporting Information

Goldfeld et al. 10.1073/pnas.1016951108

Fig. S1. Pictorial representations of G-protein-coupled receptors (GPCRs). (*A*) A cartoon of bovine rhodopsin. The red sections are the seven transmembrane helices (labeled TM1 through TM7), which are connected by gray, alternating intra- and extracellular loops. The N and C termini are also labeled. (*B*) A cartoon of bovine rhodopsin embedded within a lipid bilayer. When a ligand binds to the extracellular loops, it induces a conformational shift of the receptor, which triggers the intercellular domain to couple with a G-protein.

Fig. S2. The first extracellular loop of the four representative GPCRs. In each case the native loop is gray, and the predicted loop is purple. The numbers denote the starting and ending points of each loop. (A) The native and predicted structures of ECL1 of bRh; the backbone rmsd is 0.17 Å. (B) The native and predicted structures of the first extracellular loop (ECL1) of A2Ar; the backbone rmsd is 0.18 Å. (C) The native and predicted structures of ECL1 of β 1AR; the backbone rmsd is 0.27 Å. (D) The native and predicted structures of ECL1 of β 2AR; the backbone rmsd is 0.12 Å.

Table S1. Crystal contacts

GPCR	Loop	Residue 1, name_number: atom name	Residue 2, name_number: atom type	Distance, Å
β2AR	171–196	ASN_1053: OD1	ILE_177: O	2.91
		THR_1109: CG2	GLU_187: OE1	3.56
	299–304	LYS_1035: O	ASN_301: CB	3.14
		PRO_1037: CG	GLN_299: NE2	3.4
bRh	224–241	THR_242: OG1	GLN_237: NE2	2.95
		GLN_237: O	GLN_238: CB	2.83
		GLN_236: OE1	GLN_238: OE1	2.33
		GLN_238: O	GLN_238: OE1	2.92
	173–199	GLU_196: OE2	PRO_194: CG	3.02
A2Ar	107–117	LYS_292: CE	ASN_113: ND2	3.34
	142–173	GLN_207: NE2	GLN_157: O	2.83
		ARG_369: NH2	GLY_158: O	3.05
		ASN_247: OD1	GLU_161: N	3.26
		LYS_250: CB	GLU_161: OE1	3.07
		SER_251: OG	GLU_161: CB	3.73
		ASN_260: OD1	GLY_147: OE2	3.13
		ASN_262: OD1	GLY_162: CA	3.05
	259–266	GLU_161: OE2	ASN_260: OD1	3.13
	34–40	THR_316: OG1	SER_35: CB	3.41
		GLU_315: CB	SER_35: OG	3.64
		ASN_288: ND2	GLN_38: OE1	2.75
	67–73	LEU_202: CD2	PHE_70: CG	3.54
		ARG 205: O	CYS_71: N	2.72

All loop predictions that did not include an explicit membrane were performed using crystal neighbors in the calculations. All the copies of the asymmetric unit are predicted simultaneously, rather than the entire structures of the neighbors being used to guide the prediction of the central asymmetric unit. Listed above are the crystal contacts (defined as being within 4 Å) that exist in the 21 loops that we predicted for this paper.