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Search Time ts and Bimolecular Rate Constant ka for the Two-State Model.  In this 

model, illustrated by the unimolecular scheme of the main text, the DNA-binding protein is 

assumed to transfer stochastically between the bulk solution and the DNA surface; in the 

latter region the protein has a finite chance of being captured by the specific site. These steps 

are modeled as ordinary chemical kinetics, with rate constants κ3, κ3–, and κ1. 

Correspondingly the average lifetime of Pb, the protein in the bulk solution, is 

 3d
3

1 ,t
κ

=  [S1] 

and the average lifetime of Pns, the nonspecifically bound protein, is 

 1d
3 1

1 .t
κ κ−

=
+

 [S2] 

Note that Pns can decay via two pathways: to Pb with rate constant κ3–, and to Ps (the target-

bound protein) with rate constant κ1. That is why the denominator on the right-hand side of 

Eq. S2 is the sum of the two rate constants. Between the two pathways, the probability for the 

latter is 

 1

3 1

.κη
κ κ−

=
+

 [S3] 

Starting from the bulk solution, the probability of the protein reaching Ps after n 

rounds of cycling between Pb and Pns is (1) 

 1(1 ) .n
np η η−= −  [S4] 

The average rounds of cycling between Pb and Pns that the protein goes through before being 

captured by the specific site is therefore 

 
1

1
n

n
n nP

η

∞

=

= =∑  [S5a] 

 3 1

1

.κ κ
κ
− +=  [S5b] 

The average total search time is 
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 s 3d 1d( )t n t t= +  [S6a] 

 3 1

1 3 3 1

1 1κ κ
κ κ κ κ
−

−

⎛ ⎞+
= +⎜ ⎟+⎝ ⎠

 [S6b] 

 3

3 3 1

1 11 .κ
κ κ κ

−⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 [S6c] 

Eq. S6c can also be derived from solving the rate equations corresponding to 

unimolecular reaction scheme. Denoting the probability of the protein being in the Pb state at 

time t as [Pb](t) and the analogous quantity for the Pns state as [Pns](t), we have 

 b
3 b 3 ns

[P ]( ) [P ]( ) [P ]( ),d t t t
dt

κ κ −= − +  [S7a] 

 ns
3 b 3 1 ns

[P ]( ) [P ]( ) ( )[P ]( ).d t t t
dt

κ κ κ−= − +  [S7b] 

The sum of the probabilities that the protein is still in Pb and Pns at time t is the survival 

probability, i.e., the probability that the protein has not been captured: 

 b ns( ) [P ]( ) [P ]( ).S t t t= +  [S8] 

The search time ts is the average time that the protein takes to reach Ps for the first time, and is 

given by 

 s
0

( ).t dtS t
∞

= ∫  [S9] 

Solving Eqs. S7, e.g., by Laplace transform, subject to the initial condition [Pb](0) =1 and 

[Pb](0) = 0, and carrying out the integral of Eq. S9, we obtain Eq. S6c. 

We now derive the bimolecular rate constant ka from the two-state model. For the 

moment let the volume of the bulk solution around the DNA to be V; shortly we will take the 

limit V → ∞. The ratio κ3/κ3– is the equilibrium constant between Pb and Pns. Assuming that 

the potential of mean force U(r) is nonzero only when the protein is in the Pns state, we have 

 

( )

surface region3 ns

3
bulk solution

,

Udve

Vdv

β

κ
κ

−

−

= =
∫

∫

r

K  [S10] 
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where dv is a volume element, and 

 ( )
ns

surface region

Udve β−= ∫ rK  [S11] 

is the equilibrium constant for forming the protein-DNA nonspecific complex: 

 3

3
b nsP D P Dk

κ −

⎯⎯→+ ←⎯⎯ ⋅  

as V → ∞. That is, 

 3
ns

3

.k
κ −

=K  [S12] 

Comparing Eqs. S10 and S12, we obtain 

 3 3
1 ,k
V

κ =  [S13] 

in which 1/V is effectively the DNA concentration (or protein concentration, since there is one 

molecule of each species in the same volume). Using Eqs. S10 and S13 in Eq. S6c, we have 

 s
3 ns 1

11 .V Vt
k κ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠K
 [S14] 

In analogy to Eq. S13 we may define the bimolecular rate constant ka via 

 a
s

1 1 .k
t V
=  [S15] 

Hence 

 
a 3 ns 1

11 .V V V
k k κ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠K
 [S16a] 

Taking the V → ∞ limit, we find 

 
a 3 ns 1

1 1 1 .
k k κ

= +
K

 [S16b] 

Using Eqs. S3 and S12, we can rewrite the last result as 

 a 3 .k k η=  [S17] 
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Reduction Factor α for a Finite-Length DNA.  For the system of Fig. 1A, the reduction 

factor α is determined by the following implicit relations (2): 

 1 1
2

1 00

( )sin /1 ,
( ) / ( )
gd

K K
ξ ξ ξα ξ

ξ ξ ξ ξ

∞

= −
+ Γ∫  [S18a] 

 ( ) (2 / ) ( )sin( / ) ( / ) cos( / ) ( ) ,
L

g q L L R R dx x R q xξ π ξ ξ ξ ξ
∞⎡ ⎤

= Γ +⎢ ⎥
⎣ ⎦

∫  [S18b] 

 2
1 00

( ) cos( / )( ) ( ) ,
( ) / ( )

g x Rq x q x d
K K

ξ ξα ξ
ξ ξ ξ ξ

∞
∞= +

+ Γ∫  [S18c] 

where ξ1 = ξh/R and 

 a 1 1
2 2

1 00

cos( / )sin /( ) .
2 ( ) / ( )

k x Rq x d
DR K K

ξ ξ ξξ
π ξ ξ ξ ξ

∞∞
∞ =

+ Γ∫  [S19] 

 

Derivation of Eq. 11a.  The probability η(r) that the protein started at r will reach the 

specific site instead of escape to infinity satisfies the backward Smoluchowski equation 

 ( ) ( )( ) ( ) 0U Ue eβ β η−∇ ⋅ ⋅ ∇ =r rr rD  [S20] 

with the outer boundary condition 

 ( ) 0η =r , r = ∞. [S21] 

By comparing the equations and boundary conditions satisfied by η(r) and the pair 

distribution function P(r), it can be verified that 

 ( )( ) 1 ( ).Ue Pβη −= − rr r  [S22] 

In terms of η(r), the rate constant ka can be written as 

 a ( ) ( ).
r

k ds η
=∞

= − ⋅ ⋅∇∫ n r rD  [S23] 

Let P3(r) be the pair distribution function for the problem in which the whole DNA 

exterior surface is absorbing. It satisfies the Smoluchowski equation 

 3 ( ) 0,∇⋅ =J r  [S24a] 

 ( ) ( )
3 3( ) ( ) ( )U Ue e Pβ β−= − ⋅ ∇r rJ r r rD  [S24b] 
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with the inner boundary condition 

 3( ) 0P =r , r ∈ DNA exterior surface, [S25a] 

and the outer boundary condition 

 3 ( ) 1P =r , r = ∞. [S25b] 

Using Eqs. S20 and S24, it can be easily shown that 

 [ ]3 3( ) ( ) ( ) ( ) ( ) 0.P η η∇⋅ ⋅ ∇ + =r r r J r rD  [S26] 

Consequently 

 [ ]3 3( ) ( ) ( ) ( ) ( )
r

ds P η η
=∞

− ⋅ ⋅ ∇ +∫ n r r r J r rD  

 [ ]3 3
any DNA-enclosing surface

( ) ( ) ( ) ( ) ( ) .ds P η η= − ⋅ ⋅ ∇ +∫ n r r r J r rD  

Using the boundary conditions of Eqs. S21 and S25b, the left-hand side becomes 

 ( ) ( ),
r

ds η
=∞

− ⋅ ⋅∇∫ n r rD  

which according to Eq. S23 is just ka. For the right-hand side, we specialize the DNA-

enclosing surface to the DNA exterior surface and use the boundary condition of Eq. S25a. 

We thus derive 

 a 3
DNA exterior surface

( ) ( ),k ds η= − ⋅∫ n J r r  [S27] 

which is Eq. 11a of the main text. A special case of Eq. S27 has been derived previously (3), 

where P3(r) satisfies the absorbing boundary condition on a spherical surface, U(r) is 

spherically symmetric outside this surface, and the diffusion tensor is reduced to a scalar. 

 

Derivation of η  for an x-Dependent Surface Potential.  Here we consider a protein, with a 

fixed conformation, that experiences an x-dependent surface potential. Specifically, we 

consider a surface potential with a step-function form: 

 0( )U x U=   when |x| < h; 
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 U=   when h < |x| < L. [S28] 

Correspondingly the values of κ3–(x) in the two intervals will be denoted as κ03– and κ3–, 

respectively. Because of the symmetry of the problem about x = 0, we now restrict to the 

domain 0 < x < L. The capture probability, η(x), for the nonspecifically bound protein starting 

at position x is governed by 

 
2

032

( ) ( ) 0,d xD x
dx
η κ η−− =   when 0 < x < h; [S29a] 

 
2

32

( ) ( ) 0,d xD x
dx
η κ η−− =   when h < x < L. [S29b] 

The solution has the form 

 0 0/ /
1 2( ) ,x m x mx A e A eη −= +   when 0 < x < h; [S30a] 

 / /
1 2 ,x m x mB e B e−= +   when h < x < L. [S30b] 

where m0 = (D/κ03–)1/2, m = (D/κ3–)1/2, and A1, A2, B1, and B2 are coefficients to be determined. 

The boundary conditions are 

 (0) 1,η =  [S31a] 

 ( ) 0.
x L

d x
dx
η

=

=  [S31b] 

In addition, η(x) and its derivative satisfy the following continuity conditions at x = h: 

 ( ) ( ),h hη η− +=  [S32a] 

 ( ) ( )( ) ( ) .U x U x

x h x h

d x d xe e
dx dx

β βη η− −

= =− +
=  [S32b] 

Using these conditions, we find 

 
0

0

2 /
0 1

1 2 /

/ tanh( / ) ,
1

h m U

h m

e m m L meA
e G

β− − Δ

−

−
=

−
 [S33a] 

 
0

0 1
2 2 /

/ tanh( / )1 ,
1

U

h m

e m m L mA
e G

β− Δ

−

+
=

−
 [S33b] 

 
1

(2 ) /
0

1 2 /
0

/ ,
(1 )sinh( / )

UL h m

L m

e m meB
e h m G

β− Δ− −

−=
+

 [S33c] 
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1

/
0 0

2 2 /
0

/ ,
(1 )sinh( / )

Uh m

L m

e m meB
e h m G

β− Δ

−=
+

 [S33d] 

where ΔU = U0 – U, L1 = L – h, and 

 0 0 1( / ) coth( / ) tanh( / ).UG e m m h m L mβ− Δ= +  [S34] 

The average capture probability of the nonspecifically bound protein is 

 
0

(1/ ) ( )
L

L dx xη η= ∫  

 0 0 1 0

0

( / )[1 ( / ) tanh( / ) / sinh( / )]
/

Ue m m m m L m h m
GL m

β− Δ +
=  

 0 1

0

tanh( / 2 ) tanh( / ) .
/

h m L m
GL m

+  [S35] 

This reduces to Eq. 15 of the main text when ΔU = 0 and κ03– = κ3–. 

If the local energy well at the specific site is infinitely deep (i.e., βΔU → –∞), which 

is the case for the system of Fig. 1A, then m0 → ∞ and Eq. S35 becomes 

 1tanh( / ) .
/

h L m
L L m

η = +  [S36] 

In this limiting situation, the whole interval |x| < h is effectively absorbing, so there η(x) = 1; 

in h < x < L η(x) can be determined by solving Eq. S29b with the boundary condition η(h) = 

1. Averaging over the two intervals of |x| results in Eq. S36. The solid curves in Figs. 2A and 

2B display ka obtained by combining Eq. S36 with Eqs. 6 and 11b of the main text. 

 

Capture Probability for a Protein with Conformational Switch.  When the nonspecifically 

bound protein can switch between two conformations, the capture probability, ηg(x), starting 

at position x and conformation g = a or i is governed by Eqs. 18 of the main text. We first note 

that the detailed balance condition given by Eq. 17 of the main text constraints the relation 

between ωg(x) and κg–(x). According to Eq. 19 of the main text, 

 a i[ ( ) ( )]i

a

( ) .
( )

U x U xx e
x

βκ
κ

− −=  [S37a] 
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Using this result in Eq. 17 of the main text, we get 

 i a 3a

i a 3i

( ) / ( ) .
( ) / ( )
x x p
x x p

ω ω
κ κ

=  [S37b] 

Therefore the ratio of ωi(x)/ωa(x) to κi(x)/κa(x) must be x-independent. 

If Ug(x), ωg(x), and κg–(x) are all x-independent, then Eqs. 18 become 

 
2

a
a a a a i a a2

( ) ( ) ( ) ( ) 0,d xD x x x
dx
η ω η ω η κ η−− + − =  [S38a] 

 
2

i
i i a i i i i2

( ) ( ) ( ) ( ) 0.d xD x x x
dx
η ωη ωη κ η−+ − − =  [S38b] 

The solution has the form 

 
1/ 2 1/ 2 1/ 2 1/ 2

a 1 2 1 2( ) ,x x x xx A e A e B e B eλ λ λ λη + + − −− −= + + +  [S39a] 

 
1/ 2 1/ 2 1/ 2 1/ 2

i 1 2 1 2( ) ( ) ( ),x x x xx F A e A e F B e B eλ λ λ λη + + − −− −
+ −= − + − +  [S39b] 

where A1, A2, B1, and B2 are coefficients to be determined, and 

 
2 1/ 2

a i i i a a a i i i a a a i a i

a i

( ) ( ) {[ ( ) ( )] 4 } ,
2

D D D D D D
D D

ω κ ω κ ω κ ω κ ω ωλ − − − −
±

+ + + ± + − + +
=  [S40a] 

 a a a

a

( ) .DF λ ω κ
ω

± −
±

− +
=  [S40b] 

The boundary conditions of ηg(x) are 

 i
a

0

( )(0) 1; 0;
x

d x
dx
ηη

=

= =  [S41a] 

 a i( ) ( )0; 0.
x Lx L

d x d x
dx dx
η η

==

= =  [S41b] 

Using these we find 

 
1/ 2

1/ 2

2

1 1/ 2 1/ 22

1 ,
coth( ) coth( )1

L

L

eA
L F Le

λ

λ λ λ

+

+

−

−
+ −

=
+−

 [S42a] 

 1/ 22 1/ 2 1/ 22

1 1 ,
coth( ) coth( )1 L

A
L F Le λ λ λ+−

+ −

=
+−

 [S42b] 

 
1/ 2

1/ 2

2

1 1/ 2 1/ 22

1 ,
coth( ) coth( )1

L

L

eB F
L F Le

λ

λ λ λ

−

−

−

−
+ −

=
+−

 [S42c] 
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 1/ 22 1/ 2 1/ 22

1 1 ,
coth( ) coth( )1 L

B F
L F Le λ λ λ−−

+ −

=
+−

 [S42d] 

where 

 
1/ 2

1/ 2 .FF
F

λ
λ
+ +

− −

= −  [S43] 

The average capture probability of the nonspecifically bound protein is 

 3a a 3i i
0 0

( / ) ( ) ( / ) ( )
L L

p L dx x p L dx xη η η= +∫ ∫  

 
1/ 2 1/ 2

3a 3i i i i
1/ 2 1/ 2

[ /( )](1/ / ) .
coth( ) coth( )

p p L F L
L F L

ω ω κ λ λ
λ λ

− + −

+ −

+ + +
=

+
 [S44] 

The dashed curve in Fig. 3 displays ka obtained by combining Eq. S44 with Eqs. 6 and 11b of 

the main text. 

We now consider two opposite limits of Eq. S44. When ωg → 0, we find 

 2a
a

a

,m
D
κλ −−

+ → ≡  

 2i
i

i

,m
D
κλ −−

− → ≡  

 0,F →  

and consequently the slow conformational-transition limit of η  is 

 
g

a
s 3a0

a

tanh( / )lim .
/
L mp

L mω
η η

→
≡ =  [S45] 

In the limit ωg → ∞ we find 

 ,λ+ →∞  

 2i a a i

i a a i

,m
D D

ωκ ω κλ
ω ω

−− −
−

+
→ ≡

+
 

 ,F →∞  

and therefore the fast conformational-transition limit of η  is 

 
g

f
tanh( / )lim .

/
L m

L mω
η η

→∞
≡ =  [S46] 
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For the potentials shown in Fig. 1B, Ui is x-independent but Ua has the step-function 

form of Eq. S28. The Ua well spans the specific site. We will add a “0” in the subscript to 

denote parameters within the specific site. For example, κ0g– denotes the rate constant for the 

protein in conformation g to escape to the bulk solution from the specific site whereas κg– 

denotes the counterpart when the protein is elsewhere on the DNA surface. Due to symmetry 

we will only consider 0 < x < L. 

We are particularly interested in the case where the Ua well at the specific site is 

infinitely deep. Then κ0a– → 0 (see Eq. S37a) and ω0a → 0 (see Eq. 17 of the main text). In 

addition, the continuity condition on dηa/dx at x = h (see Eq. S32b) means that dηa/dx = 0 at x 

= h–. Solving Eq. S38a under these conditions and ηa(0) = 1 leads to 

 a ( ) 1xη =   for 0 < x < h. [S47a] 

The interactions that produce the Ua well at the specific site will also affect the inactive-to-

active transition rate ω0i. Here we consider the extreme case ω0i → ∞. Then we must have 

(see Eq. S32a) 

 i a( ) ( ) 1x xη η= =   for 0 < x < h. [S47b] 

We can then solve ηg(x) in h < x < L using the boundary conditions ηg(h) = 1 as 

demanded by Eqs. S47. The solution has the form of Eqs. S39, but with the coefficients now 

given by 

 
1/ 2

1/ 2
1

(2 )

1 2

1 ,
1

L h

L

e FA
F Fe

λ

λ

+

+

− −
−

−
− +

+
=

−+
 [S48a] 

 
1/ 2

1/ 2
1

2 2

1 ,
1

h

L

e FA
F Fe

λ

λ

+

+

−
−

− +

+
=

−+
 [S48b] 

 
1/ 2

1/ 2
1

(2 )

1 2

1 ,
1

L h

L

e FB
F Fe

λ

λ

−

−

− −
+

−
− +

+
= −

−+
 [S48c] 

 
1/ 2

1/ 2
1

2 2

1 .
1

h

L

e FB
F Fe

λ

λ

−

−

+
−

− +

+
= −

−+
 [S48d] 

Averaging over initial position and initial conformation leads to 
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1/ 2 1/ 2

1 1
3a 3i 3a 3i1/ 2 1/ 2

tanh( ) 1 tanh( ) 1( ) ( ) .h L F L Fp p F p p F
L F F F FL L

λ λη
λ λ

+ − − +
+ −

− + − ++ −

+ +
= + − + − +

− −
 [S49] 

The solid curve in Fig. 3 displays ka obtained by combining Eq. S49 with Eqs. 6 and 11b of 

the main text. 

The slow transition limit of η  is now 

 1 a 1 i
s 3a 3i

a i

tanh( / ) tanh( / ) ,
/ /
L mh L mp p

L L m L m
η = + +  [S50a] 

where mg = (Dg/κg–)1/2. The fast transition limit is 

 1
f

tanh( / ) .
/

h L m
L L m

η = +  [S50b] 

 

MFPT of a Nonspecifically Bound Protein.  The mean-first-passage-time (MFPT), τ(x), for 

a protein with a fixed conformation starting at position x is governed by (4) 

 ( ) ( ) ( ) 1.U x U xd d xe De
dx dx

β β τ− = −  [S51] 

Applying the absorbing boundary condition at x = 0 and the reflecting boundary condition at x 

= L, one finds 

 
1

( ) ( )
1 2

0

( ) .
x L

U x U x

x

D x dx e dx eβ βτ −= ∫ ∫  [S52a] 

For an x-independent potential, the result is 

 2 2( ) [ ( ) ] / 2.D x L L xτ = − −  [S52b] 

For the step-function potential of Eq. S28, we find 

 2 2
1( ) [ ( ) ] / 2 UD x h h x e L xβτ Δ= − − +   when 0 < x < h; 

 22 2
1 1/ 2 [ ( ) ] / 2Uh e L h L L xβΔ= + + − −   when h < x < L. [S52c] 

We are particularly interested in the case shown in Fig. 1A, where the energy well at the 

specific site is infinitely deep (i.e., βΔU → –∞). 

What enters the two-state model (see Eq. 10a of the main text) is the MFPT averaged 

over initial position. For an x-independent potential, the result is 2 / 3L Dτ =  (4). However, 
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when the potential is x-dependent, there is a question of whether the average should be 

weighted by the Boltzmann factor exp[–βU(x)]. The usual use of MFPT has the Boltzmann 

weight (4). The Boltzmann-weight average for the step-function potential is h2/3D when βΔU 

→ –∞. That would predict a strong dependence of ka on h, which contradicts the weak h 

dependence of the exact result given by Eq. 4 of the main text (see Fig. S2). However, the 

unweighted average, 

 
33 2

1 13 / 2 ,
3

h h L L
DL

τ + +
=  [S53] 

seems appropriate for use in the two-state model. Recall that the average of η(x) over initial 

position is also unweighted. When h → 0, this τ  properly reduces to L2/3D, the result 

obtained when the potential is constant. The dashed curves in Figs. 2A and 2B display ka 

obtained by combining Eq. S53 with Eqs. 6, 9, and 10a of the main text. 

Next we consider the case where the nonspecifically bound protein can switch 

between two conformations. The MFPT τg(x) for the protein starting at position x and 

conformation g = a or i is governed by 

 a a( ) ( ) a
a a a a i

( ) ( ) ( ) ( ) ( ) 1,U x U x d xde D e x x x x
dx dx

β β τ ω τ ω τ− − + = −  [S54a] 

 i i( ) ( ) i
i i a i i

( ) ( ) ( ) ( ) ( ) 1.U x U xd d xe D e x x x x
dx dx

β β τ ω τ ω τ− + − = −  [S54b] 

We focus on the case where Ug(x) and ωg(x) are x-independent. Hu et al. (5) has studied a 

similar problem. The two equations for τg(x) can be uncoupled by forming appropriate linear 

combinations. We find 

 
2

a a a i i i
2

[ ( ) ( )] 1,d p D x p D x
dx

τ τ+
= −  [S55a] 

 
2

a i
a i a i2

[ ( ) ( )] [ ( ) ( )] ,d x xD D D x x D
dx

τ τ ω τ τ−
− − = −Δ  [S55b] 

where 

 a i ,ω ω ω= +  [S56a] 
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 a i i a/ , / ,p pω ω ω ω= =  [S56b] 

 i a ,D D DΔ = −  [S56c] 

 a a i i .D p D p D= +  [S56d] 

The solution of Eq. S55a has the form 

 2
a a a i i i 1 2( ) ( ) / 2,p D x p D x A A x xτ τ+ = + −  [S57a] 

where A1 and A2 are coefficients to be determined. The solution of Eq. S55b has the form 

 
1/ 2 1/ 2

a i a i( / ) ( / )
a i 1 2( ) ( ) / ,D D D x D D D xx x D D B e B eω ωτ τ ω −− = Δ + +  [S57b] 

where B1 and B2 are to be determined. 

To determine A1, A2, B1, and B2, we apply the boundary conditions at x = 0 and x = L. 

These are 

 i
a

0

( )(0) 0; 0;
x

d x
dx
ττ

=

= =  [S58a] 

 a i( ) ( )0; 0.
x Lx L

d x d x
dx dx
τ τ

==

= =  [S58b] 

The results are 

 
1/ 2

i i a ii i
1 1/ 2

a a a i

coth[( / ) ] ,
( / )

p D L D D D Lp D DA
D p D D D D

ω
ω ω
Δ

= − +  [S59a] 

 2 ,A L=  [S59b] 

 
1/ 2

a i

1/ 2
a i

2( / )

1 2( / )1/ 2
a a a i

,
( / ) [1 ]

D D D L

D D D L

LeB
p D D D D e

ω

ωω

−

−
= −

−
 [S59c] 

 1/ 2
a i

2 2( / )1/ 2
a a a i

.
( / ) [1 ]D D D L

LB
p D D D D e ωω −

= −
−

 [S59d] 

We then want to average τg(x) over initial position and initial conformation. There is 

uncertainty regarding the weighting factor for averaging over initial conformation. A natural 

choice is to use pg as the weighting factor, resulting in 

 a a i i
0 0

( / ) ( ) ( / ) ( )
L L

p L dx x p L dx xτ τ τ= +∫ ∫  
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2

i i i
1/ 2 1/ 2 1/ 2

a a a i a i a i i

1 1 .
3 ( / ) tanh[( / ) ] ( / )
L p D L p
D p D D D D D D D D L D D D Lω ω ω ω

⎧ ⎫
= + − +⎨ ⎬

⎩ ⎭
 [60] 

It has the following limiting values: 

 
2

3
L
D

τ →  as ωg → ∞; [S61a] 

 
2

i

a a i3
L p

p D
τ

ω
→ +   as ωg → 0. [S61b] 

Note that τ  goes to infinity in the latter limit, since when ωi = 0 the protein started in the 

inactive conformation stays in that conformation and hence cannot be absorbed. The 

calculation of η  suggests a different weighting factor, i.e., p3g (see Eq. S46), although p3g has 

so far not been introduced to an MFPT problem. Regardless of the weighting factor, τ  would 

go to infinity in the slow transition limit. 

It is unclear how this τ  can be used to predict ka. In the two-state model for the 

protein with a fixed conformation, τ  along with the escape rate κ3– is used in Eq. 10a of the 

main text to obtain the average capture probability. However, in the present case where the 

protein switches between two conformations, there are two distinct escape rates, κa– and κi–. 

Naively we may use a conformationally averaged escape rate, 3 a a i ip pκ κ κ− = + , in place of 

κ3–. However, other than in the fast transition limit, it is unclear whether this use can be 

justified. In any event, the infinite value of τ  in the slow transition limit would lead to a zero 

ka, which cannot be unjustified. So the use of a two-state model to predict ka for any DNA-

binding protein that switches between two conformations is fraught with problems. 

 

Rate Constant k3 When Nonspecific Binding Is Restricted to a Narrow Angular Range.  

Here we consider the case where nonspecific binding is restricted to a narrow angular range. 

The position r of the protein relative to the DNA can be specified by the coordinate x along, 

the distance ρ to, and the rotation angle φ around the DNA axis. The steady-state 

Smoluchowski equation for the pair distribution function P(r) now takes the form 
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2 2

3 2 2 2

1 1 ( ) 0.D P
x

ρ
ρ ρ ρ ρ φ

⎛ ⎞∂ ∂ ∂ ∂
+ + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

r  [S62] 

The nonspecific binding site is specified by |x| < L, |φ| < φ0, and ρ = R, where 2φ0 is the 

angular range of the binding site. For convenience we will denote a point on this binding site 

as r ∈ Ξ. The inner boundary condition is 

 ( ) 0,P =r  when r ∈ Ξ; [S63a] 

 3
( ) 0,PD
ρ

∂
=

∂
r  elsewhere on ρ = R. [S63b] 

Even though the DNA has a finite length 2L, following Berg and Ehrenberg (6) we have 

treated the surface ρ = R beyond the DNA as reflecting. 

It is clear that P(r) is an even function of both x and φ. We can express P(r) in the 

following expansion: 

 
00

( ) 1 ( ) cos( ) cos( ) ( ),j j
j

P d A z j Kζ ζ ζ φ ζρ
∞ ∞

=

= − ∑∫r  [S64] 

where Kj(x) are modified Bessel functions. The coefficients Aj(ζ) are determined by the 

boundary condition of Eqs. S63. This mixed-type of boundary condition presents significant 

difficulty. We thus replace Eq. S63a by the constant-flux approximation (7), 

 3
( ) ,PD Q
ρ

∂
=

∂
r  when r ∈ Ξ, [S63c] 

and determine the constant Q by requiring that the absorbing boundary condition of Eq. S63a 

is satisfied on the average: 

 ( ) ( ) / 0.P dsP ds
∈Ξ ∈Ξ

< >≡ =∫ ∫
r r

r r  [S63d] 

Now the flux at ρ = R has value Q when r ∈ Ξ and 0 otherwise. This function has the 

following expansion: 

 0 0
3 2

1 0

sin( ) cos( )( ) 4 sin( )cos( ) .
2 jR

j jP Q L zD d
jρ

φ φ φ ζ ζζ
ρ π ζ

∞∞

==

⎡ ⎤∂
= +⎢ ⎥∂ ⎣ ⎦

∑ ∫
r  [S65] 

Using Eq. S64 to evaluate the flux and comparing against Eq. S65, we find 
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 0
3 2

4 sin( )( ) ( )
2j j

Q LD A K R φ ζζ ζ ζ
π ζ

′− =  when j = 0; [S66a] 

 0
2

sin( )4 sin( )jQ L
j
φ ζ

π ζ
=  when j > 0, [S66b] 

where we have used a prime to denote derivative. Using Eq. S63d, we obtain 

 
2

3 0
2 22

0 02
2

11 0 120

/ 2 .
2sin ( ) /( )sin 1

( ) / ( ) ( ) / ( )j j j

D LQ
j jd

K K K K j
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∞ ∞

= −

=
⎡ ⎤
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 [S67] 

where ξ = ζR and ξ2 = ξL/R. Finally the rate constant is 

 3 3 0
( ) 4Pk daD RLQφ
ρ∈Ξ

∂
= =

∂∫
r

r  

 
2

3
2 22

0 02
2

11 0 120

2 .
2sin ( ) /( )sin 1

( ) / ( ) ( ) / ( )j j j

D R
j jd

K K K K j

π
φ φξξ
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∞ ∞

= −

=
⎡ ⎤

+⎢ ⎥+⎢ ⎥⎣ ⎦
∑∫

 [S68] 

If the nonspecific binding site extends to the full angular range (i.e., φ0 = π), then all the j > 0 

terms disappear and Eq. S68 reduces to Eq. 6 of the main text. 
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Fig. S1  Conformational transition rates ω0a and ω0i at the cognate site and ωa and ωi 

elsewhere on the DNA surface. The potential energies Ua(x) and Ui(x) at position x along the 

DNA, shown in Fig. 1B, correspond to two energy minima in conformational space. The 

energy surface in conformational space at two x positions is shown here. The red trace shows 

the energy surface when x is at the cognate site, and the blue trace shows the energy surface 

when x is at a noncognate site. The energy minimum corresponding to the inactive 

conformation has the same value Ui at the two x positions, but the minimum corresponding to 

the active conformation has a value U0a at the cognate site and Ua at the noncognate site. U0a 

is much more negative than Ui but Ua is much more positive than Ui. Consequently ω0a << ω0i 

but ωa >> ωi. 
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Fig. S2  Comparison of the predicted ka of Lomholt et al. against the exact solution for the 

system of Fig. 1A. Lomholt et al.’s ka is 

 
2

3
a

21 00

3 3 1 0
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1 (4 / ) ( ) / ( )
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d K K
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π
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∞=

+ Γ
+

∫
 

The dashed curve display this result at Γ = 104. The exact solution is shown as symbols. We 

also show the ka predicted by the η(x)-based approach as the solid curve. To match the 

problem solved by Lomholt et al., we took the h → 0 limit in the exact and η(x)-based 

solutions. The latter solutions have very weak dependence on h and the h → 0 limits shown 

here are virtually identical to those shown in Fig. 2A for h = 3 Å. Note that the exact ka 

increases with increasing DNA length L whereas Lomholt et al.’s ka shows the opposite trend. 

 


