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1 Derivation of the model equations

We consider a general system of chemical reactions that consists of N chemical species
and interacts in a fixed volume through R reactions. Let x = (x1, . . . , xN)T be the vector
representing the numbers of molecules for the N species and S = {sij}i=1,2...N ; j=1,2...R be
the stoichiometry matrix that describes changes in the population sizes due to each of the
reactions, so that occurrence of reaction j results in a change

(x1, ...., xN)→ (x1 + s1j, ..., xN + sNj).

We assume that the probability that a reaction of type j occurs in the time interval [t, t+dt)
equals fj(x,Θ)dt, where functions fj(x,Θ) are called the reaction rates and Θ = (θ1, ..., θL) is
the vector of all model parameters. The probability that more than one event will take place
in a small time interval is of higher order (dt2) with respect to the length of the interval and
can thus be ignored. Finally, we assume that events taking place in disjoint time intervals
are independent, when conditioned on the events in the previous interval. This specification
leads to a Poisson birth and death process; the Chemical Master Equation [1, 2] is widely
used to describe the temporal evolution of the probability P(x, t) that the system is in the
state x at time t

dP(x, t)

dt
=

R∑
j=1

(P(x− s· j, t)fj(x− s· j,Θ, t)− P(x, t)fj(x,Θ, t)) . (1)
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Under the assumption that molecular species are present in sufficiently large copy numbers
the model defined above is well described by the following system of equations [1, 3, 4]

x(t) = ϕ(t) + ξ(t) (2)

ϕ̇ = S F (ϕ,Θ, t) (3)

dξ = A(ϕ,Θ, t)ξ + E(ϕ,Θ, t)dW, (4)

where

F (ϕ,Θ, t) = (f1(ϕ,Θ, t), ..., fR(ϕ,Θ, t)) (5)

{A(ϕ,Θ, t)}ik =
R∑
j=1

Sij
∂fj
∂φk

(6)

E(ϕ,Θ, t) = S
√
diag(F (ϕ,Θ, t)). (7)

Equation (3) is an ordinary differential equation that in general does not have an explicit
solution but can be solved numerically, whereas equation (4) is a linear stochastic differential
equation that has a solution of the form [5]:

ξ(t) = Φ(t0, t)ξt0 +

∫ t

t0

Φ(s, t)E(ϕ,Θ, s)dW (s), (8)

where the integral is in the Itô sense and Φ(t0, s) is the fundamental matrix of the non-
autonomous system of ODEs

dΦ(t0, s)

ds
= A(ϕ,Θ, s)Φ(t0, s), Φ(t0, t0) = I. (9)

In order to simplify the further analysis of the system studied, suppose that the initial
condition has a multivariate normal distribution (MVN) x(0) ∼MVN(ϕ(0), V (0)).

This specification of an initial condition together with equations (2 - 4, 8) implies that
x(t) has a multivariate normal distribution [5, 6]

x(t) ∼MVN(ϕ(t), V (t)) t > 0, (10)

where ϕ(t) is a solution of the macroscopic rate eqaution (MRE), Eqn. (3), with initial
condition ϕ(0), and V (t) is a variance at time t. Direct calculations using equations (2 - 4,
8) show that V satisfies

dV (t)

dt
= A(ϕ,Θ, t)V (t) + V (t)A(ϕ,Θ, t)T + E(ϕ,Θ, t)E(ϕ,Θ, t)T , (11)
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which is equivalent to the fluctuation dissipation theorem [1]. In the further sections we
will also need to specify covariances, cov(x(s), x(t)) (t > s), and therefore we calculate these
here. As 〈x(t)〉 = ϕ(t) we have that cov(x(s), x(t)) = 〈ξ(t)ξ(s)T 〉 and therefore equation (8)
implies

cov(x(s), x(t)) = V (s)Φ(s, t)T . (12)

2 Derivation of the likelihood function

In the previous section we have explained that x(t) ∼MVN(ϕ(t), V (t)). Now we derive the
distribution of experimental data. Three different data types are considered: time series,
time-point measurements, and deterministic model data.

2.1 Time series data

We start with the case where a single trajectory is measured at times t1, ..., tn. Initially sup-
pose that all molecular species xi are measured. Later we demonstrate that this assumption
is easily relaxed. First let xTS ≡ (xt1 , . . . , xtn) be a nN column vector that contains all
measurements and ϕ̃(ϕ0,Θ, t) be a solution of equation (3) such that ϕ̃(ϕ0,Θ, 0) = ϕ0, and
let Ṽ (V0,Θ, t) be a solution of equation (11 ) such that Ṽ (V0,Θ, 0) = V0. In order to find
the distribution of vector xTS we write xt0 = ϕ(t0) + ςt0 , where ςt0 ∼MVN(0, V0) and using
equations (3-4) and (8) we have

xt1 = ϕt1 + Φ(t0, t1)ςt0 + ςt1 ,

where ςt1 ∼ (0,Ξ1) and Ξ1 =
∫ t1
t0

Φ(s, t1)TE(s)TE(s)Φ(s, t1)ds. Using

Φ(tj−1, tj+1) = Φ(tj, tj+1)Φ(tj−1, tj) (13)

we can analogously write xti as

xti = ϕti +
i∑

j=0

Φtj(ti − tj)ςtj , (14)

where ςtj are independently normally distributed random variables with mean 0 and covari-

ance matrix Ξj =
∫ tj
tj−1

Φ(s, tj)
TE(s)TE(s)Φ(s, tj)ds. This representation demonstrates that

xti is a linear sum of multivariate normal variables and therefore xTS has a multivariate
normal distribution with mean µ(Θ) and covariance matrix ΣTS(Θ)

xTS ∼MVN(µ(Θ),ΣTS(Θ)) (15)
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where µ(Θ) = (ϕ̃(t1), ..., ϕ̃(tn)) and ΣTS(Θ) is a (n×N)× (n×N) block matrix ΣTS(Θ) ={
Σ(Θ)(i,j)

}
i=1,...,N ;j=1,...,N

such that diagonal elements contain variances Σ(Θ)(i,i) = Ṽ (ti) and

non-diagonal elements (i 6= j) covariances Σ(Θ)(i,j) = cov(x(ti), x(tj)). Diagonal elements
are given by the solution Ṽ . From representation (14) we have

Σi,j+1 = Σi,jΦ(tj, tj+1)T , (16)

which demonstrates that non-diagonal elements can be easily computed from diagonal ele-
ments given by solutions of equation (11).

2.2 Time-point measurements

Here we consider the case where in an experiment at each time point t1, ..., tn a different
trajectory is measured. Therefore, measurements come from the same process x(t) but from

its independent realisations. We define the measurement vector as xTP ≡ (x
(1)
t1 , . . . , x

(n)
tn ).

Upper indices indicate the number of trajectories from which the measurements were taken
in order to emphasis that each measurement is taken from a different trajectory. The distri-
bution of x

(i)
ti is given by (10). All measurements are independent so that cov(xti , xtj) = 0

for i 6= j, therefore
xTP ∼MVN(µ(Θ),ΣTP (Θ)) (17)

where µ(Θ) = (ϕ̃(t1), ..., ϕ̃(tn)) and ΣTP (Θ) has the same diagonal blocks as ΣTS(Θ) and
non-diagaonal blocks are equal to 0

ΣTP (Θ)(i,j) =

{
Ṽ (ti) for i = j

0 for i 6= j.
(18)

2.3 Deterministic model

In order to study differences between stochastic and deterministic regimes we also consider
a deterministic model where the system state is described entirely by the MRE (3). In such
a model measurements are usually assumed to have the form

x(ti) = ϕ(ti) + εti ,

, where εti is a normally and independently distributed measurement error with mean 0 and
constant variance σ2

ε . We denote the measurements for this model by xDT ≡ (xt1 , . . . , xtn).
Finding the data distribution for this case is straightforward,

xDT ∼MVN(µ(Θ),ΣDT ), (19)

where µ(Θ) is as in the previous cases and ΣDT is a N2n2 diagonal matrix with diagonal
elements equal to σ2

ε .
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2.4 Hidden variables

Usually it is not possible to measure all variables present in the system of interest experi-
mentally. Hence we here demonstrate that the distribution of observed components can be
directly extracted from the distributions (15, 17, 19). For simplicity we consider the case of
time series data only; analysis for the two other data types proceeds analogously. First, we
partition the process x(t) into those components y(t) that are observed and those z(t) that
are unobserved. Let yTS ≡ (yt1 , . . . ,ytn) and zTS ≡ (zt1 , . . . , ztn) denote the time series
that of y and z,respectively, at times t1, . . . tn.

The distribution of yTS is a marginal distribution of xTS; we thus have

yTS ∼MVN(µy(Θ), Σ̂(Θ)), (20)

where µy(Θ) and Σ̂(Θ) are elements of µ(Θ) and ΣTS(Θ) that correspond to the observed
components of xTS. If for instance first M out of N components of x are observed than
y(t) = (x1(t), ..., xM(t)), and

µy(Θ) = (ϕ̃M(t1), ..., ϕ̃M(tn)) (21)

where ϕ̃M(t) = (φ̃1(t), ..., φ̃M(t)) and Σ̂(Θ)= is a MN ×MN block matrix

Σ̂(Θ) =
{

Σ̂(Θ)(i,j)
}
i=1,...,N ;j=1,...,N

(22)

where
Σ̂(i,j)
pq (Θ) = Σ(i,j)

pq (Θ) p = 1, ...,M, q = 1, ...,M. (23)

3 Calculation of the Fisher Information Matrix (FIM)

Suppose that a random variable X has an N -variate normal distribution with mean µ(Θ) =
(µ1(Θ), ..., µN(Θ))T and covariance matrix Σ(Θ). We define the FIM for this variable to be
I(Θ)= {I(Θ)k,l} [7]

I(Θ)k,l = EΘ

[(
∂

∂θk
log(ψ(X,Θ))

)(
∂

∂θl
log(ψ(X,Θ))

)]
, (24)

where ψ(.) is the density function of a multivariate normal distribution with mean µ(Θ) and
covariance Σ(Θ). As the random variable X is normally distributed the elements I(Θ)k,l can
be also expressed explicitly as

I(Θ)k,l =
∂µ

∂θk

T

Σ(θ)
∂µ

∂θl
+

1

2
trace(Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θl
). (25)
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In this section we demonstrate how to calculate the FIM for the models (2- 4). We consider
the model for time series data, as the case of time-point measurements is less general and
can be directly extracted from formulas derived below. Previously, we have shown 15 that
variable xTS has a multivariate normal distribution and demonstrated how its mean µ(Θ)
and covariance matrix Σ(Θ) can be calculated. Formula (25) indicates that two more com-

ponents ∂µ
∂θk

and ∂Σ(Θ)
∂θk

need to be known in order to be able to compute FIM. Below we show
how these can be obtained.

Let Y (t) be the concatenated vector of ϕ(t) and upper diagonal of the symmetric matrix
V

Y (t) = (φ1(t), ..., φN(t), V1,1(t), ..., VN,N(t), ..., V1,2(t), ..., VN−1,N(t)) (26)

and Ỹ (Y0,Θ, t) be the concatenation of ϕ̃(ϕ0,Θ, t) and upper diagonal of Ṽ (V0,Θ, t). Simi-
larly denoting the concatenation of the right hand sides of equations (3) and (11) by W we
can write

d

dt
Y (t) = W (Y (t),Θ, t). (27)

To determine the derivative Zk(t) = Ỹ (t)
∂θk

we use the fact that it satisfies the following equation

(see Appendix)
d

dt
Zk(t) = J(Ỹ (t),Θ, t)Zk(t) +Kk(t), (28)

where J(Ỹ (t),Θ, t) is the Jacobian ∂
∂Y (t)

W (Y (t),Θ, t) evaluated at the solution Ỹ (t) and

Kk(t) is the vector ∂
∂θk
W (Y (t),Θ, t) also evaluated at Ỹ (t).

The solution of equation (28), Z̃(t), provides us with ∂φ̃(t)
∂θk

and therefore with ∂µ
∂θk

. Similarly

Z̃(t) contains diagonal elements of ∂Σ
∂θk

.

Non-diagonal elements of ∂Σ
∂θk

can be computed from diagonal elements using the recursive
relation

∂

∂θk
Σ(i,j+1) =

∂

∂θk

(
Σ(i,j)Φ(tj, tj+1)T

)
=

∂

∂θk

(
Σ(i,j)

)
Φ(ti, ti+1)T + Σ(i,j) ∂

∂θk

(
Φ(ti, ti+1)T

)
.

(29)
from elements Φ(tj, tj+1), Σ(i,i), ∂

∂θk
Σ(i,i) that are given by equations (9), (16) and (28)

respectively. To simplify notation denote Ξk(s, t) = ∂Φ(s,t)
∂θk

. As Φ(s, t) is a solution of an

ODE we use similar techniques as in equations (28) and write Ξk(s, t) as a solution of the
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differential equation
dΞk

dt
(s, t) = A(ϕ̃,Θ, t)Ξ(s, t) +Mk(t), (30)

where

Mk(t) =
∂

∂θk
(A(ϕ̃,Θ, t)Φ(s, t)) =

(
∂

∂θk
A(ϕ̃,Θ, t) + (

∂

∂ϕ
A(ϕ,Θ, t)ϕ=ϕ̃)

∂ϕ̃

∂θk

)
Φ(s, t), (31)

and Ξ(s, s) = 0 for all s. To summarise, for the experimental data distribution (15) the FIM
(25) can be computed using equations (28 - 31):

• the parameter derivative of the mean, ∂µ(Θ)
∂θk

, can be extracted from a solution of (28)

• diagonal elements of the parameter derivatives of the variance, ∂ΣTS(Θ)
∂θk

, can be ex-

tracted from a solution of (28)

• non-diagonal elements of parameter derivatives of the variance, ∂ΣTS(Θ)
∂θk

, are given by

formula (29), which involves (30) and (31).

3.1 Summary of the numerical computation of the FIM

Below we summarise in more details how the FIM can be calculated numerically. We start
with the case of time series data as it is most general and the remaining two can be derived
from it.

Time series measurmens

1 Read input: Stoichiometry matrix S, reaction rates vector F,
initial conditions x0, V0

2 Construct equations for ϕ (eq. (3)) and V (eq. (11)) and for Y (eq. (27))

3 Calculate symbolically the Jacobians A (eq. (6)), J (eq. (28)) and vectors

Kk (eq. (28)) , Mk (eq. 30) (k = 1, ..., L)

4 Solve equations for ϕ and V (eq. (27))

5 Compute fundamental matrices Φ(ti, ti+1) i = 1, ..., N − 1 (eq. (9))

6 Construct covariance matrix ΣTS from Ṽ (ti) and Φ(ti, ti+1) (i = 1, ..., n) according

to eq. (16)

7



7 Compute ∂Ỹ
∂θk

(solve eq. (28)) and extract ∂µ
∂θk

∂Ṽ
∂θk

according to eq. (26)

8 Compute ∂
∂θk

Φ(ti, ti+1) (eq. (30))

9 Compute ∂
∂θk

Σ(i,j) for j =≥ i+ 1, ..., n and i = 1, ..., n (eq. (29))

10 Construct ∂
∂θk

ΣTS from objects computed in steps 7 and 9

11 From ∂
∂θk
ϕ, ΣTS,

∂
∂θk

ΣTS extract those elements corresponding to observed components

according to relations (21), (22) and (23)

12 Compute FIM from elements obtained in the previous steps according to eq.

(25)

Time-point measurmens
In order to compute the FIM for time-point measurements the covariance matrix, ΣTS,
should be replaced by ΣTP . Additionally non-diagonal blocks of covariance matrix, ΣTP ,
are equal to 0, therefore steps 5, 8 and 9 are omitted and in step 3 vectors Mj need not be
computed.

Deterministic model data
For the deterministic model the covariance matrix does not depend on parameters, therefore
the formula for the elements of FIM simplifies to

I(Θ)k,l =
∂µ

∂θk

T

ΣDT (Θ)
∂µ

∂θl
, (32)

and it requires only calculation of derivatives ∂ϕ̃
∂θk

for k = 1, . . . , L.
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4 Examples

In this section we present details pertaining to the examples of models of single gene expres-
sion and the p53 system.

4.1 A model of a single gene expression

The Table 1 contains parameter values used for numerical experiments presented in the main
paper.

Param. Set 1 Set 2 Set 3 Set 4
kr 100 100 20 20
kp 2 2 10 10
γr 1.2 0.7 1.2 0.7
γp 0.7 1.2 0.7 1.2

Table 1: Four parameter sets used in analysis of the single gene expression model. Sets 1 and
3 correspond to slow protein degradation rate γp and high and low transcription / translation
ratio, respectively. On the other hand Sets 2 and 4 describe fast protein degradation rate
and high and low transcription / translation ratio, respectively. All rates are per hour.

4.1.1 Differences in sensitivity and robustness analysis between time-series,
time-points and deterministic versions of the model

Considering sensitivity and robustness analysis, there are three main differences between
stochastic and deterministic systems. Firstly deterministic models completely neglect vari-
ability in the abundances of molecular species. This variability is a function of the kinetic
parameters and is therefore also sensitive to them. Secondly, the deterministic model does
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Type # ident. param. CR(log(kr)) CR(log(kp))) CR(log(γr)) CR(log(γp)) det( FIM )
TS 4 0.0017 0.0016 0.0017 0.0017 4 · 103

TP 2 0.0002 0.0002 0.0002 0.0002 0
DT 1 3 · 10−3 3 · 10−3 3 · 10−3 3 · 10−3 0

Table 2: Identifiability analysis for stationary state data. The table presents the number
of non-zero eigenvalues (# ident. param.), Cramer-Rao bounds (CR), determinants of FIM
(det(FIM)) for different data types (time series (TS), time point measurements (TP), de-
terministic model (DT)). The number of non-zero eigenvalues equals to the number of (in
principle) identifiable linear combinations of parameters and therefore describes the number
of parameters that can be estimated given that others are known. Quantities were calculated
for parameter set 3 (see Table 1) and we have set the sampling frequency to ∆ = 0.3h, and
the number of measurements to n = 50. The system was supposed to be in the stationary
state. We have assumed that a parameter is identifiable if an eigenvalue of FIM is not lower
than 10−4 to take account of numerical inaccuracies, and therefore “# ident. param.” is
calculated as the number of eigenvalues that are greater or equal to 0.1% of the largest eigen-
value. For the same reason the determinant was calculated as the product of eigenvalues that
satisfies this condition. As not all parameters were identifiable in all versions of the model
we calculated CR for individual estimates (assuming all other parameters to be known). For
the deterministic model we have set variance of measurement error σ2

ε = 100 and no mea-
surement error for TS and TP therefore CR-bounds between stochastic and deterministic
models cannot be compared.

not include correlations between molecular species. Thirdly, temporal correlations are also
neglected.
In the main paper we argued that these three factors can have a significant impact on how
stochastic and deterministic systems respond to perturbations in parameters. Here we pro-
vide further explanation using the model of single gene expression. The formulae for mean,
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Type # ident. param. CR(log(kr)) CR(log(kp)) CR(log(γr)) CR(log(γp)) det(FIM)
TS 4 0.0413 0.0112 0.0098 0.0072 6.96 · 104

TP 4 0.0185 0.0036 0.0036 0.0020 6.94 · 103

DT 3 0.47 · 10−4 0.04 · 10−4 0.07 · 10−4 0.02 · 10−4 0

Table 3: Identifiability analysis for perturbation experiment. Identical analysis as in Table
2 but with an initial mean increased 5 fold and the initial variance 25 fold.

variances and covariance for this model are

〈r〉 =
kr
γr

(33)

〈p〉 =
krkp
γrγp

(34)

〈δr2〉 =
kr
γr

(35)

〈δp2〉 = 〈p〉(1 +
kp

γr + γp
) (36)

〈δrδp〉 =
kpkr

(γr + γp) γr
. (37)

In order to understand the effect of incorporating variability into the sensitivity analysis we
are considering changes in parameters, e.g. kp, γp, by a factor δ (kp, γp)→ (kp+δkp, γp+δγp).
Means of RNA and protein concentrations are not affected by this perturbation, whereas pro-
tein variance is.

To understand the effect of correlation between RNA and protein levels we note that
formulae (33 - 37) demonstrate that at constant mean, correlation increases with γp and
compensating decrease in kp. Figure 7 presents neutral spaces for all parameter pairs for dif-

ferent values of correlation ρrp = 〈δrδp〉√
〈δr2〉〈δp2〉

. Differences between deterministic and stochastic

model increase with correlation.
We also perform similar analyses for different levels of temporal correlation between

observations by varying the sampling frequency ∆. Figure 8 presents neutral spaces for all
parameter pairs for three different sampling frequencies. The differences between stochastic
and deterministic models decrease with ∆ as the samples are less correlated for high ∆, and
therefore the factor that distinguishes two models becomes less significant.
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4.2 P53 system

In the study of the 53 system we have used parameter estimates presented in Table 4. These
parameters has been obtained by appropriate scaling of the parameters given in [8]. For all
numerical experiments for p53 model we assumed sampling frequency ∆ = 1h and number
of measurements n = 30.

Param. Value
βx 90
αx 0.002
αk 1.7
k 0.01
βy 1.1
α0 0.8
αy 0.8

Table 4: Parameters of p53 system.

4.2.1 Sloppiness analysis

Here we compare neutral spaces for all pairs of parameters of the P53 model for tree
data types (TS, TP, DT). We use parameter values presented in Table 4 and logarithmic
parametrisation. Results are presented in Figues 4, 5 and 6.

4.3 Dependance of analysis on parameter values and qualitative
model behaviour

Our method allows to study model sensitivity given the parameter values. Here we show
that results depend on parameter values just as the dynamical behaviour of the system does;
i.e. the sloppiness of a system also depends on the parameters and is not a fixed property
of a mathematical model. Figure 9 demonstrates that p53 undergoes a Hopf bifurcation as
parameter αy is varied from 0.8 to 2, while all other parameters remain unchanged. Param-
eters thus determine the qualitative dynamical behaviour and therefore varying parameters
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influences the structure of the FIM (compare Figures 4 and 10). Change in the FIM in turn
has consequence for the magnitude of eigenvalues (Figure 9), sensitivity coefficients (compare
Figures 4 in MP and 12) and informational content of TS and TP data (Figures 2 and 13).

5 Appendix

5.1 Calculating derivatives of a solution of ODE

In order to derive equations (28) and (30) we differentiated the solution of an ODE with
respect to a parameter. Here we provide more details about this procedure. Suppose that
the differential equation being considered is

ẋ = F(x,Θ, t),

where x ∈ RN and the set of parameters are collected together into a parameter vector
Θ ∈ RL. Suppose that x̃(Θ, x0, t) is the solution of interest with an initial condition x0 =

x̃(Θ, x0, 0). For Y (t) = ∂x̃(Θ,x0,t)
∂θk

it can be shown [9] that

Ẏ = J(t)Y (t) +Kk(t) (38)

where J(t) is the Jacobian of F with respect to x evaluated at x̃, Kk(t) is the n-dimensional
vector ∂F

∂θk
and Y (0) = 0.

5.2 Logarithmic parametrisation

In the analysis of examples presented in our study we used a logarithmic parametrisation.
Below we provide a rationale for this and explain that the FIM for logarithmic parametri-
sation can be directly obtained from derivatives calculated to obtain the FIM for original
parameters.
In biochemical systems, the values of two parameters may differ by orders of magnitudes.
Therefore, it is usually not appropriate to consider the absolute changes in the parameters
θk, but instead to consider the relative changes. A good way to do this is to introduce new
parameters ηk = log(θk), because absolute changes in ηk correspond to relative changes in
θk. Then, for small changes δθk to the parameters θk, the changes ηk are scaled and non-
dimensional. Analyses in terms of absolute and relative changes are closely related and do
not require additional computational cost. For any differentiable function f(θ)

∂f

∂ log(θ)
=
∂f

∂η
= θ

∂f

∂θ
. (39)
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and therefore any element of FIM for η can be easily converted into that for θ or vice versa

I(η)k,l =
∂µ

∂ηk

T

Σ(η)
∂µ

∂ηl
+

1

2
trace(Σ−1 ∂Σ

∂ηk
Σ−1 ∂Σ

∂ηl
)

= θkθl
∂µ

∂θk

T

Σ(θ)
∂µ

∂θl
+ θkθl

1

2
trace(Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θl
)

5.3 The FIM as a measure of system’s sensitivity

Here we provide an alternative explanation why the FIM provides a measure of sensitivity for
a stochastic system. For notational simplicity we assume that the studied system depends
on a single parameter θ as generalisation for multidimensional parameter is straightforward.
We start with definitions of classical sensitivity coefficients.

5.3.1 Classical sensitivity coefficient

The classical sensitivity coefficient for observable Q and parameter θ is defined as [10]

S =
∂Q

∂θ
.

Often sensitivity of relative changes ∆Q
Q

needs to be considered. Given that ∆ log(Q) ≈ ∆Q
Q

the formula for sensitivity of relative changes takes the form

S =
∂ log(Q)

∂θ
.

5.3.2 The FIM as a sensitivity measure for a stochastic system

The behaviour of a stochastic system is not defined by an observable Q that can be measured
experimentally in a reproducible way. It is instead defined by a distribution form which the
measurements are taken. Suppose we want to construct a measure of a sensitivity of a
distribution of a random variable X with density ψ. Assume we want to examine relative
changes of the distribution ψ to changes in θ. This can be written as

ψ(X, θ + ∂θ)− ψ(X, θ)

ψ(X, θ)
' log(

ψ(X, θ + ∂θ)

ψ(X, θ)
).

Averaging over all possible observations we get∫
X

log(
ψ(X, θ + ∂θ)

ψ(X, θ)
)ψ(X, θ)dX.
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The above is the negative Kullback-Leibler divergence between distributions ψ(X, θ + ∂θ)
and ψ(X, θ). In order to study changes in ψ resulting from “small” changes in θ we divide
the above equation by ∂θ and take the limit ∂θ → 0 and get∫

X

∂ log(ψ(X, θ))

∂θ
ψ(X, θ)dX.

The above quantity is the average of the score function and it is basic fact of mathematical
statistics that it equals to zero [7]. This observation suggests that it is better to study the
squared differences ∫

X

(log(ψ(X, θ)− log(ψ(X, θ + ∂θ))2ψ(X, θ)dX,

that lead to

∫
X

(log(ψ(X, θ)− log(ψ(X, θ + ∂θ))2

(∂θ)2
ψ(X, θ)dx −−−→

∂θ→0

∫
X

(
∂

∂θ
log

(
(ψ(X, θ + ∂θ))

ψ(X, θ)

))2

ψ(X, θ)dx,

which is precisely the definition of the FIM.
The above derivation suggests that the FIM is a good measure of sensitivity of a proba-
bility distribution and that there is a close link between Kulback-Leibler divergence and
the FIM. The KL divergence measures the average relative difference between two distri-
butions whereas FIM measures squared relative difference between a distribution and the
same distribution with a perturbed parameter relative to the infinitesimal size of the squared
perturbation.
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Figure 1: Eigenvalues of FIM for p53 model for three data types: time series (blue), time-
points (green) and deterministic model (red). Eigen values were normalised against maximal
eigenvalue for each data type (left) and against maximal eigenvalue among all three types
(right). FIM was calculated for logs of parameters from Table 4 .

0 1 2 3 4 5 6 7 8 9 10
x 104

0

2

4

6

8

10

12
x 1023

Number of TP measurements per time point

de
t( 

FI
M

 )

 

 
TP
TS

Figure 2: Comparison of informational content of TP and TS samples for p53 model. Deter-
minant of the FIM for TP data is plotted against number of measurements per time point
(black line). Due to independence of measurements we observe the linear increase. For com-
parison determinant of the FIM for a single TS sample is also depicted (red dashed line).
Intersection of the two lines indicates how many TP measurements are necessary to obtain
the same amount of information in a single trajectory (TS data). In this case around 6.5 ·104

measurements are needed.
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Figure 3: Sensitivity matrices C2
ij for p53 model for three data types (TS, TP, DT) calculated

using parameters presented in Table 4.
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Figure 4: Neutral space for time-series (heatmap) and deterministic (contour plot) versions
of the p53 model. The FIM was calculated for the logarithms of parameters in Table 4.
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Figure 5: Neutral space for time-series (heatmap) and time-point (contour plot) versions of
the p53 model. The FIM was calculated for logarithms of parameters in Table 4.
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Figure 6: Neutral space for time-points (heatmap) and deterministic (contour plot) versions
of the p53 model. The FIM was calculated for logarithms of parameters in Table 4.
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Figure 7: FIM for a single measurement from stationary distribution of the model of single
gene expression. For ρrp = 0.1 (top), ρrp = 0.5 (middle), ρrp = 0.9 (bottom). Correlation 0.5
was obtained using parameter set 3 from Table 1. Correlation was varied by equal-scaling
of parameters kp, γp.
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Figure 8: FIM for a 20 times-series type measurements from the stationary distribution of
the model of single gene expression for three different sampling frequencies: ∆ = 0.3 (top)
∆ = 3 (middle) ∆ = 30 (bottom). Parameter set 3 from Table 1 was used.
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Figure 9: Trajectories of the p53 system plotted together with the standard deviations
bars. In the left panel parameters from Table 4 were used and in the right panel the same
parameters except αy = 2. The system undergoes a Hopf bifurcation and moves from
oscillatory behaviour to dynamics with a stable stationary state.
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Figure 10: Neutral spaces for time-points (heatmap) and deterministic (contour plot)
versions of the p53 model. FIM was calculated for logarithmss of parameters in Table 4
except αy = 2. Differences compared with Figure 6 demonstrate the dependance of neutral
spaces on parameter values and the qualitative dynamics of the system.
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Figure 11: Eigenvalues of FIM for p53 model for three data types: time series (blue), time-
points (green) and deterministic model (red). Eigenvalues were normalised against maximal
eigenvalue for each data type (top) and against maximal eigenvalue among all three types
(bottom). FIM was calculated for logs of parameters from Table 4 except αy = 2. Figure
demonstrates that the behaviour of the eigenvalues depends on parameter values (compare
with Figure 3 in the MP).
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Figure 12: Left: Diagonal elements of FIM for TS and TP versions of p53 model. Right:
Sensitivity coefficients Ti for TS, TP, DT version of p53 model. FIMs were calculated for
parameters presented in Table 4 except αy = 2.
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Figure 13: Comparison of informational content of TP and TS samples for p53 model simi-
larly as Figure 2 but with αy = 2 instead of αy = 0.8.
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