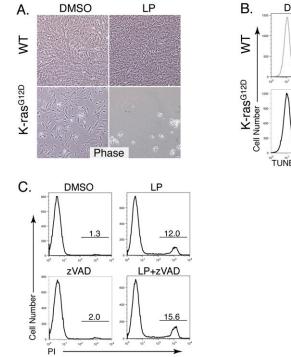
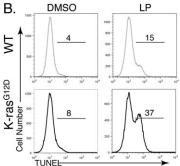

Supporting Information

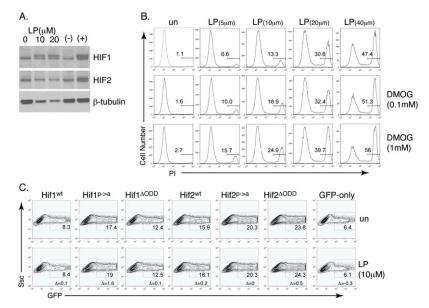
Shaw et al. 10.1073/pnas.1105941108

Fig. S1. Complete recombination of the *K*-ras^{LSL-G12D} allele in MEFs after Adenoviral-Cre (Ad-Cre) infection. PCR genotyping of control (*K*-ras^{+/+}) and *K*-ras^{LSL-G12D/+} MEFs before and after Ad-Cre–mediated recombination. One control and three representative *K*-ras^{LSL-G12D/+} MEF lines are shown. (*Right*) Wild-type *K*-ras allele and the genomic confirmation of the *K*-ras^{LSL-G12D/+} allele before (2Lox) and after (1Lox) recombination. Specific PCRs confirm complete loss of the 2Lox band and gain of the 1Lox band after infection of *K*-ras^{LSL-G12D/+} MEF lines with Ad-Cre.




Fig. 52. Alternative graphical representation of primary screening results. (*A*) MvA plot showing an overview of the distribution of data. In simplified terms, the *y* axis represents fold change in viability between wild-type and K-ras mutant cells due to a specific compound. The greater the selectivity for mutant cells, the larger the M score. The *x* axis represents the product of the wild-type and mutant viability scores. Of note, compounds with selectivity for wild-type cells are not shown in this plot. (*B*) Plot of significance based on *P* values vs. fold change. Differential effects on cell viability were considered statistically significant if the *P* value based on *t* test was <0.05.

			C50 (μM)
Compound	Structure	Wild-type	Kras ^{G12D}
TP		>40	20
LP	CF3	16	4
EP	N	64	48
2-127	F ₃ C N O	20	15
2-131	F ₃ C N	40	20
2-132	F ₃ C N	30	30
2-133	F ₃ C	>40	40
2-123	F N	>40	40
2-146	N ^{SI} , F	>40	>40
2-147	O N SI C	>40	>40
2-148	∩N ^{SI} F	>40	>40
E10	L ^D C	20	5


Fig. S3. Structure-function relationships. Shown are tolperisone (TP) and 10 TP-like derivatives. Lanperisone (LP) and eperisone (EP) are commercially available. The other TP-like derivatives were synthesized. IC_{50} values were estimated using the CTG viability assay after 48 h of drug treatment. Results shown are representative of three independent experiments.

PNAS PNAS

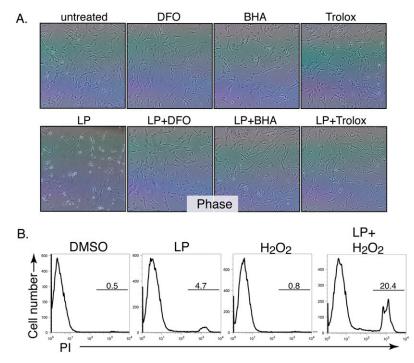

Fig. S4. LP induces enhanced caspase-independent death of *K-ras*^{G12D}-expressing cells. (A) LP (20 mM, 6 h) induced phenotypes associated with death selectively in *Mox-Cre;K-ras*^{G12D}. MEFs. (B) LP (10 mM, 24 h) induces increased cell death of *Mox-Cre;K-ras*^{G12D}-expressing MEFs as assessed by flow cytometric analysis for TUNEL. (C) Caspase inhibition with zVAD (25 min pretreatment) does not block LP (20 mM, 6 h)-induced death of *Mox-Cre;K-ras*^{G12D}-expressing cells (assessed by flow cytometric analysis for PI).

Fig. S5. Pharmacological and molecular modulation of HIF activity does not negatively impact LP-induced death. (A) LP treatment induces HIF-1 protein. Negative control [untreated (--)] and positive control [hypoxia (+)] lanes are shown. β -tubulin shows loading. (B) LP-induced death (6 h) of *Mox-Cre;K-ras^{G12D}*expressing fibroblasts is not blocked by the prolyl-4-hydroxylase inhibitor DMOG. Percentage of dead (PI+) cells across a LP titration is shown. (C) Expression of active or dominant-negative HIF-1 and HIF-2 does not affect LP-induced death (6 h). *Mox-Cre;K-ras^{G12D}*-expressing fibroblasts were cotransfected with a GFP expression plasmid and the indicated HIF expression plasmids. Cells were then treated with LP or left untreated (un). If active or dominant negative HIF expression enhanced or reduced LP-induced death, the percentage of GFP+ cells in the LP-treated samples would be expected to be reduced or increased respectively. No such effects of exogenous HIF expression were observed.

А	Enrichment			В					Cel			D				Cell			
	Compound	Mean	Ν	Score	p-value	_	Ra	ink	Compound	Dose	Lin		ore	<u> </u>	Rank	Compound	Dose	Line	Score
1	parthenolide	0.841	4	0.986	<0.00001			4	parthenolide	16 uM	MCF	7	0.945		15	geldanamycin	1 µM	MCF7	0.854
3	ciclopirox	0.791	4	0.975	<0.00001										18	geldanamycin	1 uM	MCE7	.849
4	Lomustine	0.728	4	0.969	<0.00001				parthenolide	16 µM	MCF		0.916						
5	phenoxybenzamine	0.784	4	0.966	<0.00001			62	parthenolide	16 µM	PC3		0.763		51	geldanamycin			.777
6	15-delta prostaglandin J2		15	0.848	<0.00001			88	parthenolide	16 µM	HL6	0	0.74		75	geldanamycin	1 µM	MCF7	.754
/	geldanamycin	0.582	15	0.676	< 0.00001										118	geldanamycin	1 µM	MCF7	.715
8	thioridazine	0.47	20	0.629	< 0.00001									_	133	geldanamycin	1.uM	MCE7	.702
9	tanespimycin		62	0.583	<0.00001 <0.00001														
10	trichostatin A vorinostat	0.452 0.525	182	0.581 0.672	<0.00001										154	geldanamycin	1 µM	MCF7	.686
11 12	MG-262	0.525	3	0.672	0.00002	С						Cell			192	geldanamycin	1 µM	MCF7	.671
12	F0447-0125	0.663	4	0.977	0.00004	Ŭ	Ra	ink	Comp	ound	Dose		Score		197	geldanamycin	1 µM	MCF7	.669
14	5155877	0.699	4	0.92	0.00004			2	15-delta prostad	alandin 12	10 uM	MCE7	0.97		218	geldanamycin	1 uM	MCF7	.663
15	alvespimycin	0.429	12	0.656	0.00004			3			. 1.		0.954						
16	fluphenazine	0.392	18	0.519	0.00004			3	15-delta prostag		10 µM				558	geldanamycin			.532
18	prochlorperazine	0.334	16	0.544	0.0001			5	15-delta prosta	glandin J2	10 µM	MCF7	0.925		768	geldanamycin	1 µM	PC3	.489
19	niclosamide	0.564	5	0.828	0.00032			7	15-delta prostag	glandin J2	10 µM	MCF7	0.908		1492	geldanamycin	1 µM	HL60	.371
20	monorden	0.353	22	0.425	0.00036			11	15-delta prostad	alandin J2	10 µM	MCF7	0.877		2068	geldanamycin	1.uM	PC3	0
21	STOCK1N-35215	0.684	3	0.934	0.00046			12	15-delta prostad	, alandin 12	10 µM	HI 60	0.861						
22	pyrvinium	0.435	6	0.753	0.00058			14	15-delta prosta		10 µM		0.858		2167	geldanamycin	ıµΜ	HL60	0
23	resveratrol	0.373	9	0.633	0.00058														
24	clioquinol	0.49	5	0.81	0.0006			30	15-delta prosta		10 µM	MCF7	0.822	Е				Cell	
27	genistein	0.325	17	0.455	0.00112			37	15-delta prostag	glandin J2	10 µM	HL60	0.804		Donk	Compound I			Saara
28	5707885	0.531	4	0.834	0.00115			80	15-delta prostad	alandin J2	10 µM	PC3	0.749			•			
30 31	rottlerin thiostrepton	0.581 0.685	3	0.906 0.82	0.00174			102	15-delta prostad	, alandin 12	10 µM	HI 60	0.729		297	erastin	20 µM	PC3	0.627
31	oxyphenbutazone	0.685	4	0.82	0.00183			380	15-delta prosta		10 µM		0.587		1239	erastin	20 µM	PC3	0.41
34	trifluoperazine	0.398	16	0.819	0.00207										1847	erastin	20 µM	MCF7	0.303
35	methylbenzethonium Cl	0.338	6	0.694	0.00213			486	15-delta prosta		10 µM		0.557		1943	erastin	20 µM	MCF7	0.263
36	mefloquine	0.571	5	0.754	0.00215			536	15-delta prosta	glandin J2	10 µM	MCF7	0.539		1545	crastin	p		0.205
37	ciclosporin	0.488	6	0.686	0.00242		1	035	15-delta prosta	glandin J2	10 µM	SKMEL5	0.442						
38	Prestwick-642	0.462	4	0.809	0.00247														
39	calmidazolium	0.708	2	0.959	0.00284														

Fig. 56. CMAP analysis of LP treatment gene expression signatures. (*A*) Compounds showing high positive connectivity with LP treatment of K-ras mutant MEFs. Of note, LP treatment of wild-type MEFs showed qualitatively similar results. Mean refers to mean connectivity score of multiple instances of the same compound in the CMAP data set; *n*, number of instances of the identical compound in CMAP data set; the enrichment score reflects extent to which instances of a given compound are overrepresented among compound instances with the highest CMAP connectivity score; *P* value reflects probability of obtaining the enrichment observed by chance (obtained by 100,000 random permutations of compound instances). (*B*–E) CMAP data for individual instances of parthenolide (*B*), 15-δ-prostaglandin J2 (*C*), geldanamycin (*D*), and erastin (*E*). In each figure, the red-green vertical bar depicts the list of all compound instances on the expression signature of LP-treated K-ras MEFs. Compound instances with the most positive connectivities are at the bottom of the list (green); compound instances with the most negative connectivities are at the bottom of the list (red). Within the red-green bar, each horizontal line depicts the rank of the compound instances described in the table (*Right*). The dose, cell line, and connectivity score are listed for each compound instance.

Fig. 57. Synergy of lanperisone with the oxidant hydrogen peroxide. (*A*) Suppression of LP-mediated cell death by pretreatment with antioxidants, as shown by phase contrast microscopy. *K-ras*^{G12D} MEFs were pretreated with DMSO, DFO, BHA, or Trolox and then exposed to 20 μ M LP. (*B*) LP (20 mM) and H₂O₂ (100 mM) synergize to induce cell death of *Mox-Cre;K-ras*^{G12D} MEFs as assessed by flow cytometric analysis for Pl. A 6-h time point is shown. Similar results were obtained comparing control *p53^{-/-}* to *K-ras*^{G12D},*p53^{-/-}* MEFs.

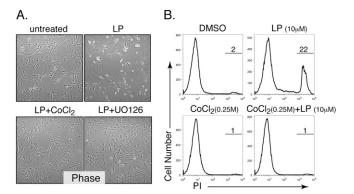


Fig. S8. Lanperisone-induced death is Mek- and iron-dependent. (A) Morphological changes induced by LP treatment in Mox-Cre;K-ras^{G12D}-expressing MEFs are blocked by treatment with CoCl2 or UO126. (B) LP-induced cell death of Mox-Cre;K-ras^{G12D}-expressing cells is blocked by CoCl2 (assessed by flow cytometric analysis for PI).

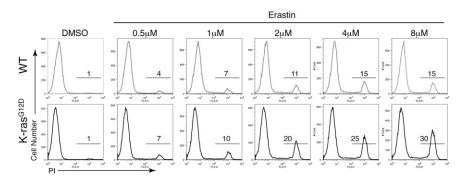
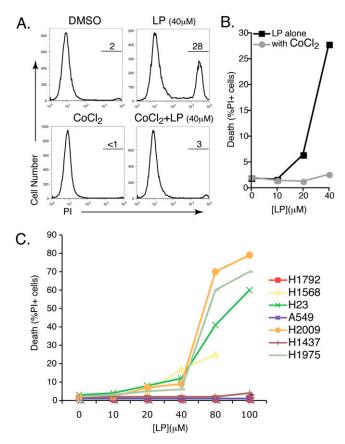



Fig. S9. Preferential killing of oncogenic K-ras-expressing MEFs by erastin. Erastin induces increased cell death of Mox-Cre;K-ras^{G12D}-expressing MEFs as assessed by flow cytometric analysis for PI. Concentration of erastin is shown. Data are representative of two MEF lines of each genotype at a 6-h time point.

Fig. S10. LP kills *K-ras^{G12D}*-expressing sarcoma cells. (*A*) LP induced death of *K-ras^{G12D}*-expressing p53-deficient murine sarcoma cells is blocked by CoCl2. Data are representative of two independent experiments. (*B*) Inhibition of LP induced death of *K-ras^{G12D}*-expressing p53-deficient murine sarcoma cells by CoCl2 even at high doses of LP. (C) LP induces limited death of K-RAS mutant human lung cancer cell lines.

Lang	perisone K-ras ^o	MEFs		Lanperisone wild-type MEFs						
Gene set	NES	Р	FDR	Gene set	NES	Р	FDR			
Mense hypoxia up	3.28	<0.001	<0.001	Hypoxia reg up	2.68	<0.001	<0.001			
Hypoxia review	2.89	<0.001	<0.001	Mense hypoxia up	2.56	<0.001	<0.001			
Hypoxia reg up	2.82	<0.001	<0.001	Hypoxia review	2.45	<0.001	<0.001			
Houstis ROS	2.66	<0.001	<0.001	Manalo hypoxia up	2.29	<0.001	<0.001			
Schofield hypoxia	2.59	<0.001	<0.001	Hypoxia fibro up	2.19	<0.001	0.001			
Manalo hypoxia up	2.57	<0.001	<0.001	HIF-1 targets	2.19	<0.001	0.001			
HIF-1 targets	2.55	<0.001	<0.001	Glutathione met	2.04	<0.001	0.006			
Oxstress breast CA	2.37	<0.001	<0.001	Oxstress breast CA	2.01	<0.001	0.010			
Glutathione met	2.35	<0.001	<0.001	Hypoxia transporter	2.00	<0.001	0.010			
Hypoxia fibro up	2.25	<0.001	<0.001	Houstis ROS	1.88	0.002	0.025			

Gene sets shown demonstrated highly significant enrichment and are also annotated as being associated with either hypoxia or oxidative stress pathways (the latter highlighted in yellow). FDR, false discovery rate; NES, normalized enrichment score; P, permutation P value.