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Section 1: Four classes of the Joint-Frequency Spectrum for the Wakeley-Hey model. 

 

The Joint site-Frequency Spectrum (JSFS) compares SNP data from n1 samples from population 

1 to n2 samples from population 2. The JSFS is calculated as an array of dimension (n1 +1) × (n2 

+1) – 2. A cell at row i and column j contains the number of polymorphic sites Si,j which are 

found i times in population 1 and j times in population 2. For example, S2,3 = 10 if 10 

polymorphisms are found as doubletons in population 1 and tripletons in population 2. Four 

summary statistics are relevant for isolation-migration parameter inference: private 

polymorphisms in species 1 and 2, respectively (W1, W2), fixed differences between species (W3), 

and shared ancestral polymorphisms (W4) (Wakeley and Hey 1997, see reference 19 in text). 
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We represent the JSFS graphically, as well as the four different classes W1-4 as follows:  
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Section 2: Summaries of the Joint-Frequency Spectrum for the Maximum-Likelihood method 

 

We have tested four different sets of summary statistics derived from the JSFS. The four vectors 

of summary statistics are described below as 
*

, , ,D D D D′ ′′ . 

Formally, the 7 values of vector D are written as: 
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In relation to Eq. 2, W1=D1+D6, W2=D2+D7, W3=D3+D4 and W4=D5. In other words, 

W1=D1+D6 means that we separate polymorphic SNPs in population 1 which are not found in 

population 2 from those that are fixed in population 2 (i.e. polarizing the private polymorphism 

using information from an outgroup). As above, we represent graphically the JSFS and the 

classes of vector D as follows: 
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The second decomposition Dk’ (k=1,..,12) is based on extracting the number of singletons from 

various classes of D. 
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The third decomposition Dk’’(k=1,..,12) contains low frequency polymorphism defined by 

singletons and doubletons from various classes of D. 
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The fourth decomposition, the vector Dk
*
 (k=1,…,23), countains singletons and doubletons in 

separate classes.  
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Section 3: Summaries of the Joint-Frequency Spectrum for the Composite-Likelihood analysis 

method 

 

Here we consider singletons, doubletons, and polymorphic sites with high frequencies n1 -1 and 

n1 -2 in population 1 or n2 -1 and n2 -2 in population 2 (Ďk, k=1,…,23) separately. 
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For a simple model with equal mutation rates in the two populations (θ1= θ2) and equal gene flow 

rates (M12= M21), we verify by coalescent simulations of the Wakeley-Hey model that the JSFS 

shows an axis of symmetry along the diagonal (0,0) to (n1,n2). In this case, symmetry also 

appears among elements of the J vector, namely: Ď1=Ď5, Ď2=Ď10, Ď3=Ď15, Ď4=Ď20, Ď7=Ď11, 

Ď8=Ď16, Ď9=Ď21, Ď13=Ď17, Ď14=Ď22, Ď19=Ď23. This means that the number of sites with a 

mutation fixed in population 1 and absent in population 2 (Ď4) is equal to the number of 

mutations fixed in population 2 and absent in population 1 (Ď20). 
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Section 4: Relative of error in estimates of divergence times and error in migration rates 

depending on the method. 

 

Figure S1a and b present the results of the power analysis for sets of 7 loci with 20 replicates 

(results in text in Figures 1-2), for given values of θ and ρ. Note that method J1 has 8 possible 

estimated values (the means of each block) for τ and M. In these datasets where τ = 0.1, only 

three values for the divergence time were estimated. The value of τ = 0.13954 (relative error = 

0.39541, black rectangle in Figure S1a) was the most frequently estimated value with 111 

occurrences over the 140 datasets using method J1. 

In Figure S2, for all nine methods, positive correlations are found between the relative bias in 

estimates of divergence time and migration rates. This means that when a method over (under)-

estimates the divergence time, it also over (under)-estimates the migration rate.  

 

 

 

Section 5: Analysis of variance for error in estimates of divergence times and error in migration 

rates depending on the method and other parameters. 

 

The analysis of variance was performed using the glm function, and multiple mean comparisons 

are based on Tukey’s HSD test (confirmed by Bonferroni test) as implemented in the R software 

(R DEVELOPMENT CORE TEAM 2005). Groups of significance for the multiple comparison tests 

are shown on Figure S1a. In the glm function we use the option: family = Gaussian. We 

considered all possible two way and three way interaction terms between the different parameters 

(Method, θ, ρ, M), and sequentially remove non-significant interactions. P-values for single 

parameters and the interaction term Method*θ are similar to those of Table S1 when only those 

four terms are considered in the ANOVA formula. Here we show the significance (or non-

significance) of interesting interactions for the behavior of the different methods (Method= D1-

D4, MIMAR, J1-J4).  

The analysis of variance was performed using the glm function, and multiple mean comparisons 

are based on Tukey’s HSD test (confirmed by Bonferroni test) as implemented in the R software 

(R DEVELOPMENT CORE TEAM 2005). Groups of significance for the multiple comparison tests 

are shown on Figure S1b. In the glm function we use the option: family = Gaussian.  
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We considered all possible two way and three way interaction terms between the different 

parameters (Method, θ, ρ, M), and sequentially removed non-significant interactions. P-values for 

single parameters and the interaction term θ*M are similar to those of Table S2 when only those 

four terms are considered in the ANOVA formula. Here we show the significance (or non-

significance) of interesting interactions for the behavior of the different methods (Method= D1-

D4, MIMAR, J1-J4).  

 

 

Section 6: Results of the 100 datasets analysis: Factor 2, error in estimates of divergence times 

and errors in migration rates depending on the method and other parameters. 

 

Figures S6 and S7 highlight the absence of any clear correlation between error in estimating WH 

parameters and the population size (θ) or the recombination rate (ρ). These conclusions are valid 

for all composite-likelihood methods and popABC results. 

Figures S7 and S8 show that estimates of migration rates are less accurate for recent divergence 

times (τ <0.5; difference in scale of the y-axes in Figures S8a and S9a, S8b and S9b). Moreover, 

with composite methods J2 and J4, high migration rates can be better estimated (have little 

relative error) even with recent divergence (<0.5; Figures S8a and S9a). However, we do not find 

the same trend for popABC (Figure S10), showing the inaccuracy of estimating migration rates 

with this method independent of divergence. 

 


