CHARACTERIZATION OF THE N- AND C-TERMINAL SUMO INTERACTING MOTIFS OF THE SCAFFOLD PROTEIN DAXX

Eric Escobar-Cabrera, Mark Okon, Desmond K. W. Lau, Christopher F. Dart, Alexandre M.J.J. Bonvin, and Lawrence P. McIntosh

SUPPLEMENTAL DATA

Supplemental Table S1. Sample conditions used for titrations.^a

[KCl] (mM)	Labeled- species	Conc. (mM) ^b	Unlabeled species	Conc. (mM)	Final volume added (µL) / ratio ¹⁵ N species :unlabeled species
0	SUMO-1	0.13	SIM-N	3.0	32 / 1 : 1.5
100	SUMO-1	0.15	DAXX ¹⁻¹⁴⁴	2.1	292 / 1 : 8.3
0	SUMO-2	0.10	SIM-N	3.0	27 / 1 : 1.6
100	SIM-N	0.12	SUMO-1	2.5	130 / 1 : 5.5
100	SIM-N	0.12	SUMO-2	2.5	130 / 1 : 5.5
200	SIM-N	0.09	SUMO-1	2.3	112 / 1 : 5.8
200	SIM-N	0.14	SUMO-2	8.7	120 / 1 : 15.5
0	SIM-C	0.11	SUMO-1	1.7	142 / 1 : 4.4
0	SIM-C	0.11	SUMO-2	1.7	142 / 1 : 4.4
100	SIM-C	0.13	SUMO-1	2.2	220 / 1 : 7.8
100	SIM-C	0.13	SUMO-2	1.7	250 / 1 : 6.8
200	SIM-C	0.09	SUMO-1	2.3	240 / 1 : 12
200	SIM-C	0.13	SUMO-2	8.7	180 / 1 : 24

^a Samples at 25 °C in an NMR buffer composed of ~5% D₂O, 10 mM K₂HPO₄, 0.1 mM EDTA, 10 mM DTT, pH 6.5 and the indicated KCl concentration.

^b Initial volume 500 µL.

¹³ C/ ¹⁵	N SUMO-1		unlabeled SIM-N
I34	$H^{\gamma 2}$	I8	$H^{\alpha}, H^{\gamma 2}, H^{\delta 1}; V9 H^{\alpha}$
H35	H^N	I8	$H^{\alpha}, H^{\gamma 2}$
H35	$H^{\beta 1}, H^{\beta 2}$	I8	$H^{\alpha}, H^{\gamma 2}$
F36	$H^{\beta 1}, H^{\beta 2}$	L10	$H^{\delta 2}$
F36 (or 35) aromatic	L10	$H^{\beta 1}, H^{\beta 2}; V9 H^{\gamma 1,2}; I8 H^{\delta 1}$
K37	H^N	L10	$H^{\alpha}, H^{\delta 2}$
K37	$H^{\beta 1}, H^{\beta 2}$	V9	$H^{\gamma(10r2)}; L10 H^{\delta 2}$
K37	$H^{\gamma 1}, H^{\gamma 2}$	L10	$H^{\delta 2}$
V38	$\mathrm{H}^{\delta(1 \text{ or } 2)}$	L10	$H^{\delta 1}, H^{\delta 2}$
V39	H^{β}	D11	$H^{\beta 2}$
V39	H^{β}	L10	$H^{\delta 1}, H^{\delta 2}$
T42	$H^{\gamma 2}$	L10	$H^{\delta 2}$; D11 H^{β}
H43	H ^N	D11	$H^{\alpha}, H^{\beta 2}$
L47	H ^N	L10	$H^{\delta 1}, H^{\delta 2}$
L47	H^{α}	L10	$H^{\delta 1}, H^{\delta 2}$
L47	$H^{\delta 1}$	L10	$H^{\delta 2}$
S50	H^N	L10	$H^{\delta 1}, H^{\delta 2}$
R54	$H^{\beta 1}$	18	$\mathrm{H}^{\delta 1}$
R54	$H^{\beta 2}$	I7 or I8	$H^{\gamma 2}$
R54	$H^{\delta 1}$	I8	$\mathrm{H}^{\delta 1}$

Supplemental Table S2. Intermolecular NOEs between unlabeled SIM-N and ${}^{13}C/{}^{15}N$ labeled SUMO-1.

	SIM-N/DHB ^a	SIM-N/SUMO-1	SIM-C/SUMO-1 3 body ^b	SIM-C/SUMO-1 2 body ^c
Number of clusters	15	2	4	1
Cluster rank	1	1	1	1
Cluster population	5	190	166	198
RMSD from overall lowest-energy structure (Å)	2.2 ± 1.5	2.8 ± 1.7	2.1 ± 1.3	0.9 ± 0.5
HADDOCK score (a.u.)	-127.8 ± 17.4	-104.7 ± 3.9	-139.4 ± 4.1	99.5 ± 9.9
van der Waals energy (kcal mol ⁻¹)	-58.4 ± 9.3	-51.1 ± 10.5	-52.4 ± 13.3	-32.2 ± 3.3
Electrostatic energy (kcal mol ⁻¹)	-563.0 ± 90.3	-371.7 ± 25.8	-652.4 ± 106.7	-257.5 ± 19.2
Desolvation energy (kcal mol ⁻¹)	30.0 ± 7.2	16.1 ± 2.4	35.5 ± 9.0	18.3 ± 7.4
Restraints violation energy (kcal mol ⁻¹)	132.3 ± 40.8	46.2 ± 14.2	8.0 ± 5.8	165.0 ± 11.9
Buried surface area $(Å^2)$	1868 ± 169	1276 ± 69	2584 ± 126	1069 ± 42

Supplemental Table S3. Statistics for HADDOCK structure calculations.

^a Only ambiguous interaction restraints were used.

^b Ensemble averaged three body docking with two copies of the SIM-C peptide. The PRE restraints were calculated as ensemble average over the two peptides. In each resulting complex, one peptide bound in the parallel mode and the other antiparallel.

^c Regular two body docking with only one copy of the SUMO-1 peptide. Only the parallel binding orientation was observed. Note the high restraint energy compared to the ensemble averaged docking run.

SUMO paralog	SIM ^b	Κ _D (μΜ)	Buffer	Reference	
SUMO-1	PIASX-Pa	7	20 mM Tris, pH 7.6, 30 °C	(1)	
SUMO-1	PIASX-N	9	20 mM Tris, pH 7.6, 30 °C	(1)	
SUMO-3	PIASX-N	5	20 mM Tris, pH 7.6, 30 °C	(1)	
SUMO-1	PIASX-Pb	6	20 mM phosphate, pH 7.4, 30 °C	(2)	
SUMO-1	MCAF1	14	20 mM phosphate, pH 6.8, 25 °C	(3)	
SUMO-1	MCAF1	12 °	20 mM phosphate, pH 6.8, 25 °C	(3)	
			150 mM NaCl	(3)	
SUMO-1	MCAF1	8 °	20 mM phosphate, pH 6.8, 25 °C	(3)	
			300 mM NaCl	(3)	
SUMO-3	MCAF1	1.3	20 mM phosphate, pH 6.8, 25 °C	(3)	
SUMO-3	MCAF1	1.1 °	20 mM phosphate, pH 6.8, 25 °C	°C (3)	
			150 mM NaCl	(3)	
SUMO-3	MCAF1	N.D. ^d	20 mM phosphate, pH 6.8, 25 °C	(2)	
			300 mM NaCl	(3)	

Supplemental Table S4. Summary of reported dissociation constants of SIM/SUMO complexes.^a

^a All reported dissociation constants were measured with ITC.

PIASX-Pa: KVDVIDLTIESSSDEEEEDPPAKR;
PIASX-N: VDVIDLTIE;
PIASX-Pb: KVDVIDLTIE
MCAF-1: GVIDLTMDDEE

^c Noisy binding curve.

^d Not determined due to no significant heat release.

Supplemental Figure S1. Annotated ¹H-¹⁵N HSQC spectra of (**A**) SUMO-1 (155 μ M, 17 °C), (**B**) SUMO-2 (1.1 mM, 25 °C), (**C**) SIM-N (120 μ M, 25 °C), and (**D**) SIM-C (125 μ M, 25 °C). All samples were in common buffer (10 mM phosphate, 100 mM KCl, 0.1 mM EDTA, pH 6.5). The signals from Asn and Gln side-chain ¹⁵NH₂ groups are connected by horizontal lines. Aliased peaks are shown in red. Peaks in (**D**) marked as # correspond to either W718 or I719.

Supplemental Figure S2. Mapping the binding interfaces of SUMO-1 and SUMO-2 with SIM-N and SIM-C. Amide chemical shift perturbations of (A,C) SUMO-1 and (B,D) SUMO-2 upon binding (A,B) SIM-N and (C,D) SIM-C. Also shown are (E,G) SIM-N and (F,H) SIM-C amide chemical shift changes upon binding (E,F) SUMO-1 and (G,H) SUMO-2. The signals of

residues marked as * were broadened beyond detection in the complex. All samples were in 10 mM potassium phosphate, 0.1 mM EDTA, 5 mM DTT, pH 6.5, with 0 (A, B) or 100 mM KCl (C-H) at 25 °C. The dashed lines show the cut-off values for residues highlighted in Figure 3. Supplemental Table S1 summarizes the final SIM/SUMO ratios in the spectra used to obtain these chemical shift perturbation values.

¹⁵N-SIM-C

Supplemental Figure S3. Titration curves used to determine K_D values. The dissociation constants reported in Table 1 were derived using data from the titrations shown in Figures 1 and 2. The regressions were calculated using the equation for formation of a 1:1 complex in the fast exchange limit (4), with protein and peptide concentrations summarized in Supplemental Table S1. Average values \pm standard deviations are derived from the individual fits for the indicated residues. The plots for ¹⁵N-labeled SUMO-1 and SUMO-2 with unlabelled SIM-N showed stoichiometric binding, so only an upper estimate for the K_D was obtained.

Supplemental Figure S4. NMR-monitored titration of SUMO-1 with SIM-N^{GSGS} demonstrates that a SIM mutant lacking the hydrophobic core Ile-Ile-Val-Leu still weakly binds SUMO-1 between helix $\alpha 1$ and stand $\beta 2$. (A) Section of the overlapped ¹⁵N-HSQC spectra of ¹⁵N-SUMO-1 with increasing amounts of unlabeled SIM-N^{GSGS}. Arrows show peaks shifting as the concentration of SIM-N^{GSGS} increases from 0 (red) up to a stoichiometric ratio of 16:1 (black). (B) Comparison of the SUMO-1 amide chemical shift perturbations upon addition of a 1.5 molar excess of SIM-N (top) and a 16 fold excess of SIM-N^{GSGS} (bottom). (C) Mapping of SUMO-1 residues showing the greatest chemical shift perturbation (< 0.12 ppm) upon binding SIM-N^{GSGS} confirms the binding site. Fitting the titration data yielded a K_D = 440 ± 30 µM.

Supplemental Figure S5. DAXX¹⁻¹⁴⁴ self-association is ionic strength dependent. (**A**) The ¹⁵N-HSQC spectra of DAXX¹⁻¹⁴⁴ showed broad and missing peaks at low ionic strength. As the KCl concentration was increased, ¹H^N-¹⁵N peaks reappeared and became sharper. (**B**) At low ionic strength and a relatively high concentration of DAXX¹⁻¹⁴⁴ (100 μ M), intermolecular binding of the SIM-N and DHB domain to form multimers is presumably favored, whereas at high ionic strength, the monomer is favored.

Supplemental Figure S6. SIM-N in DAXX¹⁻⁵⁶ binds the DHB domain of DAXX⁵⁵⁻¹⁴⁴. (**A**) Superimposed ¹⁵N-HSQC spectra of DAXX¹⁻⁵⁶ in the absence (initially 150 μ M in 500 μ L, red) and presence of unlabeled DAXX⁵⁵⁻¹⁴⁴ (250 μ L of 1.4 mM stock added, black). The assigned residues showing the most significant changes (broadening) correspond to those of SIM-N within DAXX¹⁻⁵⁶. (**B**) Reciprocal titration of ¹⁵N-DAXX⁵⁵⁻¹⁴⁴ (140 μ M in 500 μ L) with progressive aliquots of unlabeled DAXX¹⁻⁵⁶ confirmed binding (210 μ L of 2.2 mM stock added). Arrows indicate amide peaks undergoing chemical shift changes upon addition of DAXX¹⁻⁵⁶. (**C**) The dissociation constant (170 ± 60 μ M) was calculated from fitting individually the chemical shift changes for the five indicated amides of ¹⁵N-DAXX⁵⁵⁻¹⁴⁴.

SUPPLEMENTAL REFERENCES

- 1. Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., and Chen, Y. A. (2004) *Proc. Natl. Acad. Sci. U. S. A.***101**, 14373-14378
- 2. Song, J., Zhang, Z., Hu, W., and Chen, Y. (2005) J. Biol. Chem. 280, 40122-40129
- 3. Sekiyama, N., Ikegami, T., Yamane, T., Ikeguchi, M., Uchimura, Y., Baba, D., Ariyoshi, M., Tochio, H., Saitoh, H., and Shirakawa, M. (2008) *J. Biol. Chem.* **283**, 35966-35975
- 4. Johnson, P. E., Tomme, P., Joshi, M. D., and McIntosh, L. P. (1996) *Biochemistry* 35, 13895-13906