
Text S1

The equations and the phase-field model

The model introduces a hypoxic cell produced angiogenic factor. This factor diffuses in the tissue

and is consumed by the capillary endothelial cells. These proliferate in the presence of the angio-

genic factor and may acquire the tip cell phenotype. Tip cells move in the direction of the gradient

of angiogenic factor. These processes are described by the following equations:

∂tTi = ∇ · (Di(r)∇Ti)− αTTiφΘ(φ) , (1)

∂tφ = M∇2
[

−φ+ φ3 − ǫ∇2φ
]

+ αp(T )φΘ(φ) , (2)

v = χ∇T

[

1 +

(

GM

G
− 1

)

Θ(G−GM )

]

, (3)

φc =
αp(T )πRc

2|v|
. (4)

Equation (1) describes the diffusion of Ti in the tissue and its consumption by the endothelial

cells. Equation (2) describes the capillary-tissue interface dynamics and the stalk cell proliferation.

Equation (3) gives the tip cell velocity and equation (4) gives the value of the order parameter

inside the tip cell. A new tip cell is activated where φ > 0.9, T > Tc and |∇T | > Gm if two

distance requirements are satisfied. Firstly, the center of the new cell must be located further than

a cell radius length from the surface of the capillary, and secondly it must also be located at least

two diameters away from any other tip cell center (due to the Notch signaling). At most one cell

is activated per integration time step. Biologically, the mechanism for Notch signaling in tip cell

activation is only relevant for cells belonging to the same branch. In the systems analyzed, we

find that the positions where tip cell sprouting may occur are located where the concentration of

angiogenic factor is higher, i.e. just behind already existing tip cells. Consequently, and in spite of

not imposing it explicitly in the code, we verify that in each capillary the inhibition of sprouting

through tip cell proximity (akin to the function reported for the Notch signaling pathway) is always

regulated by the capillary’s own tip cell. In fact, because of the short distance of inhibition, 4Rc,

and because the points able to branch are few, a tip cell of another capillary is not able to be closer

to the sprouting points of a particular branch than the branch’s own tip cell.

The sources of Ti are distributed in the tissue randomly. The concentration of angiogenic
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factor at each source is set to the constant value Ti = Ts until a capillary exists at a distance closer

than d, the typical diffusion distance of oxygen in the tissue [1] (oxygen diffusion is considered

instantaneous in the time scale of capillary development). Were also simulated the development

of capillary networks for regular distributions of sources of angiogenic factor sources representing

the regular arrangement of cells in the tissue. We verified that the resulting capillary network is

characterized by similar values of branch density and capillary diameter as in the random case.

Nevertheless we verified a more regular distribution of major vessels (see Figure 1). In the case

of a square lattice of T sources the first sprouting vessels are parallel to each other, while in a

triangular lattice of T sources we observe some such vessels directed along angles close to 30 and

60 degrees, hence following the trend of the underlining lattice.

In equation (1) the Ti consumption factor αT is given as αT = D/R2
c , where Rc is the radius of

the endothelial cells. The reason for this dependence is that the capillary wall acts as a barrier for

the angiogenic factor, and therefore its concentration decays within the length scale on the order

of the cell size. αT = D/R2
c is obtained from the stationary solution of equation (1) close to the

capillary boundary.

Equation (2) describes the evolution of the field φ which characterizes the phase of the system.

The second term of this equation represents the proliferation rate. The first term is on the form

of a conservation equation:

∂tφ = −∇ · j , (5)

with

j = −∇µ , µ =
δF [φ]

δφ
(6)

where µ is the chemical potential related to F [φ], a free energy functional of the order parameter

φ. In this case we take the Ginzburg-Landau free energy functional

F [φ] =

∫
(

−
φ2

2
+

φ4

4
−

ǫ

2
|∇φ|2

)

dr . (7)

The Ginzburg-Landau free energy (7) implements an energy cost proportional to ǫ per unit length

of interface. Therefore the dynamics is driven by the minimization of the interfacial length. At

the same time ǫ represents the interface width of the capillaries.
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Obtaining quantitative results

Equations (1)-(4) are written with dimensionless quantities. In order to obtain quantitative in-

formation from the simulation, we have to relate the magnitude of the different constants with

observed values in vivo.

Endothelial cells are a very diverse population [2] taking distinct functions and forms in different

circumstances. Here we fix the lattice unit size in the simulation to be equal to 1.25µm and the

value for Rc as Rc = 5µm = 4 lattice units [3]. The diffusion constant of the chemo-attractants

is typically two to three orders of magnitude higher than the diffusion constant associated with

the endothelial cell movements [4]. In the model the ratio between these two diffusion constants

is equal to D = 100. The mobility of the endothelial cells, set as M = 1 in equation (2), may vary

considerably with the type of tissue. Considering it to be on the order of 10−11 cm2/s [4] fixes the

time unit of the simulation in 26 min.

The typical oxygen diffusion size used in the simulation is 2.5 cell diameters (d = 25µm) in

agreement with the literature [1]. The simulation box used is 375×375 µm. The time taken for

each network to be formed in this simulation box varies between 50 and 500 time units, depending

on the value of χ, which we vary within an order of magnitude. Therefore, in these situations the

new vasculature takes 22 hours to 9 days to cover the square of 0.14 mm2, depending on the type

of network formed and starting from a single capillary.

When varying the chemotactic response χ and endothelial cell proliferation αp, we are observ-

ing the formed network for different values of the maximum tip cell velocity χGM and maximum

proliferation rate αpTp respectively. Notice that all parameters in the simulation can be directly

matched to experimental values except for the ones related with the magnitude of the angiogenic

factor (as χ or αp), since Ti represents an average effect of the different factors in the system.

Nevertheless the products χGM and αpTp do not depend on the Ti units and can be easily quan-

tified. Inserting the values of GM and Tp used in the simulation, the maximum tip cell velocity is

equal to 1.4χ nm/min and the maximum proliferation rate is equal to 0.69αp hr−1. We observe

in the simulations presented that a functional network is formed for χ = 250, corresponding to a

maximum tip cell velocity of 0.35 µ/min. The effective diffusion constant of tip cells, with radius

5 µm, comes on the order of 3× 10−10 cm2/s, close to the value used in [4].

For more details on the parameters used, please refer to the next section and to Table 1.

The equations are integrated using a finite differences integration scheme. The program execu-
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tion follows the flowchart in Figure 2.

Tip cell parameterization

For tip cell activation to occur, the value of Tc has an upper limit. In the model angiogenic factor

sources (hypoxic cells) are at at a distance larger than d from a capillary. To estimate the upper

limit for Tc we consider a source at x = d (where T = Ts), the capillary wall at x = 0, and solve

the following equations in one dimension:

∂tT = D∂2
xT , x ≥ 0 ,

∂tT = D∂2
xT − αTT , x < 0 .

These equations are the simplification of (1) for a very sharp interface. Finding the steady state

solution for T (continuous at x = 0) we obtain

T (x) =











Ts

1+d/Rc
+ Ts

Rc+dx , x ≥ 0

Ts

1+d/Rc

ex/Rc , x < 0
, (8)

where Rc =
√

D/αT is the cell size. For tip cell activation, the value of T at its center must be

larger than Tc, so

Tc .
Tse

−1

1 + d/Rc
. (9)

Since d = 25 µm and Rc = 5 µm, for Ts = 1 we estimate that in the stationary case, the value

of T at the center of the cells is T ≈ 0.061. The value chosen for tip cell activation in the code,

Tc = 0.055, is close to this estimated value. If Tc were much below this value it would lead to a

very large number of activated cells, while a value of Tc much larger would result in no tip cell

activation. Also, in the same way as in nature, a very low production level of angiogenic factor

(low Ts) does not promote tip cell activation [5, 6], since inequality (9) stops being valid.

At large concentrations of VEGF, however, tip cell migration may be impaired when the gradi-

ent of VEGF is very shallow [7]: the capillary endothelial cells present filopodia but the gradient is

not strong enough to direct their migration. Since in this case, the tip cell does not perform its role

as an agent leading capillary growth, the model will consider there was no tip cell activation, and

capillaries become thicker by proliferation only [7]. The minimum gradient of T for tip cell activa-

tion used in the model is the gradient at which φc ≈ 1, using equation (4) in a well formed network
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(for example, with the parameters considered in Figure 1B of the main text). Approximating T

by the expression (8) obtained for the steady state, φc is given by

φc =
αpπRc

χGm

Ts

1 + d/Rc
≈

0.015

Gm
,

where in the last step αc, χ, Rc, d and Ts were replaced by the values used in Figure 1B of the

main text. In the model we choose Gm = 0.0125 a.u./µm, (giving Gm = 0.01 in simulation units;

notice that the angiogenic factor concentration is measured with respect to the production levels

at the hypoxic cells), so that φc ≈ 1.

At large angiogenic factor gradients the velocity of the tip cell is limited by the tissue properties

and the saturation of active angiogenic factor receptors at the front of the cell [8] (where the

concentration of angiogenic factor is higher). We consider this fact in the model and take χGM

as the maximum tip cell velocity. In Figure 3 we present the observed network for different values

of GM (the other parameters are the same as in Figure 1B of the main text). We verify that the

resulting vasculature characteristics (branch density and diameter) do not depend strongly on the

value of GM .

Extending the model to describe different angiogenic factor isoforms

The binding of VEGF to the ECM and its cleavage by MMPs has been studied carefully, leading

to the prediction of different regimes for the concentration of heparin-binding and diffusible VEGF

[9].

The angiogenic factor interaction with the ECM in included through a minimal model which

captures the basic physics of the system. As Ti represents a balance between pro-angiogenic and

anti-angiogenic factors, the difference in ECM binding affinity between the different factors, is

represented by distinguishing two types of Ti, namely Td and Th, from diffusible and heparin-

binding isoforms. Td dynamics is identical to the one described by equation (1) but since Th is

able to bind to the ECM, the diffusion constant in (1) will have to be altered.

Consider the relation between the concentration of free (cf ) and bound (cb) heparin-binding

angiogenic factor isoforms to follow a Michaelis-Menten relationship [9]

cb =
Ccf

K + cf
.
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Here K is the angiogenic factor dissociation constant [10] which is a function of the local concentra-

tion of MMPs [11], and C is the concentration of binding sites at the ECM. The diffusion equation

for Th = cf + cb is:

∂tTh = D∇2cf .

Using the Michaelis-Menten relation we express cf as a function of Th. For small gradients of Th

the previous expression can be written as

∂tTh = Dh∇
2Th ,

with

Dh =
D

2

(

1 +
K − C + Th

√

(K + 0.7− Th)2 + 4KTh

)

.

The parameters K and C depend on the characteristics of the ECM. Here we consider that the

maximum concentration of bound angiogenic factor is C = 0.7 of the amount of factor produced

by the tumor cells (Ts = 1). We also consider K to be directly proportional to the concentration

of MMPs.

MMPs are produced by the tumor cells, diffuse in the ECM (diffusion constant DM ) and have

a half-life γM . Therefore in the neighborhood of a tumor cell, the concentration of MMPs, cm, is

given by

cm ∝ e−r/RM ,

where r is the distance to the cell and RM =
√

DM/γ is the diffusion radius of MMPs. The distance

RM measures the radius around each hypoxic cell for which the effect of MMPs on allowing the

diffusion of the heparin-binding isoforms of the angiogenic factor is important. Hence RM is the

parameter regulating the activity of MMPs produced by the tumor cells.

In this model we use the dependence forK in RM in a way to explore both the regime where the

angiogenic factor is bound (with Da ≈ 0) as well as when it is free (with Da ≈ D). Implementing

K = 10e−r/RM , (10)

leads to finding Dh in the range from zero to 0.94D.

Simulating directly the diffusion of MMPs and considering instead of (10), K = 10cm, yields
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no appreciable change in network morphology (see Figures 4A and 4B). Also including in the

model tip cell MMPs production and its role in freeing angiogenic factor from the matrix does

not alter the resulting network characteristics (see Figures 4C and 4D). We conclude that the

introduction of these two mechanisms in the simulation is not essential to obtain the correct

vasculature parameters.

In the same way as for the diffusible isoforms, the concentration of the heparin-binding isoforms

at the hypoxic cells is equal to Ts = 1 until their production is halted when a capillary is at a

distance smaller than d from the cell.
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Figure Captions

Figure 1: Capillary networks formed in on regular arrays of hypoxic cells. Original distribu-

tions of hypoxic cells (A, squared lattice and C triangular lattice) and observed capillary networks

for the same parameters as used in Figure 1B of the main text (B and D respectively) evidence

similar branch density and vessel diameter are similar to the ones observed in Figure 1B of the

main text.

Figure 2: Code’s flowchart.

Figure 3: Capillary network morphology obtained for different values of GM . For A, B, C and

D the value for GM is respectively GM = 0.025, 0.0375, 0.0625 and 0.125 a.u./µm. The resulting

network characteristics (branch density and diameter) do not depend strongly on this parameter.

Figure 4: Capillary network morphology obtained for different implementations of MMPs

dynamics. In A we present the network obtained for RM = 0.5 µm with the model used in the

rest of the article. In B we show the network obtained in the same conditions but considering

explicitly the diffusion of MMPs. The characteristics of the network are not altered. In Figures

C and D we include tip cell production of MMPs. The concentration of MMPs at the tip is 0.2

and 20 times the concentration at the hypoxic cells for C and D respectively. This change in two

orders of magnitude does not bring appreciable changes in the capillary network branch density

and branch diameter. We conclude that the introduction of these two mechanisms is not essential

to the final results.
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Table 1

Parameter Meaning Value in Simulation Value in vivo

Lattice unit 1 1.25 µm

Time unit 1 26 min

Rc Cell radius 4 5 µm [3]

D Ang. factor diffusion constant 100 10−13 m2/s [4]

M End. cell Mobility 1 10−15 m2/s [4]

d Oxygen diffusion length 20 25 µm [1]

αT = D/R2
c Ang. factor consumption rate 6.25 0.004 s−1

ǫ Interface width 1 1.25 µm

Ts Ang. factor conc. at source 1

Tp Ang. factor conc. for highest proliferation 0.3

Tc Ang. factor conc. for branching 0.055

GM Ang. factor grad. for highest velocity 0.03 0.0375 a.u./µm

Gm Ang. factor grad. for branching 0.01 0.0125 a.u./µm

Table 1: Values of the parameters used in the simulations.
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Figure 2
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