Chiral Calcium VAPOL-Phosphate Mediated Asymmetric Chlorination and Michael Reactions of 3-Substituted Oxindoles

Wenhua Zheng, Zuhui Zhang, Matthew J. Kaplan, Jon C. Antilla*

Department of Chemistry, University of South Florida, Tampa, Florida 33620

jantilla@usf.edu

General Considerations	S2
Catalyst Preparation	S3-S4
Catalyst/Solvent Screen for the Enantioselective Chlorination	S5
General Procedure for Enantioselective Chlorination	S6
Characterization Data for Chlorination Products	S6-S11
General Procedure for Enantioselective Michael addition	S12
Characterization Data For Michael Addition Products	
References	S14
HPLC Spectra for 2a-2k and 3a-3d	.\$15-\$30
NMR Spectra for 2a-2k and 3a-3d	.S31-S44

General Considerations: All reactions were carried out in flame-dried screw-cap test tubes with magnetic stirring. Toluene, diethyl ether, dichloromethane, and THF were purified by passing through a column of activated alumina under a dry argon atmosphere. Anhydrous *tert*-butyl methyl ether was commercially purchased and used without further purification. Ethyl acetate and isopropyl acetate were dried over 4Å MS. Substituted BINOL phosphoric acids were prepared from commercially available chiral BINOL. Oxindoles were prepared according to known literature procedures.^[1]

Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F254). Flash column chromatography was performed with Merck silica gel (230-400 mesh). Enantiomeric excess (ee) was determined using a Varian Prostar HPLC with a 210 binary pump and a 335 diode-array detector. Column conditions are reported in the experimental section below. Optical rotations were performed on a Rudolph Research Analytical Autopol IV polarimeter (λ 589) using a 700-µL cell with a path length of 1-dm. Melting points were determined using a MEL-TEMP 3.0 instrument and are uncorrected. ¹H NMR and ¹³C NMR were recorded on a Bruker Avance DPX-250 (250 MHz for ¹H and 62.5 MHz for ¹³C) instrument. ³¹P NMR were recorded on a Varian Unity Inova 400 (162 MHz for ³¹P). ¹H and ¹³C chemical shifts are reported in ppm downfield from tetramethylsilane (TMS). H₃PO₄ was used as an external standard for ${}^{31}P(\sigma)$: 0.00 ppm). The HRMS data were measured on an Agilent 1100 LC/MS ESI/TOF mass spectrometer with electrospray ionization.Compounds described in the literature were characterized by comparing their spectral data to the reported values. The absolute configuration of compound 2a was determined to be "(S)"by comparison of the optical rotation value to the reported literature value.³The absolute configuration of compounds **3a-3d** was determined to be "(S)" by comparison of the observed optical rotation values to the reported literature values.⁴

Catalyst Preparation

"(*R*) or (*S*)-PA1 (VAPOL-PA) purified on silica gel" (Table 1, entries 2-6): was prepared according to the reported literature procedure.²

"PA1 (VAPOL-PA) washed with HCI"(Table 1, entry 8): Prepared in a similar manner to the reported literature procedure^[2] but not purified by silica gel column chromatography. The crude *(R)* or *(S)*-VAPOL phosphoric acid was precipitated from EtOH with 6 *N* HCl. The resulting white solid was filtered, and dried overnight under high vacuum to afford acidified chiral VAPOL-PA. The ¹H NMR of the title compound is identical to "**PA1 (VAPOL-PA) purified on silica gel."**

Catalysts M[P1]^{*n*}: For Na[**P1**] (Table 1, entry 9), K[**P1**] (Table 1, entry 10), Mg[**P1**]₂ (Table 1, entry 11), Ca[**P1**]₂(Table 1, entries 12 and 15, Table 2, Figure 2), Sr[**P1**]₂(Table 1, entry 13), or Ba[**P1**]₂(Table 1, entry 14), NaOMe (1.0 equiv), KO*t*Bu (1.0 equiv), Mg(O*t*Bu)₂ (0.5 equiv), Ca(OMe)₂ (0.5 equiv), Sr(O*i*Pr)₂ (0.5 equiv) or Ba(O*t*Bu)₂ (0.5 equiv)was combined with "**PA1** (**VAPOL-PA**) **washed with HCI**" (1.0 equiv) in a flame-dried Schlenk tube, under an argon atmosphere. MeOH was added (0.05 M) and the resulting mixture was stirred at room temperature for 1 h. The solvent was removed under high vacuum to afford the desired **M**[**P1**]_{*n*} as a white solid, which was used directly without further purification. The ¹H NMR of these compounds is the same as "**PA1** (**VAPOL-PA**) **purified on silica gel**."

Procedure for the preparation of Ca[(*S***)-VAPOL-Phosphate]₂: A flame-dried flask was charged with "PA1 (VAPOL-PA) washed with HCl" (60.0mg, 0.1 mmol) and Ca(OMe)₂ (5.1 mg, 0.05 mmol). Methanol (5 mL) was added and the resulting mixture was stirred at room temperature for 1 h. The solvent was removed under high vacuum to afford Ca[(***S***)-VAPOL-Phosphate]₂ as a pale yellow solid. ¹H NMR (400 MHz, d₆-DMSO) δ 9.96 (d,** *J* **= 8.4 Hz, 4H), 8.03 (d,** *J* **= 7.2 Hz, 4H), 7.88 (dd,** *J* **= 16.8, 8.8 Hz, 8H), 7.74-7.67 (m, 8H), 7.54 (s, 4H), 7.09 (t,** *J* **= 7.2 Hz, 4H), 6.94 (t,** *J* **= 7.2 Hz, 8H), 6.44 (d,** *J* **= 7.2 Hz, 8H); ¹³C NMR (100 MHz, d₆-DMSO) δ 140.5, 139.8, 133.7, 132.7, 129.8, 128.9, 128.8, 128.2, 128.0, 127.4, 127.2, 127.0, 126.6, 126.3, 124.8, 121.6(two C not located). ³¹P NMR (162 MHz, d₆-DMSO) δ 1.05.**

¹H NMR of Ca[(*R*)-VAPOL-Phosphate]₂

Preliminary Catalyst/Solvent Screening for the Enantioselective Chlorination of Oxindoles

Ph Ph .∖CI catalyst N-CI \cap റ solvent, rt, 1 h N Boc N Boc ,0[,]P,⁰ Ph``` ЮH റ ,0 Ph`` Ó Ph Ph Ю Ó ЮH R **PA1**: $R = \alpha$ -naph **PA2**: $R = SiPh_3$ **PA3**: $R = 2,4,6-(i-Pr)_3C_6H_2$ PA4: R = 9-phenylanthryl **PA5**: R = 9-anthryl PA6 (VAPOL-PA) PA7 (VANOL-PA) solvent conversion (%)^b entry catalyst ee (%)^c 1^d < 20 toluene _____ 2 PA1 toluene 99 6 3 PA2 99 6 toluene 4 PA3 toluene 99 1 PA4 99 16 5 toluene PA6 99 51 6 toluene 7 48 PA6 DCM 99 8 PA6 EtOAc 99 50 PA6 99 60 9 benzene

(Catalysts are purified by silica gel column)

^a Reaction Conditions: oxindole (0.05 mmol, 1.0 equiv), NCS (0.06 mmol, 1.2 equiv), 5 mol % catalyst in solvent (0.5 mL, 0.1 M). ^b Isolated yield.^c Enantiomeric excess determined by chiral HPLC analysis. ^d After 24 h.

benzene

benzene

i-PrOAc

10

11

12

PA5

PA7

PA6

99

99

99

18

2

80

General procedure for the enantioselective chlorination of oxindoles:

To a flame-dried test tube was added oxindole **1** (0.05 mmol, 1.0 equiv) and Ca[(*S*)-VAPOL-Phosphate]₂ (2.5 mol %, 1.5 mg). The atmosphere was exchanged with argon three times and isopropyl acetate (1.0 mL) was added. After stirring for 10 min, NCS (0.12 M solution in isopropyl acetate) was added to the mixture of oxindole and catalyst over a period of 20 min. After stirring for an additional 10 min, the reaction mixture was purified directly by silica gel column chromatography (eluent: Hexane / EtOAc = 20/1) to yield product **2**. The *ee* of product **2** was determined by chiral HPLC analysis.

tert-butyl 3-chloro-2-oxo-3-phenylindoline-1-carboxylate (2a)³: 99% yield, 94% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OJ-H, 0.3 mL/min, 90:10 hexanes/iPrOH):t_R(major) = 23.92 min, t_R(minor) = 32.21 min. $[\alpha]^{20}_{D}$ = +99.16° (*c* = 0.508, CHCl₃) Lit: $[\alpha]^{20}_{D}$ = -81.9° (*c* = 0.18, CHCl₃, (*R*)-isomer)^{3.1}H NMR (250 MHz, CDCl₃) δ 7.91 (d, *J* = 8.25 Hz, 1H), 7.46-7.18 (m, 8H), 1.55 (s, 9H). ¹³C NMR (62.5 MHz, CDCl₃) δ 171.0, 149.0, 139.1, 136.4, 130.8, 129.2, 128.9, 128.6, 127.9, 126.5, 125.4, 115.7, 85.2, 66.6, 28.0.HRMS (ESI) calcd for ([M+Na]⁺)366.0867, found 366.0872.

tert-butyl 3-chloro-2-oxo-3-p-tolylindoline-1-carboxylate (2b): 99% yield, 93% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OJ-H, 0.5 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 14.63 \text{ min}, t_R(minor) = 28.28 \text{ min}; [\alpha]^{20}_D = +78.744^{\circ} (c = 0.43, c)$ CHCl₃). ¹H NMR (250 MHz, CDCl₃) δ 7.90 (dt, *J* = 7.75, 1.0 Hz, 1H), 7.38-7.18 (m, 5H), 7.09 (d, *J* = 7.75 Hz, 2H), 2.28 (s, 3H), 1.54 (s, 9H). ¹³C NMR (62.5 MHz, CDCl₃) δ 171.0, 149.0, 139.3, 139.1, 133.4, 130.7, 129.3, 129.0, 127.8, 126.1, 125.4, 115.6, 85.1, 66.5, 28.0, 21.1. HRMS (ESI) calcd for ([M-Boc-Cl+H]⁺) 222.0913, found 222.0909.

tert-butyl 3-chloro-3-(4-fluorophenyl)-2-oxoindoline-1-carboxylate (2c): 99% yield, 96% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OJ-H, 0.3 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 21.48 \text{ min}, t_R(minor) = 24.11 \text{ min}. [\alpha]^{20}_D = +122.21^{\circ} (c = 0.59, CHCl_3).$ ¹H NMR (250 MHz, CDCl₃) δ 7.91 (d, J = 8.25 Hz, 1H), 7.45-7.34 (m, 4H), 7.25-7.18 (m, 1H), 6.97 (t, J = 8.25 Hz, 2H), 1.55 (s, 9H).¹³C NMR (62.5 MHz, CDCl_3) δ 170.8, 165.2, 161.2, 148.9, 139.1, 132.2, 132.2, 131.0, 130.2, 130.0, 128.5, 126.1, 125.5, 115.8, 115.7, 115.4, 85.3, 65.9, 28.0.HRMS (ESI) calcd for ([M+Na]⁺)384.0773, found 384.0764.

tert-butyl 3-chloro-3-(naphthalen-2-yl)-2-oxoindoline-1-carboxylate (2d): 99% yield, >99% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OJ-H, 0.3 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 26.85 \text{ min}, t_R(minor) = 29.52 \text{ min}.[\alpha]^{20}_D = +63.36^{\circ} (c = 0.49, CHCl_3).^{1}H NMR (250 MHz, CDCl_3) \delta 7.97-7.91 (m, 1H), 7.82-7.66 (m, 5H), 7.45-7.38 (m, 4H), 7.25 (dt,$ *J* $= 8.25, 1.0 Hz, 1H), 1.55 (s, 9H).^{13}C NMR (62.5 MHz, CDCl_3) \delta 170.9, 149.0, 139.2 133.6, 133.3, 132.5, 130.9, 128.9, 128.8, 128.5, 127.6, 127.3, 127.2, 126.7, 126.2, 125.5, 125.2, 115.7, 85.2, 66.8, 28.0. HRMS (ESI) calcd for ([M-Boc-Cl+H]⁺) 258.0913, found 258.0911.$

tert-butyl 3-chloro-5-methoxy-2-oxo-3-phenylindoline-1-carboxylate (2e): 99% yield, 90% *ee.* Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OJ-H, 0.5 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 26.09 \text{ min}$, $t_R(minor) = 19.05 \text{ min}.[\alpha]^{20}{}_D = +107.48^{\circ}$ (*c* = 0.593, CHCl₃).¹H NMR (250 MHz, CDCl₃) δ 7.82 (d, *J* = 8.25 Hz, 1H), 7.45-7.41 (m, 2H), 7.31-7.27 (m, 3H), 6.92-6.87 (m, 2H), 3.72 (d, *J* = 1.0 Hz, 3H), 1.53 (d, *J* = 1Hz, 9H).¹³C NMR (62.5 MHz, CDCl₃) δ 171.1, 157.4, 149.1, 136.3, 132.4, 130.0, 129.2, 128.6, 127.9, 116.8, 116.4, 111.3, 85.0, 66.9, 55.8, 31.6, 28.0. HRMS (ESI) calcd for ([M-Boc-Cl]⁺) 237.0784, found 222.0779.

tert-butyl 3-chloro-5-fluoro-2-oxo-3-phenylindoline-1-carboxylate (2f): 99% yield, 93% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OJ-H, 0.3 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 25.39 \text{ min}$, $t_R(minor) = 20.11 \text{ min}$.[α]²⁰_D = +92.715° (*c* = 0.4225, CHCl₃). ¹H NMR (250 MHz, CDCl₃) δ 7.92 (dq, *J* =4.0, 1.0 Hz, 1H), 7.44-7.39 (m, 2H), 7.33-7.26 (m, 3H), 7.12-7.04 (m, 2H), 1.54 (s, 9H).¹³C NMR (62.5 MHz, CDCl₃) δ 170.6, 162.1, 158.2, 148.9, 135.8, 135.1, 135.1, 130.7, 130.5, 129.4, 128.7, 127.7, 117.8, 117.4, 117.3, 117.2, 113.5, 113.1, 85.4, 66.2, 28.0.HRMS (ESI) calcd for ([M+Na]⁺)384.0773, found 384.0767.

tert-butyl 3-chloro-5-methyl-2-oxo-3-phenlindoline-1-carboxylate (2g): 99% yield, 86% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (*S*, *S*)-Whelk-O1, 1.0 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 11.61 \text{ min}$, $t_R(minor) = 8.19 \text{ min}$. $[\alpha]^{20}{}_D = +96.145^{\circ}$ (*c* = 0.48, CHCl₃).¹H NMR (250 MHz, CDCl₃) δ 7.77 (d, *J* = 8.25 Hz, 1H), 7.46-7.42 (m, 2H), 7.32-7.28 (m, 3H), 7.19-7.15 (m, 2H), 2.30 (s, 3H), 1.54 (s, 9H).¹³C NMR (62.5 MHz, CDCl₃) δ 171.1, 149.0, 136.8, 136.5, 135.3, 131.4, 129.1, 128.9, 128.6, 127.9, 126.4, 115.5, 85.0, 66.9, 28.1, 21.1. HRMS (ESI) calcd for ([M+Na]⁺)384.0773, found 384.0765.

tert-butyl 3-chloro-7-fluoro-2-oxo-3-phenylindoline-1-carboxylate (2h): 99% yield, 97% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (*S*, *S*)-Whelk-O1, 1.0 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 12.11 \text{ min}$, $t_R(minor) = 9.65 \text{ min}$. $[\alpha]^{20}_D = +86.923^\circ$ (*c* = 0.603, CHCl₃).¹H NMR (250 MHz, CDCl₃) δ 7.43-7.39 (m, 2H), 7.28-7.26 (m, 3H), 7.16-7.10 (m, 3H), 1.51 (s, 9H).¹³C NMR (62.5 MHz, CDCl₃) δ 170.6, 150.6, 147.1, 146.6, 135.8, 132.2, 132.1, 129.4, 128.7, 127.7, 126.5, 126.4, 126.2, 126.0, 122.0, 121.9, 119.0, 118.7, 85.9, 66.5, 66.5, 27.7. HRMS (ESI) calcd for ([M+Na]⁺)384.0773, found 384.0765.

tert-butyl 3-chloro-3-(4-fluorophenyl)-5-methyl-2-oxoindoline-1-carboxylate (2i): 99% yield, 92% *ee*. Enantiomeric excess was determined by chiral HPLC analysis ((*S*, *S*)-Whelk-O1, 1.0 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 10.61 \text{ min}$, $t_R(minor) = 6.69 \text{ min}$. [α]²⁰_D = +97.025° (*c* = 0.825, CHCl₃).¹H NMR (250 MHz, CDCl₃) δ 7.78 (d, *J* = 8.5 Hz, 1H), 7.41 (dd, *J* = 7.0, 1.75 Hz, 2H), 7.20-7.15 (m, 2H), 6.97 (t, *J* = 8.5 Hz, 2H), 2.31 (s, 3H), 1.54 (s, 9H). ¹³C NMR (62.5 MHz, CDCl₃) δ 171.0, 170.9, 165.1, 161.2, 149.0, 136.7, 135.4, 132.4, 132.3, 131.6, 130.1, 130.0, 128.5, 126.4, 115.7, 115.6, 115.3, 85.1, 66.2, 28.0, 21.1.HRMS (ESI)calcd for ([M-Boc-Cl+H]⁺) 240.0819, found 240.0815.

tert-butyl 3-chloro-7-fluoro-3-(4-fluorophenyl)-2-oxoindoline-1-carboxylate (2j): 99% yield, 98% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OJ-H, 1.0 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 9.80$ min, $t_R(minor) = 22.64$ min. $[\alpha]^{20}_D = +72.642^{\circ}$ (*c* = 0.675, CHCl₃). ¹H NMR (250 MHz, CDCl₃) δ 7.42 (dd, *J* = 9.0, 5.0 Hz, 2H), 7.20-7.13 (m, 3H), 6.98 (t, *J* = 8.25 Hz, 2H), 1.53 (s, 9H).¹³C NMR (62.5 MHz, CDCl₃) δ 170.4, 170.4, 166.3, 161.3, 150.6, 147.0, 146.6, 131.7, 131.7, 131.6, 131.6, 126.6, 126.5, 126.2, 126.0, 121.9, 121.9, 119.2, 118.9, 115.9, 115.5, 86.0, 65.7, 65.7, 27.7, 27.7.HRMS (ESI) calcd for ([M+Na]⁺) 402.0679, found 402.0674.

tert-butyl 3-chloro-3-methyl-2-oxoindoline-1-carboxylate (2k): 99% yield, 62% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OJ-H, 0.3 mL/min, 90:10 hexanes/iPrOH): $t_R(major) = 21.73 \text{ min}$, $t_R(minor) = 23.61 \text{ min}.[\alpha]^{20}_D = +30.143^\circ$ (c = 0.48, CHCl₃).¹H NMR (250 MHz, CDCl₃) δ 7.97-7.91 (m, 1H), 7.82-7.66 (m, 5H), 7.45-7.38 (m, 4H), 7.25 (dt, J = 8.25, 1.0 Hz, 1H), 1.55 (s, 9H).¹³C NMR (62.5 MHz, CDCl₃) δ 170.9, 149.0, 139.2 133.6, 133.3, 132.5, 130.9, 128.9, 128.8, 128.5, 127.6, 127.3, 127.2, 126.7, 126.2, 125.5, 125.2, 115.7, 85.2, 66.8, 28.0. HRMS (ESI) calcd for ([M+Na]⁺)304.0711, found 304.0708.

methyl 3-chloro-2-oxo-3-phenylindoline-1-carboxylate (2l): 99% yield, 97% *ee*. Enantiomeric excess was determined by chiral HPLC analysis ((*S*, *S*)-Whelk-O1, 1.0 mL/min, 90:10 hexanes/iPrOH):t_R(major) = 17.36 min, t_R(minor) = 13.93 min. $[\alpha]^{20}_{D}$ = +116.55° (*c* = 0.77, CHCl₃).¹H NMR (250 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.42-7.20 (m, 8H), 3.89 (s, 3H). ¹³C NMR (62.5 MHz, CDCl₃) δ 170.9, 151.2, 138.6, 136.2, 133.9, 129.3, 129.1, 128.7, 127.8, 126.2, 125.8, 115.7, 85.2, 66.6, 54.3. HRMS (ESI) calcd for ([M+H]⁺)302.0579, found 304.0574.

General procedure for the enantioselective Michael reaction of oxindoles:

To a flame-dried test tube was added oxindole **1** (0.05 mmol, 1.0 equiv) and Ca[(*R*)-VAPOL-Phosphate]₂ (2.5 mol %, 1.5 mg). The atmosphere was exchanged with argon three times and isopropyl acetate (0.5 mL) was added. The mixture was cooled to 0 °C, and methyl vinyl ketone (12.3 μ l, 3.0 equiv) was added. The reaction was continued at 0 °C, and upon completion purified directly by silica gel column chromatography (eluent: Hexane / EtOAc = 5/1) to yield product **3**. The *ee* of product **3** was determined by chiral HPLC analysis.

(*S*)-tert-butyl 2-oxo-3-(3-oxobutyl)-3-phenylindoline-1-carboxylate (3a): 97% yield, 90% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, 1.0 mL/min, 94:6 hexanes/iPrOH): $t_R(major) = 7.95 \text{ min}$, $t_R(minor) = 10.89 \text{ min}$. $[\alpha]^{20}{}_D = -53.94^\circ$ (c = 0.71, CHCl₃) Lit: $[\alpha]^{20}{}_D = -62.02^\circ$ (c = 1.00, CHCl₃, (*S*)-isomer).⁴¹H NMR (250 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 1H), 7.34-7.12 (m, 8H), 2.74-2.62 (m, 1H), 2.47-2.17 (m, 2H), 2.09-1.96 (m, 1H), 1.94 (s, 3H), 1.56 (s, 9H). The spectral data are identical to those in reference 4.

(*S*)-tert-butyl 5-fluoro-2-oxo-3-(3-oxobutyl)-3-phenylindoline-1-carboxylate (3b): 96% yield, 95% *ee*. Enantiomeric excess was determined by chiral HPLC analysis(Chiralpak AD-H, 1.0 mL/min, 94:6 hexanes/iPrOH): $t_R(major) = 6.71 \text{ min}$, $t_R(minor) = 7.87 \text{ min}$.[α]²⁰_D = -58.64° (*c* = 0.675, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 7.88 (dd, *J* = 9.0, 4.5 Hz, 2H), 7.29-7.19 (m, 5H), 7.00 (dt, J = 9.0, 2.75 Hz, 1H), 6.83 (dd, J = 7.75, 2.5 Hz, 1H), 2.73-2.63 (m, 1H), 2.44-2.23 (m,

2H), 2.12-2.02 (m, 1H), 1.97 (s, 3H), 1.55 (s, 9H). The spectra data are identical to those in reference 4.

(*S*)-tert-butyl 3-(naphthalen-2-yl)-2-oxo-3-(3-oxobutyl)indoline-1-carboxylate (3c): 95% yield, 95% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, 1.0 mL/min, 94:6 hexanes/iPrOH): $t_R(major) = 9.48 \text{ min}, t_R(minor) = 14.11 \text{ min}[\alpha]^{20}_D = -22.195^{\circ}$ (*c* = 0.925, CHCl₃).¹H NMR (250 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.72-7.65 (m, 4H), 7.40-7.34 (m, 4H), 7.18-7.15 (m, 2H), 2.86-2.75 (m, 1H), 2.58-2.28 (m, 2H), 2.12-1.99 (m, 1H), 1.95 (s, 3H), 1.56 (s, 9H). The spectral data are identical to those in reference 4.

(*S*)-tert-butyl 2-oxo-3-(3-oxobutyl)-3-p-tolylindoline-1-carboxylate (3d): 96% yield, 90% *ee*. Enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, 1.0 mL/min, 94:6 hexanes/iPrOH): $t_R(major) = 7.49 \text{ min}$, $t_R(minor) = 11.25 \text{ min}$.[α]²⁰_D = -47.31° (*c* = 0.73, CHCl₃).¹H NMR (250 MHz, CDCl₃) δ 7.87 (d, *J* = 8.25 Hz, 1H), 7.30-7.02 (m, 7H), 2.71-2.61 (m, 1H), 2.45-2.28 (m, 2H), 2.23 (s, 3H), 2.05-1.97 (m, 1H), 1.94 (s, 3H), 1.55 (s, 9H). The spectral data are identical to those in reference 4. Additional Michael Acceptors were screened with the following results.

References

(1)(a) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sodeoka, M. *J. Am. Chem. Soc.* **2005**, *127*, 10164-10165.(b) Rajeswaran, W. G.; Cohen, L. A. *Tetrahedron* **1998**, *54*, 11375-11380.(c) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.;Toru, T.; Kanemasa, S. *J. Am. Chem. Soc.* **2006**, *128*, 16488-16489.

(2) Desai, A. A.; Huang, L.; Wulff, W. D.; Rowland, G. B.; Antilla, J. C. *Synthesis*, **2010**, *12*, 2106-2109.

(3) Shibata, N.; Kohno, J.; Takai, K.; Nakamura, S.; Toru, T.; Kagemasa, S. *Angew. Chem., Int. Ed.* **2005**, *44*, 4204.

(4)He, R.; Ding, C.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 4559.

Chromatogram : WZ-3-40_channel1

System : HPLC Method : Wenhua User : User1 Acquired : 4/21/2010 10:11:44 PM Processed : 4/21/2010 11:18:24 PM Printed : 9/30/2010 12:44:51 AM

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %	
NG220122011		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]	
1	UNKNOWN	24.45	49.91	37.8	54.6	49.914	
2	UNKNOWN	32.33	50.09	24.9	54.8	50.086	
Total			100.00	62.6	109.5	100 000	

WZ-3-40.DATA [Prostar 335 Absorbance Analog Channel 1 ^À :C f qB%@... ÀGIÃ:]

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	23.92	96.78	204.5	350.3	96.781
2	UNKNOWN	32.21	3.22	5.7	11.6	3.219
Total			100.00	210.2	361.9	100.000

Acquired : 5/1/2010 10:39:10 PM Processed : 5/1/2010 11:24:46 PM Printed : 9/30/2010 12:47:46 AM

Chromatogram : WZ-3-4-OJ-90-0.5_channel1

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %	
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]	
1	UNKNOWN	14.72	50.12	15.1	16.6	50.122	
2	UNKNOWN	27.92	49.88	2.7	16.5	49.878	
Total			100.00	177	33.0	100.000	

WZ-3-4-OJ-90-0.5.DATA [Prostar 335 Absorbance Analog Channel 1 ^À 'C f qB%@... ÀGIÃ:]

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	14.63	96.47	30.7	35.6	96.468
2	UNKNOWN	28.28	3.53	0.5	1.3	3.532
Total			100.00	31.1	36.9	100 000

Chromatogram : WZ-3-43_channel1

System : HPLC Method : Wenhua User : User1 Acquired : 4/22/2010 9:47:08 PM Processed : 4/27/2010 12:31:59 AM Printed : 9/30/2010 12:50:05 AM

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %	
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]	
1	UNKNOWN	19.61	49.06	64.5	58.1	49.057	
2	UNKNOWN	21.99	50.94	46.2	60.4	50.943	
Total			100.00	110.7	118.5	100.000	

WZ-3-43.DATA [Prostar 335 Absorbance Analog Channel 1 ^À :C] f qB%@... AGIÃ:]

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	21.48	97.86	48.1	44.7	97.862
2	UNKNOWN	24.11	2.14	1.0	1.0	2.138
Total			100.00	49.1	45.7	100 000

Chromatogram : WZ-3-41_channel1

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %	
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]	
1	UNKNOWN	26.85	49.95	64.4	50.5	49.952	
2	UNKNOWN	29.52	50.05	66.0	50.6	50.048	
Total			100.00	130.4	101.1	100,000	

 WZ-3-41.DATA [Prostar 335 Absorbance Analog Channel 1 ^Å □'C _ f qB%@... □ÅGIÃ:]

 Index
 Name

 Time
 Quantity

 Height
 Area

 MAID
 [Min]

 [% Area]
 [mAU]

 [mAU]
 [mAU]

 [Min]
 [%]

 1
 UNKNOWN

 2
 5

 10
 000

	UNKNOVVN	21.05	100.00	249.0	4/1.5	100.000
Total	1		100.00	249.0	477.5	100.000

System : HPLC Method : Wenhua User : User1

Acquired : 5/2/2010 11:10:08 PM Processed : 5/2/2010 11:54:09 PM Printed : 9/30/2010 12:56:14 AM

Chromatogram : WZ-3-46-OJ-90-0.51_channel1

Peak results :

WZ-3-3	37-OJ-90-0.52.	DATA	Prostar 33	5 Absorb	ance Analog	Channel 1	^À□'C□ ƒ qB%@□ÀGIÃ:]
Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]	
1	UNKNOWN	19.11	50.25	63.4	101.3	50.250	
2	UNKNOWN	26.04	49.75	29.6	100.3	49,750	

2	UNKNOWN	26.04	49.75	29.6	100.3	49.750
Total			100.00	93.0	201.7	100.000

WZ-3-46-OJ-90-0.51.DATA [Prostar 335 Absorbance Analog Channel 1 ^A C / qB%@... AGIÃ:]

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
2	UNKNOWN	19.05	5.14	5.0	6.3	5.144
1	UNKNOWN	26.09	94.86	36.3	116.8	94.856
Total			100.00	41.4	123.1	100.000

Chromatogram : WZ-3-381_channel1

Peak results :

WZ-3-29-OJ-90-0.32.DATA [Prostar 335 Absorbance Analog Channel 1 ^À \"C f qB%@... \AGIÃ:]

Index	Name	[Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	21.65	50.63	166.0	185.6	50.635
2	UNKNOWN	26.88	49.37	125.7	180.9	49.365
Total			100.00	291.7	366.5	100.000

WZ-3-381.DATA [Prostar 335 Absorbance Analog Channel 1 ^A _'C _ f qB%@... _ AGIÃ:]

Index	Name	[Min]	[% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
2	UNKNOWN	20.11	3.62	3.1	2.8	3.625
1	UNKNOWN	25.39	96.38	57.5	73.9	96.375
Total			100.00	60.6	76.7	100.000

Chromatogram : WZ-3-62-Whelk-O1-90-1.0_channel1

Peak results :

WZ-3-33-WhelkO1-90-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	9.73	53.8	0.51	19.2	50.094
2	12.12	42.9	0.63	19.1	49.906
Total		96.7		38.3	100.000

WZ-3-62-Whelk-O1-90-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	8.19	6.0	0.43	1.7	7.223
2	11.61	49.7	0.64	22.4	92.777
Total		55.8		24.1	100.000

Chromatogram : 20100929_channel1

System : HPLC Method : test User : User1 Acquired : 9/30/2010 12:23:09 AM Processed : 9/30/2010 12:39:23 AM Printed : 9/30/2010 12:40:43 AM

Peak results :

WZ-3-33-WhelkO1-90-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	9.73	53.8	0.51	19.2	50.094
2	12.12	42.9	0.63	19.1	49.906
Total		96.7		38.3	100.000

20100929.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	9.65	1.8	0.49	0.6	1.406
2	12.11	97.4	0.63	43.6	98.594
Total		99.1		44.2	100 000

Chromatogram : 20101008_channel1

System : HPLC Method : test User : User1 Acquired : 10/8/2010 11:46:50 AM Processed : 10/8/2010 12:23:53 PM Printed : 10/8/2010 12:24:47 PM

Peak results :

WZ-3-250-Whelk-O1-90-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	6.67	197.7	0.37	52.4	50.498
2	10.56	125.1	0.58	51.3	49.502
Total		322.8		103.7	100.000

20101008.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	6.69	13.0	0.39	3.4	4.098
2	10.61	192.3	0.60	79.1	95.902
Total		205.3		82.5	100 000

System : HPLC Method : test User : User1

Reference = WZ-3-245-OJ-90-1.02.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028 20 mAU RT [min] 45 mAU 40+ 35 00 00 25 H WZ-4-13-0J-90-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028 RT (min ó Å

Acquired : 9/13/2010 4:43:03 PM Processed : 9/13/2010 8:55:43 PM Printed : 9/30/2010 12:32:48 AM

Chromatogram : WZ-4-13-OJ-90-1.0_channel1

Peak results :

WZ-3-245-OJ-90-1.02.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	9.33	20.8	0.85	11.4	49.632
2	21.99	6.9	2.67	11.6	50.368
Total		27.7		23.0	100 000

WZ-4-13-OJ-90-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	9.80	44.8	0.87	25.3	99.059
2	22.64	0.2	1.38	0.2	0.941
Total		45.0		25.5	100 000

System : HPLC Method : test User : User1

Acquired : 10/4/2010 3:27:06 PM Processed : 10/4/2010 4:12:13 PM Printed : 10/4/2010 4:12:53 PM

Chromatogram : WZ-3-45-repeat_channel1

Peak results :

WZ-3-44-rac.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	25.36	56.9	1.19	42.6	51.243
2	27.41	54.9	1.18	40.6	48.757
Total		111.8		83.2	100.000

WZ-3-45-repeat DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	21.73	46.8	1.74	52.4	81.176
2	23.61	12.5	1.55	12.2	18.824
Total		59.3		64.6	100.000

Chromatogram : WZ-4-103-SS-Whelk-90-1.0_channel1

Peak results :

WZ-4-102-SS-Whelk-90-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
2	12.88	59.7	0.80	33.3	49.104
1	16.31	49.4	0.98	34.5	50.896
Total		109.1		67.8	100.000

WZ-4-103-SS-Whelk-90-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	[mAU]	[Min]	Area [mAU.Min]	Area % [%]
1	13.93	5.2	0.74	2.5	1.576
2	17.36	223.9	1.01	156.6	98.424
Total		229.0		159.1	100.000

Chromatogram : WZ-3-282-AD-94-1.0_channel1

Peak results :

20101017.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	6.51	71.0	0.35	15.8	50.022
2	9.28	58.8	0.42	15.8	49.978
Total		129.8		31.6	100.000

WZ-3-282-AD-94-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	[mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
2	7.95	88.5	0.46	26.2	94.891
1	10.89	3.6	0.65	1.4	5.109
Total		92.1		27.6	100 000

Chromatogram : WZ-4-2-AD-94-1.0_channel1

Peak results :

WZ-3-2874.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	6.67	32.6	0.37	7.7	50.191
2	7.77	30.0	0.40	7.6	49.809
Total		62.6		15.3	100.000

WZ-4-2-AD-94-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	6.71	60.5	0.38	14.2	97.392
2	7.87	1.0	0.55	0.4	2.608
Total		61.5		14.6	100.000

Chromatogram : WZ-4-7-AD-94-1.0_channel1

Peak results :

WZ-3-2852 DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	7.44	52.1	0.43	14.3	50.066
2	11.20	41.0	0.55	14.3	49.934
Total		93.1		28.6	100.000

WZ-4-7-AD-94-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	[mAU]	[Min]	Area [mAU.Min]	Area % [%]
1	7.49	116.5	0.39	28.7	94.815
2	11.25	5.1	0.50	1.6	5.185
Total		121.6		30.3	100 000

Chromatogram : WZ-4-6-AD-94-1.0_channel1

Peak results :

WZ-3-2863.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	9.61	51.6	0.42	14.0	49.834
2	13.97	34.8	0.63	14.1	50.166
Total		86.3		28.1	100.000

WZ-4-6-AD-94-1.0.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	9.48	33.6	0.55	11.5	97.641
2	14.11	0.8	0.65	0.3	2.359
Total		34.4		11.8	100.000

¹H NMR of Compound **2a**

 $^1\mathrm{H}$ NMR of Compound $\mathbf{2b}$

¹H NMR of Compound **2c**

¹H NMR of Compound **2d**

¹H NMR of Compound **2e**

¹H NMR of Compound **2**f

¹H NMR of Compound **2g**

¹H NMR of Compound **2h**

S38

¹H NMR of Compound **2i**

 $^1\mathrm{H}$ NMR of Compound $\mathbf{2k}$

 $^1\mathrm{H}$ NMR for compound **2l**

