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Supplementary Figure 1 

 

 

Supplementary Figure 1. Correlation between the automatically and manually generated 

alignment quality scores Qi and Qv of 805 alignments.  The central brain, left and right optic 

lobes were scored separately to best assess the consistency of the two alignment quality scores in 

different brain areas. 
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Supplementary Figure 2 

 

Supplementary Figure 2. Choosing the target brain. 295 images were aligned to an initial target 

brain TR. The mean image of all aligned brains, TA, was chosen as the new target brain. Initially 

all brains had different orientations and sizes, and thus overlapping them did not yield a 

meaningful pattern. Through the global alignment these brains were transformed to have the 

same center of mass, similar orientations and sizes. However, overlapping them did not yet 

produce a bright consensus and sharp border in the average brain. Once the local alignment was 

performed, we obtained an average brain (TA) that was much brighter and less fuzzy than that of 

the globally registered brains. The correlation (= 0.940) between TA and TR was substantially 

higher than that (= 0.467) between the mean of the globally aligned brains and TR, because of the 

good local alignment.  
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Supplementary Figure 3 

 

 

Supplementary Figure 3. Improvement of alignment of 496 brain images by replacing TR using 

TA. 
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Supplementary Figure 4. 

 

 

Supplementary Figure 4.  Comparison of computational and biological methods to determine 

expression pattern overlap of the aligned and co-expressed patterns of a156-GAL4; UAS-mCD8-

GFP and LexAP078; lexAop-CD2-GFP. Yellow arrows, the most overlapping regions. 
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Supplementary Figure 5. 

 

 

Supplementary Figure 5.  Comparison of obligate subsets with parent expression patterns. (a) 

Original GAL4 pattern (magenta) of CG8916_1-3-X-GAL4; UAS-mCD8-GFP. (b-c) Two 

example Flp-Out clones (yellow and green) of this GAL4 line. Red arrows and P1, P2, P3: three 

obligate subset-patterns.  (d) Aligned original pattern and obligate Flp-Out subsets show 

substantial overlap. F: the parent pattern. CC: the regional correlation coefficients of patterns P1, 

P2, and P3 and the parent pattern. All p-values of calculated correlation statistics are less than 10-

5. PS: a location for zoom-in inspection. (e) Cross-sectional view the region around PS in (d) 

shows co-localization of the obligate subset and the parent GAL4 pattern.
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Supplementary Figure 6. 
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Supplementary Figure 6.  Analysis of a 3D neuronal expression pattern atlas of a large 

collection of aligned GAL4 lines. (a) Distribution of GAL4 expressions in different brain 

compartments. The volume percentages of compartments in the target brain are shown in the 

brackets following the compartment names. (b) Compartment-volume normalized distribution of 

GAL4 expressions. The statistic was rescaled to have a range of [0, 1], for better visualization. 

(c) The volume of different compartments in our target brain. In the bracket the number of image 

voxels in a compartment is also displayed.
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Supplementary Note.  

“Comparison of several different aligners on LSM images of Drosophila brains” 

 

In the following note, we compare the performance of a few established 3D image registration 

methods and BrainAligner for laser scanning microscope (LSM) images of Drosophila brains.  

We note that different alignment methods are optimized for different problems or datasets. They 

have their own strength in different applications. This supplementary piece only intends to show 

why some of the existing approaches are not suitable for our application, and how their key ideas 

have been integrated in our system.  

 

We evaluate the available methods for alignment accuracy on our data type, speed, and error 

reporting or quality assessment.  Wherever possible we used our target brain and sample data for 

fair comparison.  Some algorithms required us to down-sample the data, and we indicate below 

where this was done. Based on this comparison, we tried to incorporate the best features of 

previous approaches with our new methods for optimum performance on our data. 

 

Methods considered 

Most image registration methods deal with either 2D images or 3D images. Compared to 3D 

registration methods, 2D methods often optimize in a much more constrained search space. 

BrainAligner is a 3D registration program. Thus most 2D tools are not suitable for a meaningful 

comparison for real applications.  

 

We compare 9 existing automatic methods to BrainAligner. They include 5 widely used 3D 
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image registration approaches for general biomedical images, which are  

1. Demons (Thirion, 1998),  

2. Diffeomorphic Demons (Vercauteren et al 2008),  

3. Free-form deformation (FFD) registration (Rueckert, et al 1999),  

4. Hierarchical local affine registration (Periaswamy and Farid, 2006),  

5. HAMMER (Shen et al 2002),  

and 4 existing automatic registration software packages that can be directly used to register 

Drosophila brain LSM images, which are 

6. CMTK: normalized mutual information (NMI) matching, mean of squared difference 

(MSD) and B-Spline interpolation (Jefferis, 2007; Rohlfing, et al, 2003), 

7. K-FFD: sum of squared difference (SSD) registration using quasi-newton (L-BFGS) 

optimizer to solve FFD (Kroon, 2008),  

8. Q-FFD: SSD registration using gradient descent to solve FFD (Qu and Peng, 2010a),   

9. Principal skeleton warping (Qu and Peng, 2010b). 

 

We also compared the pure manual method to determine the corresponding 3D landmarks for 

registration. 

10. Manual landmark determination.  

 

As a comprehensive study, we also investigated BrainAligner’s ability to align partial brains.  

 

Demons and diffeomorphic demons (methods #1 and #2) 

Demons registration (Thirion, 1998) considers a diffusion process to best match the boundary of 
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a target image to that of a subject image. “demons”, or attractors, are defined in the target image, 

typically on its contour points, to attract the deformation of a subject image for best alignment. 

The Diffeomorphic Demons registration (Vercauteren, et al, 2008) is an “upgraded” version of 

the Demons method and optimizes the algorithm over a diffeomorphic space. Both Demons and 

Diffeomorphic Demons algorithms were tested using their “standard” ITK (www.itk.org) 

implementations. One result is shown in Fig. SN1, from which it becomes clear that the methods 

can align the contours of the subject image, but fail to produce the smoothly warped interior 

region of the image.  

 

Figure SN1. A typical warped image produced by the Diffeomorphic Demons method (this particular result was 

produced with the help of Guorong Wu in Dinggang Shen lab, UNC Chapel Hill). During the alignment the interior 

of the image (e.g. the zoom-in box) was irregularly stretched. 

 

BrainAligner is similar to Demons in that it also uses landmarks established at high curvature 

points, but Demons randomly assigns landmarks, while BrainAligner uses direct landmark 

matching of multiple criteria, consensus of these matching results, and direct thin-plate-spline 

warping. BrainAligner does not have the iterative process in Demons methods, which could be 

time-consuming. Also different from Demons algorithms, the warping of BrainAligner is 

smooth, given the faithful corresponding landmarks produced by BrainAligner’s reliable 
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landmark matching algorithm.  

 

Free-form deformation (FFD) registration (methods #3, #6, #7, and #8) 

FFD registration (Rueckert, et al 1999) uses B-spline for localized warping of a subject image to 

a target. A normalized mutual information score was often used to determine the best 

corresponding feature points defined in a grid in the target image and points from the subject 

image. The overall goal is to maximize the similarity of these two images after warping as well 

as maintaining the best possible smoothness of the warping field. In our implementation and 

testing, this method was able to detect many feature points that have been defined on a regular 

grid of the image. However, typically it was difficult to choose the parameters including the grid 

size, etc. It was quite easy to produce irregular stretching in the warped image, as shown in Fig. 

SN2. BrainAligner also uses mutual information as one of its methods to detect the 

corresponding landmarks. However, BrainAligner aggregates the results from multiple feature 

detectors instead of just one, making the detected landmarks more reliable. Another difference is 

that BrainAligner uses thin-plate-spline (TPS), instead of B-spline, for generating the warping 

field. TPS is unique given the corresponding landmarks. Thus BrainAligner has no difficulty in 

choosing the appropriate parameters for warping-field generation.  
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Figure SN2. A typical warped image produced by the free-form deformation using B-spline registration (based on 

our Q-FFD implementation in Qu and Peng, 2010a). During the alignment the interior of the image (e.g. the zoom-

in box) was often irregularly stretched. It was typically hard to set appropriate parameters. 

 

Recently, the Jefferis group has used an FFD variant, called CMTK (Rohlfing, et al, 2003), to 

register images of Drosophila brains automatically (Jefferis, et al, 2007; Cachero, et al, 2010). 

We bench-tested CMTK using its two settings (NMI, which is “normalized mutual information” 

matching and the default setting of the software, and MSD, which is “mean of squared 

difference” matching). For a comparison, we also tested two other FFD-variants, K-FFD (Kroon, 

2008) and Q-FFD (Qu and Peng, 2010a). Fig. SN3 shows that CMTK and K-FFD produced 

irregular stretching or wrong matching of the brain images at different locations. CMTK (NMI) 

result was meaningful in many locations we checked (e.g. location P2 in Fig. SN3 (b)), but still 

had errors (e.g. location P1 in Fig. SN3 (a)). Q-FFD produced meaningful alignment for this case 

(but it could also produce wrong stretching in different cases such as Fig. SN2). BrainAligner 

successfully aligned the subject image to the target in this test. The wrong stretch of FFD is a 

natural result of the fact that FFD does not have a mechanism to prevent folding (self-

intersection) of the warping field.  
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 (a) 

 (b) 

Figure SN3. Comparison of the aligned images produced by BrainAligner and several FFD variants. (a) and (b) 
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show two typical locations we checked the aligned images. Images tested have 256x256x108 voxels. Compared to 

the target image, BrainAligner was able to produce smoothly aligned subject image. Different FFD methods 

produced different results. The irregular stretching of the warped image is one the main problems of the FFD 

alignments (the other one is their speed, see Fig. SN4). Irregular stretching (also see the zoom-in view of Fig. SN2) 

is due to wrong matching at various locations.  

 

Of note, all the three FFD variants ran very slowly on our data sets. When we tried to align a pair 

of typical LSM image stacks that have 1024x1024xN voxels (N around 160 in raw images; after 

our image-resampling to produce an isotropic voxel XYZ size which is 0.58µm, N is around 

230), FFD methods did not produce meaningful alignments within days on a high-performance 

Linux machine with 16 cores and 48G memory. Even with downsampled images that have 

512x512x108 voxels, the fastest FFD methods in our test still took more than 10 hours to 

produce some result (which were still unsatisfactory) while BrainAligner just took about 4 

minutes to produce the meaningful alignment. Thus for the bench test purpose we tried images 

with 256x256x108 voxels. Fig. SN4 shows a comparison of running speed of all these methods 

and BrainAligner. Q-FFD was the fastest method (in terms of the total CPU time) among the 

three FFD variants. However, it was still about 380 times slower than BrainAligner. This is 

because BrainAligner optimizes a much smaller amount of parameters. The slow speed of FFD 

methods makes it difficult to use them in large-scale high-throughput experiments that need to 

align thousands of large LSM images. 
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Figure SN4. Comparison of the running speed of BrainAligner and several FFD variants. In the target-subject 

image pairs, each image has 256x256x108 voxels. The test-computer had 16 cores (2 Intel Xeon 3.33GHz CPUs, 

each with 8 cores) and 48G memory. The total CPU time (sum of all cores) used by CMTK (NMI) and CMTK 

(MSD) is also shown.  

 

Hierarchical local affine registration (method #4) 

Hierarchical local affine registration (Periaswamy and Farid, 2006) builds on a powerful idea 

that a smooth nonlinear warping can be approximated by a series of local affine and linear 

transformations that are further aggregated in a hierarchical, multi-scale manner. For each affine 

transform, this method estimates all 12 affine transformation parameters plus intensity rescaling 

and offset factors simultaneously. The expectation maximization algorithm is used for 

optimization. However, this method is typically slow, and does not produce a robust estimation 

when there are more than ±30 degrees rotations of the corresponding image patches.  
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HAMMER (method #5) 

Hierarchical attribute matching mechanism for elastic registration, or HAMMER (Shen et al 

2002), is a powerful 3D image registration method that hierarchically searches for matching 

landmarks based on invariant 3D moments features of image patches. It is a good representative 

of a whole class of feature (attribute) vector based registration methods, where features that are 

invariant to rotation, shape rescaling, intensity rescaling, etc. are often extracted. However, 

because 3D searching of the best matching landmarks needs a huge amount of computation, and 

is also prone to noise, HAMMAR registration is typically done for images whose contours have 

been pre-extracted. Due to the large data volume this is impracticable for the LSM images in our 

study. We were unable to use HAMMER to produce promising alignments for our images. 

However, BrainAligner allows using the invariant moments features as one option to search for 

reliable landmarks.  

 

Principal skeleton registration (method #9) 

Principal skeleton registration (Qu, et al 2010) is an automatic method developed in our group. 

This method first detects the major curved skeletons of a shape and then warps the entire shape 

to best align these skeletons as well as some additional control points around these skeletons. 

This method was shown to be effective to deal with articulated image objects, a class of 

problems that were not handled by the above approaches. This method can often provide a very 

good initial alignment, which can be further improved by BrainAligner at an even finer scale. 

 

Manual registration (method #10) 
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One of the widely used methods to register Drosophila brain images is to find the corresponding 

landmarks manually, followed by a warping (typically the thin-plate spline warp). Many tools, 

such as commercially available Amira (Visage Imaging), and free software package V3D (Peng, 

et al, 2010), may be used for this manual process, We experimentally compared BrainAligner to 

the pure manual determination of corresponding landmarks. We used V3D for this manual 

process because it has a powerful tool called Landmark Manager that allows us to browse, jump 

through, and link the 3D views of landmarks very efficiently.  

 

For comparison, we considered two a278-GAL4 images as used in Figure 3. We denote them as 

Sa and Sb. We first used BrainAligner to automatically register them to our standard target brain 

TA, and thus traced the neurite tracts. In TA, we have 172 landmarks. Therefore, next we 

requested four annotators to manually, and independently, determine the 172 corresponding 

landmarks for each of Sa and Sb. Denote these landmark sets as Lij, i ! {a, b} and j ! {1, 2, 3, 4} 

(for four annotators).  

 

We found that even with the efficient manual tool, it is still very time-consuming to determine 

corresponding landmarks manually (Table SN1), which is currently about 4 ~ 6 times slower 

than the automatic landmark detection algorithm in BrainAligner. In addition, there is a 

substantial amount of variation of the landmark locations produced by different annotators 

(Table SN2). For the two images, the average distance between all corresponding landmarks 

produced by all annotators is 14.1±11.4 voxels, or 8.1±6.6 µm.  

 

Table SN1. Manual time (minutes) spent for determining the subject-image landmarks that correspond to the 172 

predefined landmarks in our standard target image. For the same setting, currently BrainAligner typically needs 
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about 25~30 minutes to automatically determines these corresponding landmarks. 

Annotator Image Sa Image Sb 
1 190 min 105 min 
2 180 min 127 min 
3 171 min 141 min 
4 176 min 140 min 

Average 179 min 128 min 
 

Table SN2. Average distances and the respective standard deviations of the corresponding landmarks’ spatial 

locations. For each of the test images Sa and Sb, the pair-wise distance statistics were calculated and shown (since 

each statistic is symmetrical, we only show half of them for simplicity). “vx” means voxels (each has a size 

0.58µm!0.58µm!0.58µm). 

Image Sa Image Sb 
Annotator 2 3 4 Annotator 2 3 4 

1 15.1±14.9vx 17.3±14.9vx 15.1±15.9vx 1 11.9±8.7vx 12.7±8.5vx 14.4±10.5vx 
2 - 14.6±12.6vx 12.9±10.7vx 2 - 13.2±8.3vx 14.1±9.9vx 
3 - - 14.2±13.0vx 3 - - 13.3±9.2vx 

Overall 
ave±std 14.8±13.6vx (8.6±7.9µm) 

Overall 
ave±std 13.3±9.2vx (7.7±5.3µm) 

 

Most importantly, it is extremely difficult for the annotators to visually check the consistency of 

the relative spatial locations of multiple landmarks. As a result, we found all the warped images 

produced via the manual landmarking have obvious irregular stretch or inaccurate match in many 

brain regions (Fig. SN5). In these warped images, accidentally the region around the major 

neurite tract of interest has less irregular stretch. Therefore, we also traced the neurite tracts from 

respective warped images and overlaid them on top of each other for comparison (Fig. SN6). Of 

note, for the same original image (Sa or Sb), in the ideal situation where there were no between-

annotator error, the spatial variation of respectively reconstructed neurite tracts of different 

warped images should be 0. However, in the real manual results, such spatial variation is 

substantial (Fig. SN6 (a) and (b)). For the two warped images of the same annotator, the average 

spatial divergence of these neurite tracts is 7.9 µm, which is about twice of the one produced by 
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BrainAligner (Table SN3).  

 

Based on all these analyses, we conclude that manual alignment has a worse performance than 

BrainAligner in accuracy, reliability, and speed. 

 

 

Figure SN5. Comparison of the aligned images produced by BrainAligner and manual landmarking. (a) (d) Two 

typical brain regions and several locations (yellow arrows) in our standard target image (TA) where we checked the 

alignment accuracy. (b) (e) BrainAligner-aligned regions in the subject image Sa. Green arrows indicate the 

correctly aligned locations. (c) (f) Manually aligned regions in the same subject image (Sa). Magenta and red 

arrows indicate inaccurate match and wrong stretch, respectively.  
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Figure SN6. Comparison of the 3D traced neurite tracts from aligned images produced using both manual 

alignment and BrainAligner. (a) Overlaid tracts extracted from 4 annotators’ manual alignments of the subject 

image Sa. (b) Overlaid tracts extracted from 4 annotators’ manual alignments of the subject image Sb. (c) Neurite 

tracts extracted from manually aligned brains and BrainAligner aligned brains. The results for both brain images Sa 

and Sb are shown.   

 

Table SN3. Spatial divergence of the neurite tracts reconstructed from aligned brain-image pairs (Sa versus Sb) 

produced by each annotator and the BrainAligner.  

Spatial 
divergence 

Annotator BrainAligner 1 2 3 4 
Voxels 11.9 14.0 13.2 15.5 6.7 

Microns 6.9 8.1 7.7 9.0 
3.9 Average 

(microns) 7.9 

 

 

Partial brain registration 

In some applications, partial brain images may be present. We tested BrainAligner’s ability to in 

aligning the left, center, and right portions of a fruit fly brain. For the subject image Sb used in 

the previous sub-section, we randomly cropped the three sub-regions from the original complete 
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image. We ran BrainAligner to produce the local alignments. In the results (Figs. SN 7, 8, and 9) 

we found that despite of the initially un-matched feature points in the global alignments, 

BrainAligner is able to produce reasonable alignment for these partial images.  

 

Of note, in some cases the brains may need further pre-processing to make them more globally 

align-able. One such situation is that the optic lobes may form a flexible articulation to the center 

brain. We have previously proposed an automatic optic lobe segmentation method (Lam, et al, 

2010) to handle such case. Now it is part of our FlyLight project image registration pipeline to 

align tens of thousands of brain images. 
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Figure SN7. Aligning the left portion of a brain to our standard target brain. (a) The initial tri-view of the left-side 

cropped brain image. (b) (c) (d) A check-point at the respective target, global alignment, local alignment brain 

regions. Yellow arrow: location where there is initial mismatch in the global alignment and correct match in the 

local alignment.  
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Figure SN8. Aligning the center portion of a brain to our standard target brain. (a) The initial tri-view of the center 

cropped brain image. (b) (c) (d) A check-point at the respective target, global alignment, local alignment brain 

regions. Yellow arrow: location where there is initial mismatch in the global alignment and correct match in the 

local alignment.  
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Figure SN9. Aligning the right portion of a brain to our standard target brain. (a) The initial tri-view of the right-

side cropped brain image. (b) (c) (d) A check-point at the respective target, global alignment, local alignment brain 

regions. Yellow arrow: location where there is initial mismatch in the global alignment and correct match in the 

local alignment.  

 

Discussion and conclusion 

Compared to BrainAligner, all automatic and manual methods compared above either have not 
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produced satisfactory results for our LSM images quickly, and/or do not provide a way to 

automatically assess the quality of alignment (see the main text), which is critical for large or 

massive scale alignment applications.  

 

However, it should be noted that many components of these methods, such as mutual 

information, invariant moments, etc., have been integrated in BrainAligner. We plan to enhance 

a future version of BrainAligner by using Demons and level set algorithms to refine the 

registration. 
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