A Diverging DOS Strategy Using an Allene-Containing Tryptophan Scaffold and a Library Design that Maximizes Biologically Relevant Chemical Space While Minimizing the Number of Compounds

Thomas O. Painter,¹ Lirong Wang,² Supriyo Majumder,¹ Xiang-Qun Xie^{2*}

and Kay M. Brummond¹*

¹Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260

²School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15260

Supporting Information

General Methods	S1
Synthetic Procedures	S1-S20
Spectral Data	\$21-\$50
Construction of Virtual Combinatorial Library	
Subset of Fifty-Three Compounds	

Experimental

General Methods

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. All commercially available compounds were purchased and used as received, unless otherwise specified. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were purified by passing through alumina. Dichloromethane (CH₂Cl₂) was passed through alumina and Q5. Toluene and dichloroethane were freshly distilled from CaH₂ prior to use. Dimethyl formamide was distilled prior to use. Purification of the compounds by flash chromatography was performed by using silica gel (32-63 µm particle size, 60 Å pore size). TLC analyses were performed on EM Science Silica Gel 60 F₂₅₄ plates (250 µm thickness). All ¹H NMR and ¹³C NMR spectra were obtained on 300, 500, or 700 MHz Bruker Biospin NMR spectrometers with Topspin NMR software. Chemical shifts (δ) are reported relative to residual solvent resonances as indicated. All NMR spectra were obtained at room temperature unless otherwise specified. IR spectra were obtained using a Nicolet Avatar E.S.P. 360 FT-IR. EI mass spectrometry was performed on a Micromass Autospec high resolution mass spectrometer. The glassware was oven-dried or flamedried.

tert-Butyl 3-(2-(methoxycarbonyl)-2-(N-(3-phenylprop-2-yn-1-yl)benzamido)penta-**3.4-dien-1-vl)-1***H***-indole-1-carboxylate (12a):** To a mixture of sodium hydride (87 mg of a 60% dispersion in mineral oil, 2.17 mmol) in dry DMF (6.0 mL) at 0 °C, was added a solution of 11 (500 mg, 1.08 mmol) in DMF (4.0 mL) via syringe and the mixture stirred for 30 min. 1-Bromo-3-phenyl-2-propyne (582 mg, 3.00 mmol) was added dropwise via syringe. The reaction mixture was stirred for 2 h at room temperature, until no starting material was evident by TLC. The reaction mixture was quenched with sat. NH₄Cl solution. The layers were separated and the aqueous layer extracted into ether (3x). The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was chromatographed on silica gel (30% ethyl acetate/hexanes) to afford 12a (245 mg, 45%) as an amorphous, pale yellow solid. ($R_f = 0.5$, 40% ethyl acetate/hexanes). M.p.: 85-86 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.02 (d, J = 7.5 Hz, 1H), 7.65 – 7.69 (m, 3H), 7.52 (s, 1H), 7.41 - 7.47 (m, 3H), 7.20 - 7.32 (m, 5H), 7.12 (d, J = 6.6 Hz, 2H), 6.02 (t, J = 6.6Hz, 1H), 5.04 - 5.16 (m, 2H), 4.18 (A of an ABq, J = 14.7 Hz, 1H), 4.03 (s, 2H), 3.80 (s, 3H), 3.57 (B of an ABq, J = 14.7 Hz, 1H), 1.60 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 208.1, 172.7, 171.4, 149.5, 135.8, 135.1, 131.6, 131.4, 130.5, 128.5, 128.4, 128.3, 127.5, 125.8, 124.3, 122.6, 122.2, 119.6, 115.2, 114.8, 91.3, 85.9, 84.5, 83.4, 79.5, 68.9, 52.5, 40.1, 29.03, 28.2. IR (thin film) v 1740, 1642, 1446, 1368, 1258, 1164, 1090 cm⁻¹. MS [m/z + Na] (%) 597 (100), 575 (23), 527 (5). HRMS calculated for C₃₆H₃₄N₂O₅Na: 597.2365; found: 597.2354.

Tert-butyl-3-(2-(methoxycarbonyl)-2-(N-(but-2-ynyl)benzamido)penta-3,4-dienyl)-**1H-indole-1-carboxylate**) **12b**{1, 0, 37}: To a mixture of sodium hydride (108 mg of a 60% dispersion in mineral oil, 2.70 mmol) in DMF (6.8 mL), was added a solution of 11 (623 mg, 1.35 mmol) in DMF (4.5 mL) via cannula and the mixture stirred for 5 min. 1-Bromo-2-butyne (0.24 mL, 2.70 mmol) was added via syringe. After 2.5 h, sodium hydride (54 mg of a 60% dispersion in mineral oil, 1.35 mmol) was added to the mixture, in one portion, followed by 1-bromo-2-butyne (0.12 mL, 1.35 mmol) via syringe. The reaction mixture was stirred for another 30 min, until no starting material was evident by TLC. The reaction mixture was poured into water and diluted with ethyl acetate. The layers were separated and the aqueous layer extracted into ethyl acetate (4x). The combined organic layers were washed with water (1x) and brine (1x), dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel (10% to 30% ethyl acetate/hexanes) to afford $12b\{1, 0, 37\}$ (500 mg, 72%) as an amorphous, light brown solid. ($R_f = 0.67$, 30% ethyl acetate/hexanes). M.p.: 66-67 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.14 (d, J = 7.2 Hz, 1H), 7.64 – 7.58 (m, 3H), 7.50 (s, 1H), 7.45 - 7.35 (m, 3H), 7.32 - 7.19 (m, 2H), 5.97 (t, J = 6.6 Hz, 1H), 5.11 - 4.98 (m, 2H), 4.14 (A of an ABq, J = 14.4 Hz, 1H), 3.78 – 3.76 (m, 5H), 3.51 (B of an ABq, J = 14.4 Hz, 1H), 1.66 (s, 9H), 1.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 207.6, 172.3, 171.3, 149.6, 135.8, 135.2, 131.7, 130.3, 128.2, 127.4, 125.8, 124.2, 122.6, 119.8, 115.1, 115.0, 91.2, 83.5, 80.4, 79.1, 75.8, 69.1, 52.3, 39.7, 29.1, 28.2, 3.1; IR (thin film) v 3058, 2980, 2949, 2228, 1958, 1735, 1640, 1453, 1369, 1259, 1157, 1085, 856, 742 cm⁻¹; MS *m/z* (%) 513 (11), 512 (36), 412 (49), 411 (25), 283 (67), 174 (78), 105 (100); EI-HRMS calcd for $C_{31}H_{32}N_2O_5 m/z [M]^+ 512.2311$; found 512.2307.

General procedure for Mo(CO)₆ mediated Pauson-Khand reaction: An oven dried 10 mL test tube with an attached septa was loaded with $Mo(CO)_6$ (1.5 eq). The test tube was evacuated with a needle under vacuum and filled with Argon (3x). A solution of alleneyne (1 eq) in dry toluene (1 ml) was added by syringe followed by the addition of dry DMSO (10 eq). The test tube was placed in a pre heated (90 °C) oil bath and the progress of the reaction was monitored by TLC. After completion the solution was passed through a pipette containing silica. The filtrate was concentrated and the crude material was purified by column chromatography using 20-40% ethyl acetate/hexanes.

tert-butyl-3-((2-benzoyl-1-(methoxycarbonyl)-6-methylene-5-oxo-4-phenyl-1,2,3,5,6,6a-hexahydrocyclopenta[c]pyrrol-1-yl)methyl)-1H-indole-1-carboxylate (16a): The general procedure for the Mo(CO)₆-mediated Pauson-Khand reaction was followed. The reaction was carried out with allene-yne 12a (62.4 mg, 0.108 mmol), Mo(CO)₆ (39.6 mg, 0.15 mmol), DMSO (71 μ L) and toluene (1 mL). The reaction was heated to 90 °C for 2 h. The crude product was purified by column chromatography using 20-40% ethyl acetate/hexanes. Compound 16a was obtained in 65% Yield (39 mg) as a 3:1 mixture of two diastereomers. ($R_f = 0.4$, 40% ethyl acetate/hexanes). Major diastereomer was isolated as a pale yellow solid (28mg, 43%): M.p. 140-141 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.25 (d, J = 8.4 Hz, 1H), 7.61-7.63 (m, 2H), 7.49-7.52 (m, 3H), 7.38-7.45 (m, 2H), 7.31-7.35 (m, 5H), 7.23 (t, J = 7.2 Hz, 2H), 6.38 (d, J = 1.8 Hz, 1H), 5.85 (d, J = 1.2 Hz, 1H), 4.48 (A of an ABq, J = 15.3 Hz, 1H), 4.32 (d, J = 15.3 Hz, 2H), 4.14 (s, 1H), 3.70 (B of an ABq, J = 15.3 Hz, 1H), 3.62 (s, 3H), 1.68 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 193.4, 171.1, 170.2, 164.1, 149.5, 141.1, 136.8, 135.4, 135.3, 131.6, 131.2, 130.3, 128.8, 128.6 (2C), 128.3, 127.7, 125.7, 124.8, 123.1, 118.9, 118.6, 115.4, 114.8, 84.0, 70.7, 52.4, 51.8, 50.3, 28.2, 27.4. IR (thin film) v 1732, 1703, 1638, 1446, 1372, 1258, 1155 cm⁻¹. MS [m/z + Na] (%) 625 (100), 603 (19), 597 (37), 569 (18). HRMS calculated for C₃₇H₃₄N₂O₆Na: 625.2315; found: 625.2361.

tert-butyl-3-((2-benzoyl-1-(methoxycarbonyl)-4-methyl-6-methylene-5-oxo-1,2,3,5,6,6a-hexahydrocyclopenta[c]pyrrol-1-yl)methyl)-1H-indole-1-carboxylate (16b): The general procedure for the $Mo(CO)_6$ -mediated Pauson-Khand reaction was followed. The reaction was carried out with allene-yne 12b(51.2 mg, 0.1 mmol), $Mo(CO)_6$ (39.6 mg, 0.15 mmol), DMSO(71 µL) and toluene (1 mL). The reaction was heated to 90 °C for 2 h. The crude product was purified by column chromatography using 30% ethyl acetate/hexanes. Compound 16b was obtained in 74% Yield (40 mg) as a 4:1 mixture of two diastereomers. ($R_f = 0.4$, 40% ethyl acetate/hexanes). Major diastereomer was isolated as a white solid (27.1 mg, 50%): M.p. 189-190 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.22 (d, J = 7.5 Hz, 1H), 7.42-7.62 (m, 7H), 7.36 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 6.24 (d, J = 2.1 Hz, 1H), 5.72 (s, 1H), 4.24-4.31 (m, 2H), 4.13-4.19 (m, 1H), 3.96 (bs, 1H), 3.61-3.66 (m, 1H), 3.63 (s, 3H), 1.68 (s, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 195.9, 171.0, 170.2, 162.8, 149.5, 140.6, 135.8, 135.2, 134.6, 131.6, 131.1, 128.6, 127.6, 125.6, 124.7, 123.0, 118.9, 117.5, 115.4, 114.8, 83.9, 71.2, 52.4, 50.7, 28.2, 27.6, 9.0. IR (thin film) v 1736, 1634, 1450, 1376, 1254, 1164 cm⁻¹. MS [m/z + Na] (%) 563 (100), 527 (5). HRMS calculated for $C_{32}H_{32}N_2O_6Na$: 563.2158; found: 563.2191.

tert-butyl-3-((2-benzovl-1-(methoxycarbonyl)-6-methylene-5-oxo-1,2,3,5,6,6ahexahydrocyclopenta[c]pyrrol-1-yl)methyl)-1*H*-indole-1-carboxylate (16c): The general procedure for the Mo(CO)₆-mediated Pauson-Khand reaction was followed. The reaction was carried out with allene-yne 12c (49.8 mg, 0.1 mmol), Mo(CO)₆ (39.6 mg, 0.15 mmol), DMSO (71 µL) and toluene (1 mL). The reaction was heated to 90 °C for 2 h. The crude product was purified by column chromatography using 20-30% ethyl acetate/hexanes. Compound 16c was obtained in 65% Yield (34.2 mg) as a 3:1 mixture of two diastereomers. Major diastereomer was isolated as a pale yellow solid (22 mg, 42%). $(R_f = 0.4, 40\% \text{ ethyl acetate/hexanes})$. M.p. 110-111 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.22 (d, J = 8.1 Hz, 1H), 7.57-7.59 (m, 2H), 7.43-7.54 (m, 4H), 7.34-7.40 (m, 2H), 7.22 (t, J = 7.5 Hz, 1H), 6.24 (d, J = 2.1 Hz, 1H), 6.07 (s, 1H), 5.74 (s, 1H), 4.25-4.31 (m, 2H), 6.07 (s, 1H), 5.74 (4.13-4.18 (m, 1H), 4.05 (s, 1H), 3.62-3.68 (m, 1H), 3.66 (s, 3H), 1.67 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 195.3, 171.1, 170.3, 170.1, 149.5, 140.9, 135.6, 135.3, 131.5, 131.1, 128.6, 127.4, 126.2, 125.6, 124.8, 123.1, 118.8, 117.9, 115.4, 114.6, 84.0, 71.2, 52.4, 51.7, 28.2, 27.5. IR (thin film) v 1740, 1711, 1642, 1454, 1372, 1254, 1160 cm⁻¹. MS [m/z + Na] (%) 549 (100). HRMS calculated for C₃₁H₃₀N₂O₆Na: 549.2002; found: 549.2020.

General procedure for $[Rh(CO)_2Cl]_2$ catalyzed Pauson-Khand reaction: An oven dried 10 mL test tube with an attached rubber septa was loaded with $[Rh(CO)_2Cl]_2$ (5 mol%). The test tube was evacuated with a needle under vacuum and filled with CO (3x). A solution of allene-yne (1 eq) in DCE (1 ml) was added by syringe. The test tube was placed in a pre heated (50 °C) oil bath and the progress of the reaction was monitored by TLC. After completion of the reaction the solution was concentrated and the crude material was purified by column chromatography using 30-40% ethyl acetate/hexanes.

tert-butyl-3-((2-benzoyl-3-(methoxycarbonyl)-6-oxo-7-phenyl-2,3,5,6-tetrahydro-1*H*cyclopenta[c]pyridin-3-yl)methyl)-1*H*-indole-1-carboxylate (14a): The general procedure for the [Rh(CO)₂Cl]₂ catalyzed Pauson-Khand reaction was followed. The

reaction was carried out with allene-yne **12a** (57.4 mg, 0.1 mmol), $[Rh(CO)_2Cl]_2$ (2.0 mg, 0.005 mmol, 5 mol%), and DCE (1 mL). The reaction was heated to 60 °C for 2 h. The crude product was purified by column chromatography using 30% ethyl acetate/hexanes to afford the product **14a** (50.6 mg, 84%) as a pale yellow solid. ($R_f = 0.4$, 40% ethyl acetate/hexanes). M.p. 138-139 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.12 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.41 (s, 1H), 7.38 – 7.27 (m, 5H), 7.19 – 7.24 (m, 5H), 6.96 – 6.99 (m, 2H), 5.99 (s, 1H), 4.60 (A of an ABq, J = 18.3 Hz, 1H), 4.39 (A of an ABq, J = 14.7 Hz, 1H), 3.85 (s, 3H), 3.51 (B of an ABq, J = 14.7 Hz, 1H), 3.48 (B of an ABq, J = 18.3 Hz, 1H), 1.61 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 201.1, 171.9, 171.4, 154.6, 149.4, 137.2, 135.4, 134.7, 130.9, 130.0, 129.6, 128.7 (2C), 128.3 (2C), 126.5 (2C), 125.0, 123.2, 122.8, 119.5, 115.3, 115.0, 83.9, 66.0, 53.1, 45.2, 38.2, 29.5, 28.1. IR (thin film) v 1736, 1711, 1642, 1450, 1368, 1262, 1155 cm⁻¹. MS [m/z + Na] (%) 625 (100), 603 (13), 570 (33). HRMS calculated for C₃₇H₃₄N₂O₆Na: 625.2315; found: 625.2261.

tert-butyl-3-((2-benzoyl-3-(methoxycarbonyl)-7-methyl-6-oxo-2,3,5,6-tetrahydro-1Hcyclopenta[c]pyridin-3-yl)methyl)-1*H*-indole-1-carboxylate (14b): The general procedure for the [Rh(CO)₂Cl]₂ catalyzed Pauson-Khand reaction was followed. The reaction was carried out with allene-yne 12b (204 mg, 0.398 mmol), [Rh(CO)₂Cl]₂ (7.8 mg, 0.02 mmol, 5 mol%), and DCE (4 mL). The reaction was heated to 50 °C for 1 h. The crude product was purified by column chromatography using 40% ethyl acetate/hexanes to afford $14b\{1, 0, 37\}$ (189 mg, 88%) as an amorphous, brown solid. $(R_f = 0.09, 30\% \text{ ethyl acetate/hexanes}); M.p. 100-101 °C. ¹H NMR (CDCl₃, 300 MHz) \delta$ 8.12 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.42 – 7.27 (m, 5H), 7.24 – 7.19 (m, 3H), 5.81 (s, 1H), 4.35 (A of an ABq, J = 14.7 Hz, 1H), 4.33 (A of an ABq, J = 18.0 Hz, 1H), 3.82 (s, 3H), 3.43 (B of an ABq, J = 14.7 Hz, 1H), 3.21 (B of an ABq, J = 18.0 Hz, 1H), 3.02 (A of an ABq, J = 20.1 Hz, 1H), 2.91 (B of an ABq, J = 20.7 Hz, 1H), 1.62 (s. 9H), 1.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 202.8, 171.9, 171.5, 154.7, 149.3, 136.2, 135.6, 135.1, 134.4, 130.8, 130.0, 128.6, 126.4, 124.8, 124.6, 122.7, 121.0, 119.6, 115.1, 115.1, 83.8, 65.8, 53.0, 44.7, 37.3, 29.4, 28.1, 7.9; IR (thin film) v 3056, 2980, 2950, 1736, 1707, 1645, 1453, 1372, 1258, 1157, 1073, 736 cm⁻¹; MS m/z (%) 540 (69), 525 (30), 510 (19), 311 (46), 230 (35); EI-HRMS calcd for $C_{32}H_{32}N_2O_6 m/z$ [M⁺] 540.2260; found 540.2258.

* *tert*-butyl-3-((2-benzoyl-3-(methoxycarbonyl)-6-oxo-2,3,5,6-tetrahydro-1*H*-

cvclopenta[c]pvridin-3-vl)methvl)-1*H*-indole-1-carboxvlate (14c): The general procedure for the [Rh(CO)₂Cl]₂ catalyzed Pauson-Khand reaction was followed. The reaction was carried out with allene-vne 12c (24 mg, 0.048 mmol), [Rh(CO)₂Cl]₂ (1.0 mg, 0.0025 mmol, 5.36 mol%), and DCE (0.5 mL). The reaction was heated to 50 °C for 2.5 h. The crude product was purified by column chromatography using 30% ethyl acetate/hexanes to afford the product 14c (17.7 mg, 70%) as viscous oil. ($R_f = 0.35, 40\%$ ethyl acetate/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 8.13 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.29 - 7.46 (m, 5H), 7.18 - 7.25 (m, 3H), 5.95 (d, J = 1.2 Hz, 1H), 5.69(d, J = 1.5 Hz, 1H), 4.40 (A of an ABq, J = 18.3 Hz, 1H), 4.36 (A of an ABq, J = 14.7Hz, 1H), 3.84 (s, 3H), 3.45 (B of an ABq, J = 15.6 Hz, 1H), 3.34 (B of an ABq, J = 18.3Hz, 1H), 3.05 (A of an ABq, J = 21.0 Hz, 1H), 2.94 (B of an ABq, J = 21.0 Hz, 1H), 1.64 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 171.8, 171.2, 161.0, 149.3, 135.4, 135.3, 135.1, 130.7, 130.0, 128.7, 127.5, 126.4, 124.8, 124.7, 123.8, 122.7, 119.5, 115.2, 114.8, 83.9, 78.1 65.7, 53.1, 45.5, 37.8, 29.3, 28.1. IR (thin film) v 1728, 1638, 1458, 1372, 1262, 1217, 1160 cm⁻¹. MS [m/z + Na] (%) 549 (100). HRMS calculated for C₃₁H₃₀N₂O₆Na: 549.2002; found: 549.2029.

Heterocyclic bicyclo[4.3.0]nona-2,7-dien-1-one (15){1, 0, 37}: A solution of 14b{1, 0, 37} (239 mg, 0.44 mol) in DMSO (4.4 mL) in a 10 mL round bottomed flask was placed into a silicone oil bath preheated to 180 °C for 15 min until no starting material was evident by TLC. The reaction mixture was cooled to room temperature and partitioned between water and ether. The layers were separated and the aqueous layer extracted with ether (2x). The combined organic layers were washed with water (3x) and brine (1x), dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel (50% to 60% ethyl acetate/hexanes) to afford $15\{1, 0, 37\}$ (152 mg, 78%) as an amorphous, brown solid. ($R_f = 0.38$, 60% ethyl acetate/hexanes). M.p. 175-176 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.21 (s, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.41 - 7.32 (m, 4H), 7.23 - 7.15 (m, 3H), 7.10 (dt, J = 6.9, 1.2 Hz, 1H), 6.95 (d, J = 2.4Hz, 1H), 5.83 (s, 1H), 4.42 (A of an ABq, J = 14.7 Hz, 1H), 4.30 (A of an ABq, J = 17.7Hz, 1H), 3.81 (s, 3H), 3.49 (B of an ABq, J = 14.7 Hz, 1H), 3.04 (A of and ABq, J = 21.6Hz, 1H), 2.95 (B of an ABq, J = 17.7 Hz, 1H), 2.95 (B of an ABq, J = 21.6 Hz, 1H), 1.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 203.3, 171.9, 171.7, 155.2, 135.9, 135.8, 135.6, 134.1, 129.9, 128.6, 128.0, 126.5, 123.6, 122.0, 121.5, 119.6, 119.2, 111.2, 109.8, 66.4, 52.8, 44.5, 37.4, 29.6, 7.7; IR (thin film) v 3351, 3056, 2947, 2853, 1735, 1626, 1405, 1243, 1057, 740 cm⁻¹; MS m/z (%) 412 (32), 282 (42), 130 (74), 105 (100); EI-HRMS calcd for $C_{26}H_{24}N_2O_3 m/z$ [M⁺] 412.1787; found 412.1780.

General procedure for microwave assisted thermal [2 + 2] cycloaddition: A solution of allene-yne in dry NMP or DMF was heated under microwave irradiation in a Biotage Initiator microwave reactor at 225 °C for 7-10 min (Absorption level: very high; vial type: 2 – 5 mL; pre-stirring: 0; initial power: 0; approximate ramp time: 4 min). No starting material was evident by TLC after the described reaction time. The mixture was partitioned between ether and water and the layers were separated. The aqueous layer was extracted with ether (3x) and the combined organic layers were washed with water (3x) and brine (1x), dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by column chromatography using ethyl acetate/hexanes.

methyl-4-((1*H***-indol-3-yl)methyl)-3-benzoyl-8-phenyl-3-azabicyclo[4.2.0]octa-1(8),5diene-4-carboxylate (17a):** The general procedure for the microwave assisted thermal [2 + 2] cycloaddition was followed. The reaction was carried out with allene-yne **12a** (229.6 mg, 0.4 mmol) in dry NMP (4 mL) and heated to 225 °C for 10 min. The crude product was purified by column chromatography using 20-40% ethyl acetate/hexanes to afford the product **17a** (85 mg, 45%) as a yellow solid. ($R_f = 0.2$, 40% ethyl acetate/hexanes). M.p. 128-130 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.09 (bs, 1H), 7.76 (d, J = 6.9 Hz, 1H), 7.29 – 7.35 (m, 5H), 7.12 – 7.22 (m, 6H), 7.01 (d, J = 2.1 Hz, 1H), 6.89 (d, J = 7.5 Hz, 2H), 5.36 (s, 1H), 4.47 (A of an ABq, J = 14.7 Hz, 1H), 4.16 (d, J = 17.4 Hz, 1H), 3.82 (s, 3H), 3.42 (B of an ABq, J = 14.7 Hz, 1H), 3.34-3.39 (m, 2H), 2.89 (td, J = 17.1 and 3.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 172.2, 137.5, 136.8, 135.8, 135.7, 133.7, 133.5, 129.3, 128.6, 128.55, 128.50, 127.9, 126.3, 126.2, 123.3, 121.9, 119.8, 119.6, 110.9, 110.6, 109.7, 66.4, 52.7, 44.7, 35.6, 30.0. IR (thin film) v 1719, 1638, 1245 cm⁻¹. MS [*m*/z + Na] (%) 497 (95), 443 (20), 365 (38). HRMS calculated for C₃₁H₂₆N₂O₃Na: 497.1841; found: 497.1842.

methyl-4-((1*H***-indol-3-yl)methyl)-3-benzoyl-8-methyl-3-azabicyclo[4.2.0]octa-1(8),5diene-4-carboxylate (17b):** The general procedure for the microwave assisted thermal [2 + 2] cycloaddition was followed. The reaction was carried out with allene-yne **12b** (503 mg, 0.98 mmol) in freshly distilled DMF (9.8 mL) and heated to 225 °C for 7 min. The crude product was purified by column chromatography using 30% ethyl acetate/hexanes to afford the product **17b** (203 mg, 50%) as an amorphous brown solid. ($R_f = 0.13$, 30% ethyl acetate/hexanes). M.p. 91-92°C. ¹H NMR (CDCl₃, 300 MHz) δ 8.46 (bs, 1H), 7.72 (d, *J* = 7.5 Hz, 1H), 7.34 – 7.26 (m, 4H), 7.20 – 7.07 (m, 4H), 7.01 (d, *J* = 1.2 Hz, 1H), 5.10 (s, 1H), 4.41 (A of an ABq, *J* = 14.7 Hz, 1H), 3.82 (s, 3H), 3.80 – 3.74 (m, 4H), 3.40 (B of an ABq, *J* = 14.7 Hz, 1H), 2.99 (m, 2H), 2.65 – 2.59 (m, 1H), 1.59 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 172.1, 138.9, 137.0, 136.4, 135.8, 134.4, 129.0, 128.6, 128.3, 126.2, 123.5, 121.7, 119.7, 119.3, 110.9, 110.5, 105.9, 66.1, 52.5, 43.7, 39.1, 30.0, 15.1; IR (thin film) v 3351, 3056, 2947, 2853, 1735, 1626, 1405, 1243, 1057, 740 cm⁻¹; MS *m/z* (%) 412 (32), 282 (42), 130 (74), 105 (100) ; EI-HRMS calcd for C₂₆H₂₄N₂O₃ *m/z* [M⁺] 412.1787; found 412.1780.

Prop-2-ynyl 2-(benzamido)-3-(1H-indol-3-yl)propanoate (9): To a solution of propargyl alcohol (1.73 mL, 29.7 mmol), dicyclohexylcarbodiimide (5.10 g, 24.7 mmol), and 4-(dimethylamino)pyridine (152 mg, 1.24 mmol) in CH₂Cl₂ (150 mL) was added a solution of benzoyl protected 8 (7.62 g, 24.7 mmol) in THF : CH₂Cl₂ (1 : 1) (82 mL) via cannula over 5-10 min. The resultant suspension was stirred for 16 h overnight until no starting material was evident by TLC. The mixture was filtered through a pad of silica gel (150 mL fritted funnel approximately half full) eluting with 250 mL of a 50% ethyl acetate/hexanes solution and the filtrate concentrated under vacuum. The residue was dissolved in THF (40 mL) and to this solution was added propargyl alcohol (0.87 mL, 12.4 mmol) and triethylamine (7 mL, 50.4 mmol). The solution was stirred for 1 h, when full conversion to the product from the intermediate oxazolidinone was observed by TLC. The reaction mixture was filtered through celite (150 mL fritted funnel approximately half full), eluting with ethyl acetate, and the filtrate concentrated under vacuum. The crude residue was chromatographed on silica gel (30% to 50% ethyl acetate/hexanes) to afford 9 (6.82 g, 84%) as an amorphous, brown solid. ($R_f = 0.15$, 30% ethyl acetate/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 8.49 (bs, 1H), 7.68 (d, J = 7.2 Hz, 2H), 7.59 (d, J = 7.8 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.39 – 7.34 (m, 3H), 7.20 (dt, J = 6.9, 0.9Hz, 1H), 7.09 (dt, J = 6.9, 0.9 Hz, 1H), 7.05 (d, J = 2.9 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 5.21 (dt, J = 7.8, 5.1 Hz, 1H), 4.77 (A of an ABq, d, J = 15.6, 2.4 Hz, 1H), 4.67 (B of an ABq, d, J = 15.6, 2.4 Hz, 1H), 3.49 (d, J = 5.1 Hz, 2H), 2.54 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 167.0, 136.1, 133.6, 131.7, 128.5, 127.6, 127.0, 123.1, 122.2, 119.7, 118.5, 111.4, 109.5, 77.1, 75.5, 53.5, 52.8, 27.4; IR (thin film) v 3412, 3293, 3057, 2932, 2129, 1745, 1648, 1521, 1182, 743 cm⁻¹; MS *m/z* (%) 347 (15), 346 (64), 325 (13), 225 (29), 130 (100); EI-HRMS calcd for C₂₁H₁₈N₂O₃ *m/z* [M⁺] 346.1317; found 346.1391.

Methyl 2-((1H-indol-3-yl)methyl)-2-(benzamido)penta-3,4-dienoate (18): To a solution of propargyl ester 9 (6.33 g, 18.3 mmol) in freshly distilled CH₃CN (91 mL) was added triethylamine (10.7 mL, 76.7 mmol), carbon tetrachloride (6.2 mL, 64.0 mmol), and triphenylphosphine (14.7 g, 56.6 mmol). The reaction mixture was stirred for 20 h until no starting material was evident by TLC. The mixture was poured into a solution of ether : hexanes (350 mL : 100 mL) and the yellow/white solid precipitate was removed by vacuum filtration through celite (150 mL fritted funnel approximately half full). The filtrate was concentrated under vacuum and the residue dissolved in a solution of methanol (150 mL) and triethylamine (15 mL). The reaction mixture was stirred for another 20 h when TLC showed full conversion to the product and an impurity spot ($R_f =$ 0.35, 30% ethyl acetate/hexanes). The solvent was removed under vacuum and the residue chromatographed on silica gel (25% ethyl acetate/ hexanes) to afford pure 18(664 mg, $\sim 10\%$), and **18** contaminated with triphenylphosphine oxide (> 8 g, mass ratio $\sim 29\%$ based upon isolated product. See below). The contaminated material was dissolved in ether and stored in a freezer (-20 °C) overnight. The mixture was filtered through celite (150 mL fritted funnel approximately half full) to remove precipitated triphenylphosphine oxide and the filtrate concentrated under vacuum. The residue was chromatographed on silica gel (40% to 50% ether/pentane) to afford pure 18 (2.35 g, 36%) as an amorphous, off-white solid. [Performing the reaction on 1.25 g of 9 affords 673 mg (52%) of 18 and the second triphenylphosphine oxide precipitation step was not necessary.] ($R_f = 0.31$, 30% ethyl acetate/hexanes). M.p. 67-68 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.49 (bs, 1H), 7.66 (d, J = 7.8 Hz, 2H), 7.62 (d, J = 7.8 Hz, 2H), 7.49 – 7.44 (m 1H), 7.37 (d, J = 7.8Hz, 2H), 7.32 (d, J = 7.8 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 3.0 Hz, 1H), 6.96 (s, 1H), 5.79 (t, J = 6.6 Hz, 1H), 4.95 - 4.92 (m, 1H), 4.88 - 4.92 (m, 100 H), 4.88 - 4.92 (m, 100 H)4.82 (m, 1H), 3.90 (A of an ABq, J = 14.7 Hz, 1H), 3.76 (s, 3H), 3.70 (B of an ABq, J =14.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 207.1, 172.5, 166.6, 135.8, 134.5, 131.5, 128.5, 127.9, 126.9, 124.0, 121.8, 119.5, 118.8, 111.2, 109.2, 93.2, 79.7, 62.9, 52.9, 31.0; IR (thin film) v 3404, 3325, 3057, 2950, 1958, 1736, 1655, 1515, 1484, 1248, 1099, 739 cm⁻¹; MS *m/z* (%) 361 (12), 360 (35), 255 (25), 240 (62), 239 (98), 105 (100); EI-HRMS calcd for $C_{22}H_{20}N_2O_3 m/z$ [M⁺] 360.1474; found 360.1471.

Methyl 2-((1*H*-indol-3-yl)methyl)-2-aminopenta-3,4-dienoate (19): To a solution of 18 (1.00 g, 2.77 mmol) in CH_2Cl_2 (2.8 mL) was added Et_3OBF_4 (9.90 mL of a 1.4 M

solution in CH₂Cl₂, 13.9 mmol).¹ The mixture was heated to reflux (cold finger) for 5 h when no starting material was evident by TLC (baseline iminium salt intermediate and impurity $R_f = 0.78$, 60% ethyl acetate/hexanes). The reaction mixture was cooled to room temperature then concentrated under vacuum. The residue was dissolved in THF (2.5 mL) and 5% aqueous acetic acid (2.5 mL) and stirred open to the atmosphere at room temperature for 16 h. The mixture was quenched with sat'd K₂CO₃ and stirred for 5-10 min then diluted with ethyl acetate and water. An emulsion forms that dissipates over ~ 5 min. The layers were separated and the aqueous layer was extracted with ethyl acetate (3x) and the combined organic layers were washed with brine (1x), dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel (20% to 40% to 80% ethyl acetate/hexanes) to afford 19 (421 mg, 59%) as a viscous, red/brown oil. Yields consistently ranged from 36% to 46% when using less than 1 g of starting benzamide 18. ($R_f = 0.08$, 60% ethyl acetate/hexanes); ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 8.38 \text{ (bs, 1H)}, 7.66 \text{ (d, } J = 7.5 \text{ Hz}, 1\text{H}), 7.34 \text{ (d, } J = 7.5 \text{ Hz}, 1\text{H}),$ 7.18 (dt, J = 7.5, 1.2 Hz, 1H), 7.12 (dt, J = 7.5, 1.2 Hz, 1H), 7.06 (d, J = 2.1 Hz, 1H), 5.62 (t, J = 6.6 Hz, 1H), 4.96 (d, J = 6.6 Hz, 2H), 3.69 (s, 3H), 3.46 (A of an ABq, J = 14.1 Hz)Hz, 1H), 3.14 (B of an ABq, J = 14.1 Hz, 1H), 1.92 (bs, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 206.5, 175.5, 135.9, 128.0, 123.6, 122.0, 119.5, 119.2, 111.1, 110.0, 96.4, 79.4, 61.1, 52.4, 35.7; IR (thin film) v 3365, 3176, 3057, 2950, 2872, 1956, 1732, 1242, 1203, 859, 744 cm⁻¹; MS *m/z* (%) 256 (74), 239 (37), 196 (16), 130 (100); EI-HRMS calcd for $C_{15}H_{16}N_2O_2 m/z$ [M⁺] 256.1212; found 256.1215.

Allenic Tetrahydro-β-Carbolines 20a-c.

General Procedure A: Preparation of **20b**{1, 5, 0}.

¹ Meerwein's reagent (Et₃OBF₄) was prepared using a known procedure (Meerwein, H; Anderson, B. C.; Vogl, O. H.; McKusick, B. C. *Organic Syntheses* **1966**, *46*, 113). The solvent was removed from the salt under vacuum and the flask purged with argon and diluted to 1.4 M in CH₂Cl₂. The solution could be stored in a septum-sealed flask in a desiccator in the freezer (-20 °C) for 6-8 weeks without observable differences in reactivity. The flask was purged with argon between uses.

Methvl 1-(4-fluorophenyl)-2,3,4,9-tetrahydro-3-(propa-1,2-dienyl)-1H-pyrido[3,4**b**[indole-3-carboxylate $20b\{1, 5, 0\}$: To a solution of 19 (204 mg, 0.79 mmol) in CH_2Cl_2 (7.9 mL, use MeOH for formation of **20a**{1, 2, 0}, see below) was added and activated² powdered 4 Å molecular sieves (373 mg, 470 mg/mmol). p-fluorobenzaldehyde {85} (0.09 mL, 0.83 mmol), and trifluoroacetic acid (0.06 mL, 0.79 mmol). The reaction mixture was stirred for 3 h until no starting material was evident by TLC. The mixture was guenched with sat'd NaHCO₃ ($\sim 2-3$ mL) and stirred for 5 min. (Alternatively, the molecular sieves can be removed by gravity filtration through filter paper prior to NaHCO₃ workup with no change in yield). The layers were separated and the aqueous layer extracted with CH_2Cl_2 (3x). The combined organic layers were washed with water (1x) and brine (1x), dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel (10% to 20% ethyl acetate hexanes; the residual p-fluorobenzaldehyde can be observed by UV on the TLC plate and removed) to afford $20b\{1, 5, 0\}$ (200 mg, 70%) in a 2 : 1 mixture of diastereomers as an amorphous white solid. *Denotes minor diastereomer. ($R_f = 0.44$, 30% ethyl acetate/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 7.57 – 7.55 (m, 1H), 7.41 – 7.37 (m, 3H), 7.25 - 7.02 (m, 5H), *5.48 (t, J = 6.6 Hz, 0.3H), *5.43 (bs, 0.3H), 5.35 (t, J = 6.6 Hz, 0.7H), 5.24 (bs, 0.7H), *5.01 (d, J = 6.6 Hz, 0.7H), 4.95 – 4.89 (m, 0.7H), 4.76 -4.70 (m, 0.7H), 3.83 (s, 2.1H), *3.66 (s, 0.9H), *3.64 (A of an ABq, d, J = 15.3, 2.7 Hz, (0.3H), 3.28 - 3.26 (m, 1.3H), *3.04 (B of an ABq, d, J = 15.3, 2.7 Hz, 0.3H), 2.80 (bs, 0.7H), *2.65 (bs, 0.3H); ¹³C NMR (75 MHz, CDCl₃) δ 207.9, *206.9, *174.2, 173.5, 162.8 (d, $J_{CF} = 245.3$ Hz), *137.7 (d, $J_{CF} = 3.0$ Hz), 136.8 (d, $J_{CF} = 3.0$ Hz), *133.6, 133.4, 130.5 (d, $J_{CF} = 8.3$ Hz), *130.3 (d, $J_{CF} = 8.3$ Hz), 127.4, *127.0, 121.9, 119.5, *118.4, 118.2, 115.7 (d, J_{CF} = 21.0 Hz), 110.8, *107.9, 107.8, *95.5, 92.6, *79.6, 78.7, 77.2, *76.8, *62.4, 60.9, *55.1, 54.0, 52.6, *52.4, *29.9, 29.1; IR (thin film) v 3391, 3057, 2951, 2847, 1952, 1732, 1604, 1508, 1253, 1224, 1153, 842, 742 cm⁻¹; MS *m/z* (%) 363 (11), 362 (45), 323 (9), 303 (52), 239 (81), 236 (100); EI-HRMS calcd for $C_{22}H_{19}FN_2O_2 m/z [M]^+$ 362.1431; found 362.1427.

Methyl 2,3,4,9-tetrahydro-3-(propa-1,2-dienyl)-1-propyl-1*H*-pyrido[3,4-*b*]indole-3carboxylate 20c{1, 9, 0}: According to General Procedure A, 19 (51 mg, 0.20 mmol), activated powdered 4 Å molecular sieves (93 mg, 470 mg/mmol), butyraldehyde (19 μ L, 0.21 mmol), and trifluoroacetic acid (15 μ L, 0.20 mmol) were reacted in CH₂Cl₂ (2 mL) for 50 min to afford 20c{1, 9, 0} (41 mg, 68%) as a 2 : 1 mixture of diastereomers. The diastereomers were separated by chromatography on silica gel (25% ethyl acetate/hexanes). Major diastereomer (off-white solid, contains ~ 10% minor diastereomer by ¹H NMR): (R_f = 0.28, 30% ethyl acetate/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 7.80 (bs, 1), 7.51 (d, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 7.5 Hz, 1H), 7.17 (t, *J* = 7.5

² The powdered molecular sieves are activated by flame drying under vacuum (~ 3 torr) until the powder is free flowing and does not adhere to the walls of the flask (~ 2 - 3 min).

Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 5.25 (t, J = 6.5 Hz, 1H), 4.85 – 4.82 (m, 1H), 4.71 – 4.67 (m, 1H), 4.25 – 4.24 (m, 1H), 3.85 (s, 3H), 3.20 (A of an ABq, J = 15.5 Hz, 1H), 3.08 (B of an ABq, d, J = 15.5, 2.5 Hz, 1H), 2.57 (bs, 1H), 1.93 – 1.87 (m, 1H), 1.79 – 1.71 (m, 1H), 1.59 – 1.51 (m, 2H), 1.02 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 207.8, 173.9, 136.2, 134.6, 127.6, 121.5, 119.4, 117.9, 110.7, 106.9, 92.8, 78.5, 60.4, 52.5, 48.4, 37.1, 29.5, 18.7, 14.1; IR (thin film) v 3402, 3056, 2956, 2932, 2870, 1952, 1732, 1452, 1257, 1156, 852, 742 cm⁻¹; MS *m/z* (%) 311 (7), 310 (20), 267 (23), 239 (39), 207 (46), 180 (70), 119 (94); EI-HRMS calcd for $C_{19}H_{22}N_2O_2 m/z$ [M⁺] 310.1681; found 310.1691. Minor diastereomer (yellow oil, contains $\sim 4\%$ major diastereomer by ¹H NMR): ($R_f = 0.34$, 30% ethyl acetate/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 7.71 (bs, 1), 7.52 (d, J = 7.5 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 7.17 – 7.09 (m, 2H), 5.48 (t, J =6.5 Hz, 1H), 5.07 – 5.00 (m, 2H), 4.40 – 4.38 (m, 1H), 3.60 (s, 3H), 3.55 (A of an ABq, d, J = 15.0, 2.0 Hz, 1H), 2.87 (B of an ABq, d, J = 15.0, 2.0 Hz, 1H), 2.47 (bs, 1H), 1.88 -1.82 (m, 1H), 1.77 - 1.68 (m, 1H), 1.58 - 1.51 (m, 2H), 1.02 (t, J = 7.5 Hz, 3H); 13 C NMR (75 MHz, CDCl₃) δ 206.9, 174.2, 136.2, 134.7, 127.2, 121.5, 119.43, 118.2, 110.6, 107.3, 95.7, 79.5, 61.8, 52.3, 49.7, 38.1, 29.9, 18.6, 14.1; IR (thin film) v 3397, 3056, 2955, 2871, 1955, 1728, 1452, 1260, 1204, 857, 742 cm⁻¹.

20a{1, 2, 0}

Methyl-2,3,4,9-Tetrahydro-3-(propa-1,2-dienyl)-1*H*-pyrido[3,4-*b*]indole-3-

carboxylate 20a{*1, 2, 0*}: According to General Procedure I, **19** (57 mg, 0.22 mmol), activated powdered 4 Å molecular sieves (207 mg, 940 mg/mmol), formaldehyde (0.02 mL of a 37% aqueous solution, 0.26 mmol), and trifluoroacetic acid (16 μ L, 0.22 mmol) were reacted in MeOH (5.5 mL) for 6 h to afford **20a**{*1, 2, 0*} (42 mg, 71%) as an amorphous brown solid. (R_f = 0.08, 60% ethyl acetate/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 8.13 (bs, 1H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.19 – 7.08 (m, 2H), 5.39 (t, *J* = 6.6 Hz, 1H), 5.00 – 4.94 (m, 1H), 4.92 – 4.86 (m, 1H), 4.25 (A of an ABq, *J* = 15.6 Hz, 1H), 4.12 (B of an ABq, *J* = 15.6 Hz, 1H), 3.71 (s, 3H), 3.37 (A of ABq, t, *J* = 15.3, 1.5 Hz, 1H), 3.01 (B of ABq, t, *J* = 15.3, 1.5 Hz, 1H), 2.49 (bs, 1H), minor inseparable impurities: 7.4 (d, *J* = 8.1 Hz, 0.19H), 5.33 (s, 0.26H), 3.19 (s, 0.39H); ¹³C NMR (75 MHz, CDCl₃) δ 207.3, 173.9, 136.2, 131.0, 127.2, 121.4, 119.2, 117.8, 110.7, 106.7, 94.1, 79.2, 60.6, 52.4, 39.8, 29.7; IR (thin film) v 3395, 3175, 3058, 2949, 2849, 1954, 1732, 1453, 1258, 857, 743 cm⁻¹; MS *m/z* (%) 268 (13), 267 (5), 239 (55), 143 (100); EI-HRMS calcd for C₁₆H₁₆N₂O₂*m/z* [M⁺] 268.1212; found 268.1210.

Tetracyclic Indolyl Pyrrolines 21a-b

General Procedure B: Preparation of **21b** {1, 5, 0}

Methyl-5-(4-Fluorophenyl)-5,6,11,11a-tetrahydro-3H-indolizino[6,7-b]indole-11acarboxylate 21b{1, 5, 0}: To a solution of allenic tetrahydro- β -carboline 20b{1, 5, 0} (51 mg, 0.141 mmol, as a 2 : 1 mixture of diastereomers) in acetone (2.8 mL) in a septum-sealed 10 mL reaction vial wrapped in aluminum foil, was added silver nitrate (4.8 mg, 0.028 mmol, 20 mol%, weighed and transferred under low light). The reaction mixture was kept in a dark hood and stirred for 18 h until no starting material was evident by TLC ($R_f = 0.51$, 30% ethyl acetate/hexanes). The reaction mixture was diluted with CH₂Cl₂ and washed with sat'd NaHCO₃ (2x). The combined aqueous layers were extracted with CH₂Cl₂ (2x) and the combined organic layers dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel (15% ethyl acetate/hexanes) to afford $21b\{1, 5, 0\}$ (37 mg, 72%) as a 2:1 mixture of diastereomers as an amorphous yellow solid. An 83% yield of 21b {1, 5, 0} was obtained when using 40 mol% silver nitrate under similar conditions. The diastereomers were separated via silica gel column chromatography (column diameter: 1.5 cm; silica gel height: 14.5 cm; 100% toluene; column progress followed by UV and KMnO₄ staining of the TLC plates). Major diastereomer (amorphous yellow solid, contains ~ 6% minor diastereomer by ¹H NMR): ¹H NMR (CDCl₃, 300 MHz) δ 7.61 (dd, J_{HF} = 5.4 Hz, J = 8.4 Hz, 2H), 7.57 – 7.53 (m, 1H), 7.40 – 7.35 (m, 1H), 7.25 – 7.20 (m, 1H), 7.17 – 7.09 (m, 4H), 6.02 (dt, J = 6.3, 1.8 Hz, 1H), 5.97 (dt, J = 6.3, 1.8 Hz, 1H), 5.04 (d, J = 1.5 Hz, 1H), 4.12 (A of an ABq, t, J = 13.8, 1.8 Hz, 1H), 3.84 (A of an ABq, J = 14.7 Hz, 1H), 3.80 (B of an ABq, t, J = 13.8, 1.8 Hz, 1H), 3.47 (s, 3H), 2.79 (B of an ABq, d, J = 14.7, 1.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 162.5 (d, J_{CF} = 245.0 Hz), 136.8 (d, $J_{CF} = 2.5$ Hz), 136.0, 134.3, 131.1, 130.1 (d, $J_{CF} = 7.5$ Hz), 128.4, 126.9, 121.6, 119.6, 118.2, 115.6 (d, $J_{CF} = 21.3$ Hz), 111.0, 107.7, 74.9, 61.3, 59.9, 52.1, 29.3. Minor diastereomer (amorphous white solid, spectroscopically pure by ¹H NMR): ¹H NMR $(\text{CDCl}_3, 700 \text{ MHz}) \delta 7.56 \text{ (ddd}, J = 7.7, 1.4, 0.7 \text{ Hz}, 1\text{H}), 7.37 \text{ (bs, 1H)}, 7.37 \text{ (dd, } J_{HF} =$ 5.6 Hz, J = 8.4 Hz, 2H), 7.20 (ddd, J = 7.7, 1.4, 0.7 Hz, 1H), 7.14 - 7.10 (m, 2H), 7.03 $(dd, J_{HF} = 9.1 Hz, J = 8.4 Hz, 2H), 6.11 (ddd, J = 6.3, 2.1, 1.4 Hz, 1H), 6.01 (ddd, J = 6.3, 2.1, 1.4 Hz, 1H)$ 6.3, 2.1, 1.4 Hz, 1H), 5.51 (s, 1H), 3.73 – 3.71 (m, 1H), 3.70 (A of an ABq, d, J = 14.0, 1.4 Hz, 1H), 3.57 (s, 3H), 3.38 (B of an ABq, t, J = 13.3, 1.4 Hz, 1H), 2.99 (B of an ABq, d, J = 14.0, 2.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 162.6 (d, $J_{CF} = 245$ Hz),

136.8, 136.6, 136.1, 132.1, 131.5, 130.3 (d, $J_{CF} = 8.8$ Hz), 127.1, 121.7, 119.4, 118.4, 115.6 (d, $J_{CF} = 21.3$ Hz), 110.8, 108.0, 74.0, 58.6, 54.3, 51.7, 29.5. (IR, MS, and HRMS analyses performed on the original 2 : 1 diastereomeric mixture.) IR (thin film) v 3386, 3059, 2950, 2845, 2800, 1724, 1603, 1506, 1463, 1221, 1054, 840, 742 cm⁻¹; MS *m/z* (%) 362 (20), 331 (19), 303 (100), 236 (80); EI-HRMS calcd for C₂₂H₁₉FN₂O₂ *m/z* [M⁺] 362.1431; found 362.1416.

Methyl-5,6,11,11a-tetrahydro-3*H*-indolizino[6,7-*b*]indole-11a-carboxylate

21a{*1, 2, 0*}: According to General Procedure J, **20a**{*1, 2, 0*} (33.7 mg, 0.126 mmol) in acetone (2.5 mL), was reacted with silver nitrate (4.3 mg, 0.025 mmol) for 18 h. The crude residue was chromatographed on silica gel (25% ethyl acetate/hexanes) to afford **21a**{*1, 2, 0*} (18.9 mg, 56%) as an amorphous, white solid. ($R_f = 0.46$, 60% ethyl acetate/hexanes). M.p. 179-180 °C. ¹H NMR (CDCl₃, 300 MHz) δ 7.79 (bs, 1), 7.51 (d, *J* = 7.5 Hz, 1H), 7.32 – 7.29 (m, 1H), 7.18 – 7.07 (m, 2H), 6.17 (dt, *J* = 6.0, 1.8 Hz, 1H), 6.02 (dt, *J* = 6.0, 1.8 Hz, 1H), 4.49 (A of an ABq, *J* = 14.4, 1.8 Hz, 1H), 3.88 (B of an ABq, t, *J* = 12.9, 1.8 Hz, 1H), 3.99 (A of an ABq, d, *J* = 14.7, 2.1 Hz, 1H), 3.55 (s, 3H), 2.82 (B of an ABq, t, *J* = 14.7, 2.1 Hz, 1H), minor inseparable impurities: 5.40 (A of an ABq, *J* = 11.4 Hz, 0.15H), 5.35 (B of an ABq, *J* = 11.4 Hz, 0.15H), 3.21 (s, 0.18H); ¹³C NMR (75 MHz, CDCl₃) δ 174.3, 136.4, 132.5, 132.0, 131.4, 127.4, 121.4, 119.2, 118.0, 110.7, 107.5, 72.7, 56.9, 51.7, 43.7, 29.3; IR (thin film) v 3392, 3144, 3060, 2947, 2878, 2845, 1726, 1448, 1170, 1027, 741 cm⁻¹; MS *m/z* (%) 268 (17), 253 (25), 209 (69), 143 (66), 117 (100); EI-HRMS calcd for C₁₆H₁₆N₂O₂*m/z* [M⁺] 268.1212; found 268.1210.

Thermodynamic Isomerization of *trans*-21b{1, 5, 0}: To a solution of *trans*-21b{1, 5, 0} (5.0 mg, 0.014 mmol, 2 : 1 mixture of diastereomers) in CDCl₃ (0.5 mL) in an NMR tube was added trifluoroacetic acid (3 μ L, 0.034 mmol). The reaction was followed by ¹H NMR (peaks are broadened in the mixture due to TFA-amine salts). Analysis after 2.5 h indicated a reversal in the diastereomer ratio from 2 : 1 to 1 : 4 in favor of the major product isomer shown above. Analysis after 24 h showed the same ratio. The reaction mixture was diluted with ether and washed with sat'd NaHCO₃ (2x). The combined aqueous layers were extracted into ether (2x) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum to afford crude *cis*-21b{1, 5, 0} (5.0 mg, 100%) as a 1 : 4 mixture of diastereomers. Subsequent reaction of the crude

product with 6 μ L trifluoroacetic acid in the same manner for an additional 24 h did not change the diastereomeric ratio. Spectral data for each isomer is provided above. The isomers shown are supported by modeling studies (see text for heats of formation and below for 3D models).

trans-21b{1, 5, 0}

Cache Model of *trans*-21b{1, 5, 0}

Cache Model of *cis*-21b{*1, 5, 0*}

Methyl-2-(but-2-ynoyl)-2,3,4,9-tetrahydro-3-(propa-1,2-dienyl)-1*H*-pyrido[3,4*b*]indole-3-carboxylate 23a{1, 2, 37}: To a solution of 2-butynoic acid (16 mg, 0.18 mmol) and *N*-methylmorpholine (51 µL, 0.46 mmol) in THF (1.8 mL) at 0 °C was added isobutyl chloroformate (24 µL, 0.18 mmol). The resultant white suspension was warmed to room temperature and stirred for 25 min. A solution of 20a{1, 2, 0} (41 mg, 0.15 mmol) in THF (1.5 mL) was added via cannula and the mixture stirred for 20 h until no

starting material was evident by TLC. The reaction mixture was quenched with sat'd NaHCO₃ and diluted with ethyl acetate. The layers were separated and the aqueous layer extracted into ethyl acetate (3x) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel (30% ethyl acetate/hexanes) to afford $23a\{1, 2, 37\}$ (37 mg, 72%) as an amorphous white solid. ($R_f = 0.49$, 60% ethyl acetate/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 8.34 (bs, 1), 7.48 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.10 (d, J =7.2 Hz, 1H), 5.46 (t, J = 6.6 Hz, 1H), 5.35 (A of an ABq, J = 16.2 Hz, 1H), 4.76 (dd, J =11.7, 6.6 Hz, 1H), 4.72 (B of an ABq, J = 16.2 Hz, 1H), 4.52 (dd, J = 11.4, 6.6 Hz, 1H), 3.81 (s, 1H), 3.46 (A of an ABq, J = 15.9 Hz, 1H), 3.21 (B of an ABq, J = 15.9 Hz, 1H), 1.99 (s, 3H), minor inseparable impurities: 7.58 (dd, J = 7.5 Hz, 0.15H), 7.02 (s, 0.07H), 6.57 (s, 0.08H), 5.63 (t, 0.12H), 5.41 (s, 0.17H), 5.03 (m, 0.31H), 3.74 (s, 0.28H), 3.61 (s, 0.05H), 3.58 – 3.53 (m, 0.07H), 3.21 (m, 0.20H), 1.90 (s, 0.23H); ¹³C NMR (75 MHz, CDCl₃) § 208.2, 171.3, 155.9, 136.4, 128.8, 126.9, 121.9, 119.6, 118.0, 110.9, 107.6, 90.8, 90.7, 79.3, 73.4, 62.6, 52.6, 44.2, 26.9, 4.0; IR (thin film) v 3057, 2949, 2855, 2236, 1958, 1739, 1628, 1395, 1257, 1044, 741 cm⁻¹; MS m/z (%) 335 (11), 334 (41), 275 (44), 192 (34), 174 (81), 143 (100); EI-HRMS calcd for $C_{20}H_{18}N_2O_3 m/z$ [M⁺] 334.1317; found 334.1323.

Fused Pentacyclic Indolyl bicyclo[4.2.0]octa-1,6-diene 24{1, 2, 37}: A solution of $23a\{1, 2, 37\}$ (10.0 mg, 0.03 mmol) in freshly distilled DMF (0.3 mL) was heated under microwave irradiation in a Biotage Initiator microwave reactor at 225 °C for 7 min (Absorption level: very high; vial type: 0.2 - 0.5 mL; pre-stirring: 0; initial power: 0; dynamic deflector optimization: on; stir rate: 600; approximate ramp time: 4 min). An absence of starting material was observed by TLC after the described reaction time (R_f = 0.49 for both starting material and product, 60% ethyl acetate/hexanes; staining with PAA followed by a secondary water dip gives the product a green color and the starting material a brown/yellow color). The mixture was partitioned between ether and water and the layers were separated. The aqueous layer was extracted with ether (3x) and the combined organic layers were washed with water (3x) and brine (1x), dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel (30% ethyl acetate/hexanes) to afford $24\{1, 2, 37\}$ (3.9 mg, 39%) as a white powder. (R_f = 0.49, 60% ethyl acetate/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 8.22 (bs, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 5.55 (A of an ABq, J = 17.5 Hz, 1H), 5.30 (s, 1H), 4.47 (B of an ABq, J = 17.5 Hz, 1H), 3.79 (A of an ABq, J = 15.3 Hz, 1H), 3.59 (s, 3H), 3.22 (A of an ABq, J = 16.5 Hz, 1H), 3.17 (B of an ABq, J = 16.5 Hz, 1H), 3.03 (B of an ABq, t, J = 15.3, 2.0 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 158.6, 153.3, 137.3, 136.6, 131.6, 129.5, 126.5, 121.9, 119.5, 118.1, 110.9, 106.4, 106.0, 70.7, 53.1, 40.4, 39.3, 32.9, 16.6; IR (thin film) v 3310, 2951, 2913, 2858, 1732, 1663, 1623, 1432, 1333, 1199, 1043, 743 cm⁻¹; MS *m/z* (%) 357 (93, M + 23Na), 335 (40).

9-tert-butyl-3-methyl-2-(but-2-ynoyl)-3-(propa-1,2-dien-1-yl)-3,4-dihydro-1Hpyrido[3,4-b]indole-3,9(2H)-dicarboxylate (25): To a solution of allene-amide 23a (60 mg, 0.179mmol) in 1.5 mL CH₃CN was added DMAP (2.2 mg, 0.018 mmol) and Boc₂O (41.5 mg, 0.19 mmol). The solution was stirred at room temperature for 45 min. Then the solution was diluted with ether and washed with saturated solution of NaHSO4 followed by NaHCO₃. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography using 30% ethyl acetate/hexanes to afford the product 25 (60 mg, 77%) as a white solid. ($R_f = 0.6, 50\%$ ethyl acetate/hexanes). M.p. 152-153 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.13 (d, J = 7.8Hz, 1H), 7.45 (d, J = 6.9 Hz, 1H), 7.24 – 7.33 (m, 2H), 5.8 (A of an ABq, J = 18.0 Hz, 1H), 5.43 (s, 1H), 4.79-4.85 (m, 1H), 4.69 (B of an ABq, J = 18.0 Hz, 1H), 4.50-4.56 (m, 1H), 3.81 (s, 3H), 3.40 (A of an ABq, J = 15.9 Hz, 1H), 3.15 (B of an ABq, J = 16.5 Hz, 1H), 2.92 (s, 3H), 1.72 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 208.3, 170.6, 155.9, 150.0, 135.7, 130.1, 128.8, 124.3, 122.9, 117.9, 115.3, 114.7, 90.4, 90.2, 84.2, 79.8, 73.3, 61.3, 52.7, 46.0, 28.2, 25.4, 4.0. IR (thin film) v 1732, 1646, 1368, 1249, 1139 cm⁻¹. MS [m/z + m/z]Na] (%) 457 (100), 435 (25), 401 (40), 365 (50). HRMS calculated for $C_{25}H_{26}N_2O_5Na$: 457.1739; found: 457.1758.

7-*tert*-butyl-12a-methyl-3-methyl-1-methylene-2,4-dioxo-1,4,6,12,12a,12b hexahydrocyclopenta[1,2]indolizino[6,7-*b*]indole-7,12a(2*H*)-dicarboxylate (26): An oven dried 10 mL test tube was loaded with Mo(CO)₆ (27 mg, 0.103 mmol). The test tube was evacuated under vacuum and filled with Argon (3x). A solution of allene-amide (30 mg, 0.069 mmol) in dry toluene (1.4 ml) was added by syringe followed by the addition of dry DMSO (49 μ L, 0.69 mmol). The solution was placed in a pre heated at 95 °C for 2 h. After completion the solution was passed through a pipette containing silica. The filtrate was concentrated and the crude material was purified by column chromatography using 40% ethyl acetate/hexanes to afford the product as a 1:1 mixture of two diastereomers in 73% (23.4 mg) yield as a viscous oil. (R_f = 0.55, 50% ethyl acetate/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 8.20 (d, *J* = 8.1 Hz, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.51 (d, *J* = 6.6 Hz, 1H), 7.20-7.38 (m, 6H), 6.46 (d, *J* = 1.8 Hz, 1H), 6.34 (d, *J* = 2.1 Hz, 1H), 5.91 (s, 1H), 5.72 (d, *J* = 1.2 Hz, 1H), 5.59 (d, *J* = 17.4 Hz, 1H), 5.30 (d, *J* = 19.2 Hz, 1H), 4.72 (d, J = 18.3 Hz, 1H), 4.47 (d, J = 19.2 Hz, 1H), 4.11 (d, J = 15.0 Hz, 1H), 3.99-4.01 (m, 2H), 3.82 (s, 3H), 3.49 (s, 3H), 3.26 (d, J = 15.9 Hz, 1H), 3.07 (d, J = 15.3 Hz, 1H), 2.27 (d, J = 15.9 Hz, 1H), 2.18 (d, J = 3.0 Hz, 3H), 2.14 (d, J = 2.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.7, 195.4, 171.4, 168.6, 165.2, 163.8, 154.9, 153.8, 149.7, 149.6, 143.3, 141.8, 140.5, 139.7, 136.2, 135.7, 130.3, 128.9, 128.2, 127.8, 124.7, 124.6, 123.0, 122.8, 121.0, 120.7, 117.9, 117.7, 115.6, 115.5, 112.3, 111.6, 84.8, 84.7, 67.9, 65.6, 53.4, 53.1, 52.3, 48.2, 41.1, 40.0, 30.7, 28.2 (2C), 24.7, 9.1, 9.0. IR (thin film) v 1732, 1707, 1368, 1139 cm⁻¹. MS [m/z + Na] (%) 485 (100), 447 (10), 407 (16), 230 (10). HRMS calculated for C₂₆H₂₆N₂O₆Na: 485.1689; found: 485.1669.

tp 432b.4-8-144 1H nmr301a 10/12/08

S22

S26

tp 436.4-8-158 1H CDCl3 nmr300 10/21/08

tp 420.3-8-92 13C nmr300 10/11/08

S34

tp 428.1-8-102 1H CDCl3 nmr301a 8/23/08

tp 464.1-8-201 2nd spot 1H nmr500 CDCl3 12/16/08

S44

S48

1. Construction of the virtual combinatorial library

Given a library design, a product scaffold structure and lists of building block reagents, the Legion package of Sybyl 8.0 was used to create reaction-based libraries. We used the scaffold 4 as an illustration to demonstrate how to create the library.

a. Load molecule scaffold 4 with R-group substituted by hydrogens (Figure 1) into Sybyl workspace

Figure 1. Scaffold 4 with R-group substituted by hydrogens

b. Retrieve reactants

In this step, the indole list (44 compounds) and aldehyde list (12 compounds) were loaded, and the variation sites among them were indicated as V1, V2, V3, and V4 in indoles (**Figure 2**) and V in aldehydes (**Figure 3**).

Figure 2. Variation sites among indole compounds

Figure 3. Variation site among aldehyde compounds

c. Map reactants to product

Each R group of reactant was attached on the atom in the product scaffold corresponding to its destination in the product, V1->X1, V2->X2, V3->X3, V4->X4 and V->Y (**Figure 4**).

Figure 4. The substituted positions in scaffold 4

d. Build library

The Sybyl software will enumerate all the possible combinations to build the 528 (=44*12) products.

2. 2D fingerprint Tanimoto coefficient (Tc) calculation of MLSMR and 6 virtual libraries

Sybyl software includes a method to compare two UNITY databases based on their 2D fingerprints. Firstly, the fingerprints for MLSMR database and the virtual library were generated by the UNITY module of Sybyl software. Then these two databases are compared by the Database Comparison module (Figure 5). As shown in Figure 5, each time one of virtual libraries derived from the 6 scaffolds is set as reference database, and the SMR database is set as candidate database. This step yielded six histograms of the Tanimoto indices.

🗙 Database Comparison	×	
Reference Database	Candidate Database	
Database Name:	Database Name:	
Password:	Password:	
Alternate Screen:	Alternate Screen:	
Record Similarity at High-Resolution from 0 🖬 to 1 🛋		
Output Distribution to:		
ОК	ncel Help	

Figure 5. Database comparison interface of Sybyl software

3. Cell-Based BCUT Metrics Calculation and Diverse Subset Selection

Multidimensional chemistry space coordinates were calculated with DiverseSolutions (DVS) module of Sybyl software for each compound according to four main classes of atomic properties, including atomic Gasteiger–Huckel charge, polarity, hydrogen-bond donor, and hydrogen-bond acceptor attributes. Following is the detail.

a. Generate the properties files for MLSMR database and virtual libraries derived from the 6 scaffolds

In this step, each of compound databases was input in SDF format and the 2D H-suppressed BCUT descriptors were generated. Then these properties files were merged.

b. Generate chemical space with the merged properties file

In this step, three less correlated properties, names Bcut_gastchrg_burden_000.100_R_H, Bcut_tabpolar_burden_000.500_R_H and Bcut_haccept_burden_002.500_R_H, were selected as the coordinate axis.

c. Report chemistry space coordinates of these compounds.

In this step, each of the properties was scaled to value 0-10. Each compound was mapped to a point in three dimension chem-space according to its properties. The coordinates of these derivatives of 6 scaffolds (11,748 compounds) together with the MLSMR database (327,000+ compounds) were plotted by the Xplottor module in DVS.

d. Generate the representative library by performing cell-based diverse subset selection from a compound source-file

In this step, the compound source-file was designate to the merged derivatives of six scaffolds (11,748 compounds). The size of the produced representative library was set as

50. The result number of compounds retrieved by the Sybyl software was 53. The coordinates of these derivatives of 6 scaffolds together with the representative library (53 compounds, Chart 1) were also plotted by the Xplottor module in DVS.

Scaffold 1

R1_33_R3_45

Scaffold 3

R1_11_R3_17

R1_30_R3_48

R1_35_R3_25

R1_1_R3_17

R1_12_R3_48

R1_12_R3_32

١H

R1_34_R3_50

NH

R1_42_R3_26

(√s

B

Br

R1_11_R3_50

R1_29_R3_50

R1_33_R3_48

R1_35_R3_48

Br

R1_35_R2_11

Scaffold 5

R1_26_R3_37

R1_33_R3_23

R1_33_R3_45