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Supplementary figures and text 

Note 1 Generation of spatial patterns in two 

dimensions. 

Figure S1 Two-dimensional linear gradients. 

Note 2 Temporal control: Details of conceptual 

estimate. 

Figure S2 Temporal control numerical simulation results. 

Note 3 Methods to speed up loading of the containers. 

Figure S3 SEM images of containers with pore size 

reduced by gold electrodeposition.  

Video S1 Caption Movie of image sequences (19 images total) 

showing self-organization of E. coli into a 

helix over a period of 25 min. 
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Figure S1. Two-dimensional linear gradients. a) 
Schematic diagram of the pore slit pattern derived from 
numerical simulations that is required to generate a linear 
gradient using a parallelepiped shaped container. b) Optical 
image of the self-assembled container. c) Numerically 
simulated, and d) fluorescence image of experimentally 
realized gradients of fluorescein released from these 
containers. e) Quantitative numerical simulation result along 
the dashed line (in panel c) showing the formation of a 
linear gradient pattern of fluorescein. The thick solid line (in 
panel e) represents concentration values at the points that lie 
in the plane of the slit on the dashed line (panel c) itself 
while the thin line (in panel e) shows the integrated 
concentration in the plane parallel to the side of the 
container and containing the dashed line (panel c). f) 
Corresponding experimentally realized gradient along the 
dahsed line in panel d) showing good agreement with 
simulations. 

Supplementary Note 1. Generation of spatial patterns in two dimensions.  

We note that our methodology can be utilized to generate both 2D and 3D spatial 

chemical patterns. The 3D patterns are described in the main text; here, we describe the 

generation of 2D linear gradients. These gradients were formed by utilizing parallelepiped-

shaped containers with porous slits along their long axis. Numerical simulations suggested that it 

was necessary to create an exponentially 

shaped and asymmetrically positioned slit 

(closer to one edge than the other, Figure 

S1a) to generate a linear gradient at a 

distance in the range of approximately 100 

μm outside the container (Figure S1c). 

Hence, we utilized such a pattern with 

minor variations in this design such as 

breaking up the continuous slit into four 

discrete pores to increase mechanical 

strength (Figure S1b). 

After fabrication, the containers 

were positioned in a stationary gel and we 

observed that fluorescein was released from 

these containers in a linear gradient (Figure 

S1d) with excellent quantitative agreement 

between numerical simulations (Figure 

S1e) and experiments (Figure S1f). Use of this polyhedral container shape for linear gradient 
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generation also readily facilitates control over the steepness of the gradient by scaling the 

dimensions of the slit.  

Supplementary Note 2. Temporal control: Details of conceptual estimate.  

A simple analytical model can be used to validate our numerical simulations. An order of 

magnitude estimate can be used to gain insight behind the underlying concept of chemical 

release (in stationary media) from a porous membrane in a spherical geometry[33,34] (Figure 1a of 

the main text). We can assume that the rate-limiting step for chemical release is diffusion 

through the side wall and that the initial concentration outside the container is zero; this 

assumption works well for small pore sizes. It follows from Fick’s law[34] that the rate of 

chemical release through the pores can be written as  

A
w
cD

dt
dcV −=         (Eq. 1) 

Here D  is the diffusion coefficient, c  is the chemical concentration (assumed uniform within 

the container), V  is the container volume, w  is the container wall thickness (equal to the pore 

length for straight pores), A  is the total area of the pores and t  is the time.  

Solutions of Eq. 1 have the form,  
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where 0c  is the initial concentration inside the container and d  is the container diameter. Hence, 

we can estimate the characteristic time scale for release 
DA

wd 3

6
πτ =  discussed in the main text. 

This estimate suggests that larger containers (100 μm on the side and larger) and sufficiently 

small pores (~100 nm and smaller) can extend the duration of chemical release to days, months 

and even years.  
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Numerical simulations shown in 

Figure 5a of the main text agree with these 

conceptual estimates. Additionally, 

numerical simulations show that the rise 

and fall of the released chemical at a fixed 

spatial point away from the container can 

be engineered by varying the pore size 

(Figure S2a). As a consequence, chemical 

release can be achieved with a 

concentration variation of 10% over 

specified time duration; this time is plotted 

in Figure 5a of the main text.  

A plot of the total chemical released 

as a function of time (Figure S2b) suggests 

that there is no initial burst that is often observed in polymer dissolution based controlled release 

systems.[19, 20]  The temporal release characteristics are also affected by the pore distribution 

(Figure S2c-d). For the same porosity, a smaller pore size (and consequently larger numbers of 

uniformly spread out pores) results in shorter release times from containers (Figure S2c). With 

equally sized pores, an increase in porosity also results in shorter release times (Figure S2d).  

 

Supplementary Note 2 References 
 
[33] E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems. (Cambridge University Press, 
1997). 
[34] J. Crank, The Mathematics of Diffusion. (Clarendon Press, Oxford, 1956). 

Figure S2. Temporal control numerical simulation 
results a-b) Temporal variation of, a) concentration at the 
specific time point at a fixed spatial point a distance d from 
the center, and b) total integrated concentration inside the 
container, both for a d = 1.0 mm sized container for two 
different pore sizes. The curves shown are typical but the 
slopes decrease for larger containers and smaller pores. c-d) 
Temporal variation of chemical release from a cubic 
container plotted against the number of pores, while 
maintaining, c) the same porosity, and d) the same pore size. 
Both curves were generated assuming a square pore 
distribution with uniform spacing and centrosymmetry. 
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Supplementary Note 3. Methods to speed up loading of the containers.  

 One concern with our methodology is that containers that release chemicals over long 

periods of time would also take a long time to load. We note that in these applications, loading 

can be sped up by one of the following methods.  

a) Increasing external loading concentration: Regarding diffusion based loading in stationary 

media, the most effective way to speed up loading of chemicals into the containers is to increase 

the concentration of the chemical in the medium outside of the container. Increasing the 

concentration outside increases the chemical flux directed into the container in direct proportion 

to the concentration difference as governed by Fick’s law. For example, we estimate that the 

loading time for a 1 mm cubic container with 1.0 μm pores, 1×10-4 % porosity, similar to the one 

shown in Figure S3a with 1×10-6 M of fluorescein would decrease from over 1 month to less 

than a week when the concentration of the chemical into which the container was placed (for 

diffusion based loading) was increased from 2×10-6 M to 1×10-4 M. We note that practical 

solubilities of various chemicals [For example, the solubility of fluorescein in water is 

approximately 10-4 M while that of uranine (sodium salt of fluorescein) is several orders of 

magnitude larger] will ultimately determine the maximum concentration of the chemical into 

which the chemical can be immersed, and hence the minimum loading times.  

b) Stirring the medium during loading: We note that increasing mass transport by heating or 

mechanical stirring would also increase loading rates.  

c) Finally, it is also possible to build containers with one completely open face so that chemicals 

can be rapidly introduced into the container. Elsewhere, such a technique was utilized to load the 

containers with mammalian cells for insulin delivery. [29] One drawback of this approach is that a 
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separate sealing step is required after loading and additionally it would be challenging to 

engineer porosity on this sealed face of the polyhedron.  

These and other loading methods continue to be explored in our laboratory.  
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Figure S3. Temporal control over pattern generation by varying pore size. a) Scanning electron microscope 
(SEM) image of a container (d = 500 μm) with a single pore in the center. Zoomed-in SEM images of a single pore 
with the exterior diameter of b) 10 μm and c) 2 μm, formed after gold plating.  
 
 
 
Supplementary Video S1 Caption. Movie of image sequences (19 images total) showing self-
organization of E. coli into a helix over a period of 25 min. The time interval between sequences 
is approximately 1-2 min.  
 
 


