

Supplemental figure 1. Genotyping and *Tifl* γ **expression in** *Tifl* $\gamma^{4/4}$ **mice.** (A) Representative PCR analysis of genomic DNA from tail or blood of wild type (WT), *Tifl* $\gamma^{4/4}$ (Δ/Δ), and *Tifl* γ^{ff} mice using a mixture of two primers. Amplification of the WT allele by forward and reverse primers AFM257 and AFI125 produces a 498 bp DNA fragment (lower band) while amplification of the floxed (*f*) allele results in a 531 bp DNA fragment (upper band), and amplification of the deleted (Δ) allele by forward and reverse primers AFI124 and AFI125 produces a 360 bp DNA fragment. (**B**) Q-PCR analysis of the *Tifl* γ floxed exons in peripheral blood cells from control (Ctrl) or *Tifl* $\gamma^{4/4}$ (Δ/Δ) mice. Data are the means \pm s.d. of the values from experiments performed in triplicate. (**C**) *Tifl* γ from total BM or spleen cells of control (Ctrl) or *Tifl* $\gamma^{4/4}$ (Δ/Δ) mice. Tifl $\gamma^{4/4}$ (Δ/Δ) mice. Protein extracts were prepared from BM cells of control (Ctrl) or *Tifl* $\gamma^{4/4}$ (Δ/Δ) mice then were electrophoresed on SDS-PAGE and immunoblotted with anti-Tifl γ antibody.

Supplemental figure 2. Erythroid defects in *Tifl* $\gamma^{4/4}$ **mice.** (A) Peripheral erythrocyte counts in control (Ctrl) and *Tifl* $\gamma^{4/4}$ (Δ/Δ) mice, younger or older than 6 months. The results are shown as the means \pm s.d. (B) FACS analysis of cell populations from BM and spleen of representative control (Ctrl) and *Tifl* $\gamma^{4/4}$ (Δ/Δ) mice, older than 6 months demonstrated a decrease in BM associated with an increase in spleen of erythroblastic populations (Ter119⁺CD71⁺) in *Tifl* $\gamma^{4/4}$ mice. (C) Representative MGG stained peripheral blood smears (×100) from *Tifl* $\gamma^{4/4}$ (Δ/Δ) mice, older than 6 months, demonstrated the presence of Howell-Joly bodies (yellow arrows) and stomatocytes (black arrows).

Supplemental figure 3. Hepatosplenomegaly in *Tif1* $\gamma^{4/4}$ **mice.** (A) Marked splenomegaly (left panel) in a *Tif1* $\gamma^{4/4}$ (Δ/Δ) mouse (top) as compared with the spleen of a wild-type sex and age-matched control (Ctrl) mouse (bottom). Marked hepatomegaly (right panel) in a *Tif1* $\gamma^{4/4}$ (Δ/Δ) mouse (right) as compared with the liver of a wild-type sex and age-matched control (Ctrl) mouse (left). (B) H&E staining of paraffin-embedded spleen sections from representative control (Ctrl) or *Tif1* $\gamma^{4/4}$ (Δ/Δ) mice demonstrated the infiltration of hematopoietic populations in *Tif1* $\gamma^{4/4}$ mice.

Supplemental figure 4. Mice transplanted with $Tif1\gamma^{d/d}$ bone marrow develop a myeloproliferative disease. (A) Q-PCR analysis of the $Tif1\gamma$ floxed exons in PB from control (Ctrl) or $Tif1\gamma^{d/d}$ (Δ/Δ) transplanted mice. Data are the means \pm s.d. of the values from experiments performed in triplicate. (B) Peripheral monocyte counts in Ctrl or Δ/Δ transplanted mice. The results are shown as the means \pm s.d. (C) (Upper panel) Flow cytometry analysis of cell populations from total BM cells of mice transplanted with BM from representative Ctrl or Δ/Δ mice. (Lower panel) Flow cytometry analysis of cell populations from total BM cells of mice transplanted with BM from representative Ctrl or Δ/Δ mice. (D) Flow cytometry analysis of cell populations from total BM cells of mice transplanted with BM from representative Ctrl or Δ/Δ mice. (E) Representative FACS staining profiles of the progenitor populations, including CMPs (lower right panel), MEPs (lower left panel), and GMPs (upper right panel), from the respective Ctrl or Δ/Δ transplanted mice. (F and G) $Tif1\gamma^{d/d}$ mice transplanted with control BM cells do not develop a myeloproliferative disease. Control BM cells were transplanted into lethally irradiated Δ/Δ or Ctrl recipient mice. Differences observed in the distribution of LSK cells and progenitors of control mice between panels D, E and F, G may be explained by the genetic background of the recipient mice. Flow cytometry analysis of cell populations from total BM of representative control Ctrl or Δ/Δ mice.

Supplemental figure 5. Tif1 γ deficiency decreases *cfms* expression and alterates macrophage differentiation. (A) (B) RQ-PCR analysis of *cfms*, *g-csfr*, and *gm-csfr* from total BM (left panel) or Lin- cells (right panel) of control (Ctrl) or *Tif1* $\gamma^{4/4}$ (Δ/Δ) mice. Data are the means ± s.d. of the values from independent experiments (**p* values are defined in Methods). (C) *Tif1* γ deletion results in decreased macrophages in the peritoneum. The total number of intraperitoneal macrophages from control (Ctrl) and *Tif1* $\gamma^{4/4}$ (Δ/Δ) mice is summarized. (D) Photomicrographs of control (Ctrl) or *Tif1* $\gamma^{4/4}$ (Δ/Δ) peritoneal macrophages cultured during 24h. (E) Plasmatic concentration of M-CSF and G-CSF from control (Ctrl) and *Tif1* $\gamma^{4/4}$ (Δ/Δ) mice.

	Low Tif1γ	Normal Tif1γ
Number of cases	21	39
Mean age [range]	73.2 [51-91]	72.1 [50-84]
Sex ratio	2	2.1
At diagnosis	119 [71-149]	117 [84-140]
Mean hemoglobin g/L [range]	155 [10-300]	137 [3-379]
Mean platelet count 10 ⁹ /L [range]	19.0 [3.8-92.7]	14.4 [2.0-85.6]
Mean leucocyte count 10 ⁹ /L [range]	5.1 [1-46]	4.4 [1-30.8]
Mean monocyte count 10 ⁹ /L [range]	53%	32%

Supplemental table 1. Clinical and biological characteristics of the CMML patients in whom $Tifl \gamma$ mRNA expression was analyzed.

	All
Number of cases	66
Mean age [range]	70.37 [50-93]
Sex ratio	2.14
At diagnosis	
Mean hemoglobin g/L [range]	116 [52-163]
Mean platelet count 109/L [range]	163 [3-411]
Mean leucocyte count 10 ⁹ /L [range]	14.3 [3.5-85.6]
Mean monocyte count 10% [range]	3.3 [1-30.8]
>13.10 ⁹ monocyte/L (%)	46%

Supplemental table 2. Clinical and biological characteristics of the CMML cohort used for $TIF1\gamma$ sequencing.

Supplemental figure 6. $TIF1\gamma$ is an epigenetically-regulated tumor suppressor gene in CMML. Sequencing of the bisulfite modified $TIF1\gamma$ promoter sequence from normal monocytes of healthy donors (Ctrl) or CMML patients. CMML patient #8 is a representative patient who harbors a normal level of TIF1 γ .