Table S9 Plasmids used in this study

Name	Description	Source
pMW346	ppCPY LEU2 pRS315	[1]
рСРҮ-А	SDM of pMW346 Alanine inserted at position 2 of signal sequence	This study
pCPY-C	SDM of pMW346 Cysteine inserted at position 2 of signal sequence	This study
pCPY-E	SDM of pMW346 Glutamate inserted at position 2 of signal sequence	This study
pCPY-G	SDM of pMW346 Glycine inserted at position 2 of signal sequence	This study
pCPY-R	SDM of pMW346 Arginine inserted at position 2 of signal sequence	This study
pCPY-S	SDM of pMW346 Serine inserted at position 2 of signal sequence	This study
pCPY-V	SDM of pMW346 Valine inserted at position 2 of signal sequence	This study
рОРҮ	pMW346 modified so that Ost1 signal sequence replaced that of CPY	This study
pOPY-A	SDM of pOPY Alanine inserted at position 2 of signal sequence	This study
pOPY-C	SDM of pOPY Cysteine inserted at position 2 of signal sequence	This study
pOPY-E	SDM of pOPY Glutamate inserted at position 2 of signal sequence	This study
pOPY-G	SDM of pOPY Glycine inserted at position 2 of signal sequence	This study
pOPY-S	SDM of pOPY Serine inserted at position 2 of signal sequence	This study
pPDI-myc	pMW346 with CPY ORF replaced with C-terminal myc-tagged PDI1	This study
pPDI-myc-S	pMW346 with CPY ORF replaced with C-terminal myc-tagged PDI1-MS mutant	This study
pPDI-myc-E	pMW346 with CPY ORF replaced with C-terminal myc-tagged PDI1-ME mutant	This study
pPPαF-2myc	pMW346 with CPY ORF replaced with C-terminal 2xmyc-tagged pp $lpha$ F	This study
pPP $lpha$ F-2myc-S	pMW346 with CPY ORF replaced with C-terminal 2xmyc-tagged pp $lpha$ F ME mutant	This study
pA11-K5K14	K5 pp α F in pAlter, all lysines codons in wild-type pp α F altered to arginine and	[2]
	lysines introduced at positions 5 and 14 of signal sequence	
pEH3	pGEM3-ppαF	[3]
pGF22	pGEM3-pp α F with all lysines codons in wild-type pp α F altered to arginine	This study
pGF23	pGF22 cut Sall klenow filled and relegated to remove one HincII site	This study
pGF24	O- α Factor pGF22 signal sequence of pp α F replaced with that of OST1	This study
pGF25	As pGF24 except for insertion of serine at position 2 of OST1 signal sequence	This study
pGF28	As for pGF22 but with the signal sequence replaced by that of D_{HC} from pJD96	This study
pJD96	p - $D_{hc} \alpha F$ (codon-bias optimised)	[4]

References

- [1] Willer M, Forte GM, Stirling CJ (2008) Sec61p is required for ERAD-L: genetic dissection of the translocation and ERAD-L functions of Sec61p using novel derivatives of CPY. J Biol Chem. 283: 33883-33888.
- [2] Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94: 795-807.
- [3] Steel GJ, Brownsword J, Striling CJ (2002) Tail-Anchored Protein Insertion into Yeast ER requires Novel a Posttranslational Mechanism Which is Independent of the SEC Machinery. Biochemistry 41: 11914-11920.
- [4] Mason N, Ciufo LF, Brown JD (2000) Elongation arrest is a physiologically important function of the signal recognition particle. EMBO J. 19: 4164-4174.