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Supplemental Information 

Methods & Materials 

Details of DISCERN implementation 

A fundamental design choice of DISCERN is to incorporate multiple simple recurrent 

networks (SRNs, ref. 1) into a chain of hierarchically organized modules (Figure 1, main text).  

SRNs are backpropagation networks in which a copy of the previous hidden layer activation is 

saved at each computational step, and then used as a re-entrant input during the next 

computational step, thereby providing a sequential memory capacity.  SRNs have been 

successfully used to simulate aspects of normal sentence processing (1), sequential learning 

(2), and cognitive development (3-5) as well as hallucinated speech in schizophrenia (simulated 

as working memory (WM) disconnection, refs. 5,6), and therefore constitute a natural starting 

point for studying disruptions in sequential language behavior in patients with schizophrenia.  

With SRNs it was possible to model several illness mechanisms suggested by the research 

literature in a natural fashion (Figure 1, main text). 

DISCERN learned a lexicon consisting of 159 words, including 10 specific agents or 

characters in the stories (e.g. “Stacy,” “I,” “Vito”) and other more general agent references (e.g., 

“police,” “mafia,” “boss”).  The story corpus consisted of two sets of 14 stories: autobiographical 

and crime-related.  The two story sets each had 5 specific agents that were entirely non-

overlapping, with some overlap between other lexical elements.  For example, “wedding” 

occurred exclusively in the former, “bombing” occurred exclusive in the latter, while “boss,” 

“meeting” and “police” occurred in both.   

The original DISCERN system (7,8) was modified so that storage and retrieval of stories 

were associated with a positive/negative emotional valence code having five possible values (--, 

-, -/+, +, ++). Seven of the autobiographical stories had a positive emotional valence, and seven 
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had a negative emotional valence.  In contrast, seven of the crime stories had neutral emotional 

valence, and seven had a negative emotional valence.  

The modules in DISCERN communicate using distributed representations of word 

meanings, i.e. fixed-size patterns of neuron activations, stored in a central lexicon.  These 

representations are learned based on how the words are used in the example stories, using the 

FGREP algorithm (“Forming Global Representations with Extended Backpropagation;” ref. 7,8), 

a modified version of backpropagation that treats input representations as an additional layer of 

adjustable weights.  During the memory storage phase (Figure 1A, left side of loop, main text), 

the input text is first translated into input activation patterns by the lexicon, then presented to the 

sentence parser SRN one word at a time.  The sentence parser builds a static representation of 

each sentence step-by-step as input words are received.  Individual sentences are represented 

through case roles corresponding to agent, predicate, indirect object, modifier and direct object.  

Each case is represented by a slot filled by one of the word representations.   A sequence of 

words in a sentence, for example, “Vince entered the LA airport,” would be turned 

into a static representation, [agent: Vince, predicate: entered, indirect object:__ modifier: LA, 

direct object: airport],  where each plain-text word represents a pattern of neural activations, and 

the underscore (“__”) represents the “blank” pattern consisting of all zeroes.  At the end of each 

sentence, the sentence representation is passed on to the story parser.  This SRN in turn 

transforms sequences of sentences into static representations of scripts.  A script 

representation consists of the name of the script and the sequence of concepts filling its slots. 

The classic restaurant script, for instance, is comprised of a sequence of sentences expressing 

entering a restaurant, sitting down at a counter or table, ordering food, liking or disliking the 

food, receiving the bill, paying the bill and leaving a large or small tip.  This script includes slots 

for customer name, restaurant name, and various foods, which are functionally similar to case-

role representations for sentences.  A script, in other words, corresponds to a sequence of 

sentences comprising a standardized schema.  In our study, the same script was often 
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incorporated into both autobiographical and crime stories with different words/concepts “filling” 

the script’s “slots.” 

The original DISCERN system was expanded to include a memory encoder module that 

processes stories as a sequence of multiple scripts.  This modification generated naturally 

occurring “breakpoints” in stories (corresponding to transitions between scripts) that could 

facilitate expression of derailment under various conditions.  In brief, the memory encoder 

associates each script with a memory cue that is later used by the story generator to recall it.  A 

script instance paired with its memory cue is called an episodic memory trace, i.e., an 

occurrence of a script that is stored in episodic memory.  The memory encoder is a Recursive 

Auto-Associative Memory (RAAM; ref. 9), a neural network architecture that forms compact 

distributed representations of recursive data structures such as lists.  RAAM networks are 

feedforward networks trained to reproduce their own input, forcing them to form compressed 

representations of inputs in their hidden layer. These compressed representations can then be 

re-used as part of the input to the RAAM, recursively building representations of arbitrarily long 

lists.  In DISCERN, RAAM representations of sequences of scripts are used as cues to address 

episodic memory by content.  Figure S1 shows a RAAM network that is being used to create a 

memory cue.  The network uses the current cue (a compressed partial story) as part of the input 

to form the next cue in its hidden layer.  In this way, the network steps backwards through a 

story, producing a compressed representation of the rest of the story at each step, and 

associating each new cue with the script used to create it.  Shared emotional valence facilitates 

transitions from one script to the next within the stories.  Figure S2 illustrates this process.   

With the memory traces in place, the system is ready to recall the stories (Figure 1A, 

main text, right side).  The story generator module (Figure 1B, main text) is cued with the first 

script in a story.  At its output, it produces the representation of each sentence in the story one 

at a time, until a special end-of-story representation.  Together with each sentence 

representation, it produces a memory cue that can be thought of as the system’s discourse 
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plan.  The cue is used to retrieve the next memory trace from episodic memory, thus 

determining the story generator’s own next input.  In this way, the story generator steps through 

each sentence of a story, and accesses each memory trace encoding it.  Note that as long as 

the story generator produces sentences belonging to the same script, the memory cue does not 

change.  However, when the story generator produces the last sentence of the script, the cue 

does change, and the input is replaced by the memory of the next script.  Figure S3 shows an 

example of such a switch from one script to the next.  Based on evidence of an editor function in 

human speakers (10), an output filter was attached to the story generator module to block 

sentence-level outputs falling below a quality threshold.  The filter tended to eliminate virtually 

all ungrammatical constructions and reduce many other errors produced by illness mechanisms 

at the cost of reducing successful recall.  Finally, the sentence generator, last in the chain, takes 

the sentence representations produced by the story generator and turns them back into a 

sequence of individual word representations.  The system then outputs plain text translations of 

these word representations as provided by the lexicon. 

The sentence parser and the sentence generator were trained initially for 5000 iterations 

(or epochs) of the entire corpus, using FGREP to develop the word representations.  Each word 

representation consisted of a fixed-size pattern of 12 neuron activations.  With the word 

representations in place, 30 different DISCERN systems or exemplars were then trained starting 

with different random connection weights.  The hidden layer of the memory encoder had 48 

neurons, while the story generator had 150 hidden neurons.  Sentence parsers and generators 

had 250 hidden neurons and the story parser had 225 hidden neurons.  

Modules were trained in a chain, with the output from one module used as the input for 

the next.  Starting with the sentence module, new modules were added to the chain as 

meaningful input became available during the course of learning.  The learning rate for each 

module was always set to 0.4 times the average output error of the module during the last 

training epoch.  Thus, as the output error decreased during training, the learning rate decreased 
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automatically to allow fine-tuning of network response.  A total of 70,000 backpropagation 

learning epochs were employed overall for each DISCERN exemplar distributed across the 

different modules.  To provide a clean starting point for assessing performance after 

backpropagation training was completed, each exemplar’s episodic memory was cleared of all 

individual story instances, and the 28 stories were once again read and stored in the episodic 

memory module.  After training, DISCERN was able to reproduce all 28 stories almost perfectly 

with the percentage of sentences correctly reproduced averaging 96.2% across the 30 

DISCERN systems.  

Details of human story recall study 

In the human study, the story recall performance of 21 normal subjects and 43 subjects 

with schizophrenia or schizoaffective disorder was compared.  Patients were symptomatically 

stable outpatients.  Healthy control subjects were recruited by advertisement and word of 

mouth.  Psychiatric diagnoses of patients were based on DSM-IV criteria established using the 

Comprehensive Assessment of Symptoms and History (CASH, ref. 11).  Patients were 

prospectively divided into two subgroups: those who definitely demonstrated evidence of fixed 

delusions with a plot-like or narrative scheme, and those who produced questionable or no 

evidence of these delusions.  Typical examples included God choosing the patient to eliminate 

racial oppression, and the patient being trailed by Homeland Security agents due to allegations 

of terrorist activities.  The absence of psychiatric diagnosis in healthy controls was confirmed 

using the non-patient version of the Structured Clinical Interview for the DSM-IV (SCID, ref. 12).   

Antipsychotic drug level was quantified as chlorpromazine equivalents (13-15).  Out of this 

group of subjects, 20 healthy controls and 37 patients provided story recall data at seven days.  

To estimate verbal abilities, the Wechsler Adult Intelligence Scale-III vocabulary test (16) was 

administered.    

The story recall task consisted of three prerecorded stories presented binaurally on 

headphones as described in the main text.  All three stories involved a gift.  Two of the stories 
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(“The Gift” (17) and “The Hitchhiker” (custom-written for this study)) shared other content, 

involving a travel theme and a specific character reference (“wispy old man”).  Stories were 

presented in random order.  Immediate recall, recall at 45 minutes after exposure to stories and 

recall after seven days were tape-recorded and transcribed for analysis by a rater not involved 

in data collection who was blind to group, presence/absence of fixed delusions, and subject 

identification.  Seven-day recall was by surprise to prevent preparatory rehearsal during the 

intervening period, and comprised the narrative language behavior against which alternative 

DISCERN models were assessed.  Below are the verbatim instructions used for each subject 

prior to presenting stories, and at 45-minute and 7-day recall: 

Subject instructions prior to playing the stories were as follows: 
“I am going to play a tape, and you will hear a man’s voice reading a story.  The 
story is short – about 5 or 6 sentences.  The idea is for you to listen carefully, and 
then, when it is finished playing, I will ask you to recall as much of the story as 
possible.  Don’t worry about “passing” or “failing” – there is no such thing on this 
task.  Just do the best you can.  This procedure will be repeated for two 
additional stories.”    
 
For the 45 minute rehearsal, the instructions were: 
“A little while ago, I had you listen to three stories played back on a tape recorder 
and then recall them.  Now I want you to recall them again, you can recall them 
in any order.  Just do your best to recall as much of each story as possible.”   
 
For 7-day recall, the instructions were: 
“We now want you to try to recall as completely as possible the three stories you 
heard on headphones last week.  This may be somewhat of a surprise, but we 
didn’t want you to rehearse in your mind the content of the stories over the last 
week.  We wished this to be a test of story memory capacity that occurs naturally 
without practice or rehearsing.  Please take your time and try to repeat as much 
of the story as you can recall.  The words of the story needn’t be exact and no 
one is able to recall these stories completely.  Just try as hard as you can.”    
 
If the subject cannot recall any detail of a particular story, then (s)he is provided 
with the corresponding prompt: 

1. There was a story about flowers. 
2. There was a story about a hitchhiker. 
3. There was a story about a robbery. 

 
Comparing DISCERN and human language performance 

Several variables reflecting story recall deviance by human subjects and DISCERN 

simulations were developed and tested.  Five of them were eventually discarded: 
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• Within-story accretions.  These were words and phrases derived from the target story 

that were grouped together in ways that misrepresented meaning.  Limited flexibility of 

DISCERN’s output language precluded these types of errors. 

• Pronoun reference failures.  This version of DISCERN used did not generate pronouns 

(outside of the first person pronoun, “I”) so this variable could not be used to evaluate 

illness mechanisms. 

• Word/phrase insertions.  These were words or phrases that were inserted into otherwise 

grammatical responses that derived from outside of the story; the more rigid sentence 

syntax of DISCERN did not permit these text insertions.  

• Ungrammatical constructions.  Surprisingly, such errors were virtually non-detectable in 

human data but were quite prevalent in all DISCERN illness mechanisms prior to filtering 

other than hyperlearning.  However, this form of error was virtually eliminated in 

DISCERN when the output filter was adjusted to match language profiles of human 

patients. 

• Between-story migrations.  These were errors clearly where text from one story intruded 

into the recall of another story.  Given that we had full knowledge of the entire story 

corpus for DISCERN, a large majority of simulated errors fell into this category.  For 

human story recall, on the other hand, errors could presumably derive from an extremely 

large number of narrative memories (or other sources) not involving the three target 

stories used in the experiment.  Therefore, human and DISCERN story migration counts 

were not comparable.    

Four variables could, however, be scored comparably for both humans and DISCERN story 

recall while demonstrating sufficient variance to allow contrasts between human subject groups 

and between illness models.  Importantly, derailed clauses were not scored (see main text for 

definition) if inserted text was interpretable as any of the error types described above.  A manual 
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for scoring narrative memory distortions, including a breakdown of propositional structure of the 

three stories used for quantifying recall success, is available on request from the first author.   

More extensive editing/filtering of language outputs by human subjects and DISCERN 

was projected to reduce errors at the cost of reducing successful recall.  Therefore, when 

comparing human and DISCERN story recall performance, the three commission error variables 

described above (derailments, agent-slotting errors and lexical misfires) were re-calibrated as 

penetrance scores, where totals for each type of error were divided by recall success (scored as 

kernels successfully paraphrased across stories).  This strategy also accommodated the fact 

that the number of propositions in the DISCERN story corpus was much greater than the human 

story corpus, which provided much greater opportunity for error for the former.  

To measure how well a DISCERN exemplar matched the human data, a mean square 

deviation metric was used (18), and represented in the following form: 
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where GOFC/P(D,m,f)  is the goodness-of-fit of a given DISCERN exemplar, D, with mechanism 

parameter, m, and filter parameter, f, calculated relative to either the group of human healthy 

controls (C) or human patients with schizophrenia (P), PC
iV / is the mean value of the story-recall 

variable, i (recall success, derailment penetrance, lexical misfire penetrance, agent-slotting-error 

penetrance, see Table 4, main text) calculated for the corresponding subject groups, C and P, 

SE(Vi
C/P) is the standard error for variable, i, and ),,( fmDVi is the score for that variable 

ascertained for DISCERN exemplar, D, with mechanism parameter, m, and filter setting, f. 

Incorporating standard errors of human variables as divisors of sums of square differences  has 

the effect of adjusting contributions to GOF of individual variables in terms of their respective 

spans of dispersion in the human population.  A lower GOF indicates better fit.  For each 

DISCERN exemplar, parameters were selected separately to produce the smallest GOF relative 
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to the four story recall criterion variables determined for the healthy control group and the 

patient group.  In order to ascertain the closest match for two-dimensional illness mechanisms, 

the parameter space was searched across a 100 (illness mechanism setting) x 1000 (output 

filter) grid to minimize GOF relative to mean healthy control data.  This optimization was then 

repeated relative to mean patient data.  Note that in this analysis, it was not necessary to make 

assumptions about how model behaviors were distributed for each mechanism since best-fit 

GOF was assessed relative to a family of 30 independently generated DISCERN exemplars. 

These findings are shown in Figure 2A (GOF for the 30 DISCERN exemplars relative to healthy 

controls) and Figure 2B (GOF for the 30 DISCERN exemplars relative to patients) of the main 

text.  For three-dimensional simulations, closest matches to patient data were sought by 

searching a 40 (illness mechanism setting 1) x 40 (illness mechanism setting 2) x 1000 (output 

filter) grid.  These findings are shown in Figure 2C of the main text.  The best-fitting variance-

covariance structure according to BIC (Schwartz-Bayesian Information Criterion) was compound 

symmetry heterogeneous (CSH). This structure assumes equal covariances within cluster and 

allows for unequal variance per mechanism/group. 

  The two-dimensional hyperlearning mechanism applied to the memory encoder module 

and to the two-dimensional WM disconnection mechanism produced a robustly better fit to 

patient story recall performance than the other six mechanisms, but these two mechanisms 

were not significantly different from each other (Table 5, main text).    

The goal of the second set of simulations was to determine whether adding a second 

model-fitting parameter to the two best two-dimensional mechanisms (WM disconnection and 

memory-encoder hyperlearning) resulted in a significantly better-fit to the patient story-recall 

performance profile, and whether either of these three-dimensional mechanisms proved to be a 

significantly better-fit to the patient story-recall relative to the other.  To accomplish these 

objectives, the best GOF to the story-recall disturbance profile of patients was used as the 

dependent variable and simulation was used as the clustering factor (again reflecting the 30 
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DISCERN exemplars), while dimensionality (2D vs. 3D) and model (hyperlearning vs. WM 

disconnection) were treated as within-subject factors.   As expected, 3D expansions of both 

mechanisms produced further improvements in GOF.  Most importantly, 3D hyperlearning 

proved to be a significantly better match to the story-recall profile of patients relative to 3D 

disconnection, thereby providing a new illness model that should be tested in future clinical 

studies. 

In order to model fixed, self-referential delusions, DISCERN's agent-slotting errors need 

to be systematic, i.e. the same confusion of a personal-story and a crime-story agent needs to 

recur in the output stories.  This systematicity was assessed using a randomization test.  This 

test generated cross-context errors randomly using the same base rate of cross-context agent-

slotting errors exhibited by each of the 30 DISCERN exemplars, and counting how many of the 

errors generated by random within-context agent selection turned out to repeat earlier 

systematic cross-context errors (in the same or opposite direction, see results section for 

examples).  A count of these random-generated systematic errors was repeated 10,000 times 

for different random selections of agents within-context, and compared to that observed for the 

30 DISCERN simulations. 

 

Results 

Additional findings 

Pooling data across both groups of human subjects, there was no significant correlation 

between any of the performance variables, and age, parental education level, or WAIS-scaled 

vocabulary, assuming an uncorrected cut-off of α = 0.05.  Within just the patient group, number 

of hospitalizations and antipsychotic dose (scored as chlorpromazine equivalents) were also not 

significantly correlated with any of the performance variables using the same cut-off. 
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Discussion 

Additional comments 

It is noteworthy that Friston (19) has proposed a disconnection hypothesis for 

schizophrenia, where illness arises from altered synaptic efficacy in neural systems responsible 

for emotional learning and memory.  Hyperlearning recalls this hypothesis insofar as the 

functional “site” of pathophysiology is memory consolidation; story memories in DISCERN all 

had an emotional valance, and the net result of hyperlearning is altered synaptic efficacy within 

modules.  

 One other limitation of the DISCERN findings is that best-fit hyperlearning simulations 

also confused agents drawn from the same story.  For instance, Stacy, the girlfriend, was 

often exchanged with Mary, the fiancée of the boss, Joe.  Exchanging the identity of two 

persons, both personally known to the patient, does not commonly occur in schizophrenia.  It is 

possible, however, that humans overlearn deployment of personally known agents within 

autobiographical stories, thereby reducing likelihood that these agents are exchanged across 

these stories.  A future computational study will test this hypothesis.   
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Figure S1. The memory encoder in DISCERN is a Recursive Auto-Associative Memory (RAAM, 

ref. 9), a neural network that is trained to reproduce its input in the output layer, forcing the input 

information to be compressed in the smaller hidden layer.  The figure illustrates how the network 

creates a compressed representation of an entire story (consisting of scripts 1, 2, 3, and an end-

of-story representation, denoted as <1→2→3→END>) in its hidden layer, given as input the slot 

filler representations and emotion code of the first script, as well as a compressed 

representation of the second and third script (<2→3→END>).  Using its own previous output in 

this way, the memory encoder creates compressed representations of stories that serve as 

memory cues during story recall.  This figure depicts step 3 of the encoding process illustrated 

in Figure S2. 
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Figure S2. During the memory encoding process, each script of a story is paired with a memory 

cue, transforming the output of the story parser (left column) into content-addressable episodic 

memory traces (right column).  Each script’s memory cue is a compressed version of the 

remaining story, and represents DISCERN’s discourse plan at that point (e.g. the cue for script 

2 is the compressed version of scripts 2 and 3, denoted by <2→3→END>).  The memory 

encoder builds these cues by stepping backwards (from bottom to top) through the scripts of a 

story, at each step creating a memory cue by combining a script with the memory cue produced 

previously.  In this manner, stories of variable length can be compressed into a single 

distributed memory representation, leading to cognitive capacities typical of connectionist 

models. 
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Figure S3. During story recall, the story generator steps through each sentence of the story, 

and accesses each memory trace encoding it.  Three consecutive snapshots of the story 

generator's input and output are shown during the switch from the second ($driving) to the 
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third ($pulled-over) script of the story illustrated in the body of the report.  Time flows from 

bottom to top. Bottom: DISCERN reproduces the sentence “Vito is scared” in the second 

script of the story.  The story generator produces a representation of the sentence, which is then 

passed on to the sentence generator (to the right).  Additionally, it produces a memory cue that 

is used to retrieve the next input memory trace from episodic memory (on the left).  In this case, 

the same memory trace as before is retrieved, since the script is not yet finished. 

Middle: DISCERN produces the last sentence of the script, “Vito drives recklessly.”  

The memory cue changes, and the memory trace for the third ($pulled-over) script is retrieved. 

Top: Using the retrieved memory trace, DISCERN now starts to reproduce the third script.  By 

switching memory cues successively in this manner, the story generator can step through each 

script in the correct order.  Scripts trigger subsequent scripts within a single story as is 

commonly done in symbolic script-processing systems (20).  In DISCERN, this model of 

narrative structure is given a subsymbolic connectionist implementation. 
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Table S1. Comparison of patients with and without fixed delusions with narrative organization completing seven day delayed story- 

recall. 

 

Age1 
Gender 
(M/F) 

Parental 
education 
(grades)1 

WAIS 
scaled 

vocabulary 
score1 

SAPS 
positive 
thought 
disorder 
score1,2 

Alogia 
score1 

Antipsychotic 
drug treatment 3 

Patients with definite fixed 

narrative delusions (FND+; N = 27) 

41.2 (9.4) (12/15) 16.0 (8.7) 9.6 (3.9) 1.6 (1.2) 1.2 (1.1) 14/4/4/5 

Patients with questionable or 

absent evidence of fixed narrative 

delusions (FND-; N = 10) 

38.8 (10.4) (4/6) 12.7 (2.0) 10.9 (6.2) 1.7 (1.7) 1.4 (1.2) 7/0/0/3 

Significance test (two-tailed) t(55) = 0.71 χ2 = 0.06 

 

t(53) = 1.124 

 

t(55) = .78 

 

t(55) = .30 

 

t(55) = .50 

 

χ2 = 3.8, df = 3,  

p = 0.28 

1 mean (standard deviation). 
2SAPS thought disorder of 1=questionable, 2=mild. 

3first-generation (FG) /second generation (SG) /FG+SG/ SGx2. 
4data missing for two subjects. 

F, female; M, male; SAPS, Scale for the Assessment of Positive Symptoms; WAIS, Wechsler Adult Intelligence Scale. 
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