
Web Appendix 1 

To support the brief explanations in the main text, we have provided a step-by-step 

demonstration of the calculation of the predicted counterfactual outcomes in g-computation. 

These heuristic examples are intended to show, with a minimum of complexity, how the reader 

could implement g-computation to calculate an effect estimate. We first demonstrate two 

examples of how to use g-computation outside the context of MSM.  We use examples with and 

without interaction. We also apply an MSM for a final effect estimate on the example with 

interaction to demonstrate the approach used in this paper. Each table below contains one 

observation for each of the eight combinations of W1,W2, A – the three variables needed to 

calculate a predicted value for Y. In all tables, each observation has a value for the observed Y as 

well as the predicted Y0 and Y1.  

 

Our first example, presented in Table S1, will be based on a fit of the observed data from 

regression model 2 where E(Y | A, W1, W2) =  2.87 - 0.36*A + 1.06*W1 + 0.13*W2.  Although it is 

not the correct model for the data, this main-effects only model is used for our first 

demonstration of the calculations when interaction is assumed to be absent.  

 

The difference between the actual and predicted values of Y (columns (4) and (5) of Table S1, 

respectively) will be a function of how well the model fits the data.  Table S1 also presents the 

calculated values of Y0 and Y1 for each observation (columns (6) and (7), respectively). These 

predicted values of Ya are calculated by applying the regression model to each observation, 

holding the covariates W1 and W2 constant at their observed levels, while intervening on the 

treatment a, setting it to the appropriate value (0 and 1, respectively). The value of Y0 is equal to 
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the predicted value of Y when we intervene on treatment and set it at a=0 and, therefore, 

observations with the same value of W1 and of W2 have the same value for Y0 regardless of their 

observed treatment, A. This equality also holds true for Y1 when observations share values of W1 

and W2. This is demonstrated by ID numbers 1 and 2, columns (6) and (7). 

 

To calculate the risk difference E(Y1 - Y0) without specifying an MSM, we calculate Y1 - Y0 for 

each person and take the mean over the population. In Table S1, the value of Y1 - Y0 is presented 

in column (8), and is uniform across all observations: -0.36L, the same value as the coefficient 

for A from regression model 2 above.  Recall from the main text that in the absence of 

covariate/exposure interaction with binary A, g-computation and traditional regression (using the 

same model) provide the same answer. 

 

In Appendix 2, we provide R code demonstrating the simulation of the dataset and all steps 

corresponding to the eight columns of Table S1: regression, predicting counterfactual outcomes, 

and calculation of Y1 – Y0 for each individual. 
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Web Table 1:  The full data with predicted outcomes based on the main-effects only regression 

model 2: E(Y|A,W1,W2) = 2.87 - 0.36*A + 1.06*W1 + 0.13*W2. Includes examples for each 

possible covariate pattern, with one observation per ID. 

    
 
 

ID: 
(1)   
  
  

W1 

(2) 
 
 

W2 

(3)
 
 

A

(4)
Observed 
value of 

Y

(5)
Predicted 
value of 

Y

(6)
Calculated 

value of 
Y0

(7) 
Calculated 

value of 
Y1 

 
(8)

Calculated
Y1 ‐ Y0

1  0  0  0 2.34 2.87 2.87 2.51  ‐0.36
2  0  0  1 3.06 2.51 2.87 2.51  ‐0.36
3  0  1  0 2.87 2.99 2.99 2.64  ‐0.36
4  0  1  1 2.95 2.64 2.99 2.64  ‐0.36
5  1  0  0 3.99 3.93 3.93 3.57  ‐0.36
6  1  0  1 3.76 3.57 3.93 3.57  ‐0.36
7  1  1  0 3.24 4.05 4.05 3.70  ‐0.36
8  1  1  1 3.84 3.70 4.05 3.70  ‐0.36

 
Columns 4 through 8 are in units of liters. 

Observed data are in the shaded section of the table.   
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In contrast to the situation when there is no covariate/exposure interaction as in Table S1, the 

presence of an interaction term in the Q-model implies that the effect of exposure is 

heterogeneous and depends on the level of another covariate. We present such a case in Table 

S2, which like Table S1 contains observed and predicted Y values for one subject in each of the 

eight unique combinations of covariates and treatment. In Table S2, the Q-model used for 

prediction is regression model 4, which has a covariate/exposure interaction term.  

Model 4: E(Y|A,W1,W2) = 2.95 - 0.49 *A + 1.05*W1 + 0.31*A*W2.  As a result, the exposure 

effect is different among those observations where W2 = 0, as compared to those for whom W2 = 

1. This is demonstrated by the two unique values in Table S2, column (8): for some individuals, 

Y1 – Y0 equals -0.49L, while for others this value is -0.18L. The difference is 0.31L, the 

coefficient for A*W2. In this scenario, the g-computation approach and the traditional approach 

estimate different treatment effects, because the g-computation estimator averages the effect 

across all individuals into a single, marginal treatment effect of -0.34L (calculated from the full 

data).  

 

In Appendix 2, we provide R code demonstrating the simulation of the dataset and all steps 

corresponding to the eight columns of Table S2: regression, predicting counterfactual outcomes, 

and calculation of Y1 – Y0 for each individual. 
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Web Table 2:  The full data with predicted outcomes based on regression model 4 with 

interaction:  E(Y|A,W1,W2) = 2.95 - 0.49 *A + 1.05*W1 + 0.31*A*W2.  Includes examples for each 

possible covariate pattern, with one observation per ID.  

 
    

 
 

ID: 

(1)  
 
 

W1 

(2) 
 
 

W2 

(3)

A

(4)
Observed 
value of 

Y

(5)
Predicted 
value of 

Y

(6)
Calculated 

value of 
Y0

(7) 
Calculated 

value of 
Y1 

(8)

Calculated
Y1‐Y0

1  0  0  0 2.34 2.95 2.95 2.46  ‐0.49
2  0  0  1 3.06 2.46 2.95 2.46  ‐0.49
3  0  1  0 2.87 2.95 2.95 2.77  ‐0.18
4  0  1  1 2.95 2.77 2.95 2.77  ‐0.18
5  1  0  0 3.99 4.00 4.00 3.51  ‐0.49
6  1  0  1 3.76 3.51 4.00 3.51  ‐0.49
7  1  1  0 3.24 4.00 4.00 3.82  ‐0.18
8  1  1  1 3.84 3.82 4.00 3.82  ‐0.18
         

 
Columns 4 through 8 are in units of liters. 

Observed data are in the shaded section of the table. 
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To use an MSM to calculate an effect estimate with the same Q-model as in Table S2, the dataset 

could be structured as follows in Table S3.  Note that there are now two records per ID: the 

observed values are included in one record, and now each ID has a second record where the 

value of the treatment has been reversed (i.e. if observed A = 0, then a = 1 in the new record). 

This setup highlights the missing data structure inherent in observed data: by necessity, only 

observed values of A and Y (columns (3) and (4), respectively), are included. By intervening on a 

(column (5)) and using g-computation to predict values of Y for all treatments, for all records—

even those that were unobserved—we simulate the full data. 

 

Thus, a general Ya variable for all the counterfactual outcomes is created (column (6)). The 

values from columns (6) and (7) in Table S2 are replicated Table S3, column (6) below.  Once 

this structure is created for all observations in the original dataset, regress Ya (column (6)) on a 

(column (5)) to get the marginal effect of interest. From Table 3 of the paper, we can see when 

model 4 is used as the Q-model, the g-computation estimate for the marginal effect of a equals -

0.34L, which is very close to the truth of the simulation protocol, where β=-0.35L.   
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Web Table 3: The full data with predicted outcomes based on Regression Model 4 with 

interaction:  

E(Y|A,W1,W2) = 2.95 - 0.49*A + 1.05*W1 + 0.31*A*W2. Includes examples for each possible 

covariate pattern, with two records per ID (corresponding to a=1 and a=0). 

 
 
 
 

ID: 

(1) 
 
 

W1 

(2) 
 
 

W2 

(3)

A 

(4)
Observed 
value of Y

(5)

a

(6)
Calculated 

value of 
Ya

1  0  0  0  2.34 0 2.95
1  0  0  unobserved  unobserved  1 2.46
2  0  0  unobserved  unobserved  0 2.95
2  0  0  1  3.06 1 2.46
3  0  1  0  2.87 0 2.95
3  0  1  unobserved  unobserved  1 2.77
4  0  1  unobserved  unobserved  0 2.95
4  0  1  1  2.95 1 2.77
5  1  0  Unobserved  unobserved  0 4.00
5  1  0  1  3.99 1 3.51
6  1  0  0  3.76 0 4.00
6  1  0  Unobserved  unobserved  1 3.51
7  1  1  0  3.24 0 4.00
7  1  1  unobserved  unobserved  1 3.82
8  1  1  unobserved  unobserved  0 4.00
8  1  1  1  3.84 1 3.82

 

Columns 4 and 6 are in units of liters. 

Observed data are in the shaded section of the table.   
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Web Appendix 2 

By following this annotated R code, the reader is able to perform all steps required to 

generate Tables S1 and S2. The code demonstrates the simulation of the dataset, the regressions 

implemented (corresponding to regression models 2 and 4), the prediction of counterfactual 

outcomes, and the calculation of Y1 – Y0 for each individual. The tables that this code generates 

show columns 1 – 8 as represented in Tables S1 and S2, with rows for all 300 observations rather 

than the 8 example rows shown in the preceding tables. 

 

##Generate simulated data set 
n<-300 
set.seed(285)  
simdata<-data.frame(W1 = rbinom(n,1,0.4), W2=rbinom(n,1,0.5))  
simdata<-transform(simdata, # add A 
 A = rbinom(n,1,(0.5+0.2*W1-0.3*W2))) 
simdata<-transform(simdata, # add Y 
 Y = rnorm(n,(3-0.5*A+W1+0.3*A*W2),.4)) 
 
##S1 
## Perform regression with main effects of W1,W2 
## Corresponds to Table S1, which uses regression model 2 
reg2<-glm(Y~A+W1+W2, data=simdata, family=gaussian)    
summary(reg2) 
 
## Create predicted Y_A for all observations 
Ypred.S1<-predict(reg2) 
 
## Generate data sets where a is set to 0 and 1 
simdata.A0<-transform(simdata, A=0) 
simdata.A1<-transform(simdata, A=1) 
 
## Create Y_0 for all observations, sets a=0 
Y0.S1<-predict(reg2,newdata=simdata.A0) 
 
## Create Y_1 for all observations, sets a=1 
Y1.S1<-predict(reg2,newdata=simdata.A1) 
 
## Calculate (Y_1 - Y_0) for each individual 
difference.S1<-Y1.S1-Y0.S1 
 
## Create summary table 
table1<-cbind(simdata[,c("W1", "W2", "A")], "Y"=round(simdata[,"Y"],2), 
"Ypred"=round(Ypred.S1,2), "Y_0"=round(Y0.S1,2), "Y_1"=round(Y1.S1,2), "Y_1-
Y_0"=round(difference.S1,2)) 
 
## Show all variables (W1, W2, A, Y, Y_pred, Y_0, Y_1) and (Y_1 - Y_0) for each of the 
300 observations 
## This corresponds to the 8 columns in Table S1, for all 300 observations 
table1 
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##S2 
## Perform regression on original data, now including W1 and interaction between A*W2  
## Corresponds to Table S2, which uses regression model 4 
reg4<-glm(Y~A+W1+A:W2, data=simdata, family=gaussian) 
summary(reg4) 
 
## Create predicted Y_A for all observations, sets A=a  
Ypred.S2<-predict(reg4) 
 
## Create Y_0 for all observations, sets a=0 
Y0.S2<-predict(reg4,newdata=simdata.A0) 
 
## Create Y_1 for all observations, sets a=1 
Y1.S2<-predict(reg4,newdata=simdata.A1) 
 
## Calculate (Y_1 - Y_0) for each individual 
difference.S2<-Y1.S2-Y0.S2 
 
## Create summary table 
table2<-cbind(simdata[,c("W1", "W2", "A")], "Y"=round(simdata[,"Y"],2), 
"Ypred"=round(Ypred.S2,2), "Y_0"=round(Y0.S2,2), "Y_1"=round(Y1.S2,2), "Y_1-
Y_0"=round(difference.S2,2)) 
 
## Show all variables (W1, W2, A, Y, Y_pred, Y_0, Y_1) and (Y_1 - Y_0) for each of the 
300 observations 
## This corresponds to the 8 columns in Table S2, for all 300 observations 
table2 

 


