Supplementary information for

Single molecule identification via electric current noise

Makusu Tsutsui, Masateru Taniguchi & Tomoji Kawai

The Supplementary Information includes:

- 1. Supplementary Figures S1-S4
- 2. Supplementary References

Supplementary Figure S1. Repeated formation and breaking of Au-1,6-hexanedithiol (HDT)-Au structures using a break junction method at room temperatures implemented prior to the sample cooling to 4 K. (a) A schematic illustration of MCBJ set up. In experiments, Au junction was opened/closed cyclically through controlling the substrate bending at the junction stretching speed $v_d = 6$ pm/s at room temperatures in a vacuum. (b) Conductance traces during stretching of junctions at $v_d = 6$ pm/s at room temperatures. Plateaus were often observed at $G \sim 10^{-3} G_0$ signifying formation of Au-HDT-Au single molecule bridges. (c) The corresponding histogram constructed with 150 *G-t* traces without any data selection reveals a peak at $G \sim 1.3 \times 10^{-3} G_0$ (green arrow).

Supplementary Figure S2. *G-t* curve during formation of a HDT single molecule bridge at 4 K. When a temperature was stabilized at 4 K, we created a HDT single molecule bridge using a self-breaking method^{41,42}. In this method, a fused Au contact is stretched at a programmed speed until the junction conductance declines to below 5 G_0 . Thereafter, the junction is stretched at $v_d = 6$ pm/s so as to gently rupture Au contact and form a stable molecular junction. The *G-t* curve exhibited a flat plateau at 1 G_0 and a subsequent conductance drop to $G \sim 1.3 \text{ m}G_0$. The conductance drop at 1 G_0 denotes breaking of a Au single-atom chain possessing a fully opened channel for electron transmission⁴³, whereas the conductance plateau at G < 1 G_0 can be considered as signifying formation of a molecular bridge between the nano-MCBJ electrodes⁴⁴. It is noticeable that $G \sim 1.3 \text{ m}G_0$ is representative of conductance states of Au-HDT-Au single molecule bridges with hollow-hollow geometries at the metal-molecule linkages as reported previously⁴⁵⁻⁴⁷. Therefore, we could attribute the conductance plateau at $G \sim 1.3 \text{ m}G_0$ to trapping of a single HDT molecule between two Au probes.

Supplementary Figure S3. Inelastic electron tunnelling spectroscopy (IETS) performed on a single HDT molecule at 4 K. (a) A measurement scheme based on a lock-in method used to acquire a single molecule IET spectrum. (b) Plots of differential conductance of a HDT single-molecule junction formed at 4 K as a function of bias voltage V_b . We observed a stepwise increase in d/dV_b that signify contributions of inelastic channels to electron transmission through a HDT molecule at a characteristic bias voltage $V_p = h\omega_p/e$, where $h\omega_p$ and e are the molecular vibration energy of the IETS-active modes and the electron charge, respectively. (c) An IET spectrum obtained numerically from the d/dV_b - V_b curve in (b). Pronounced peaks are observed corresponding to the d/dV_b steps in (b). The peaks marked by arrows can all be assigned to the IETS-active molecular vibrational modes: The peak at $V_p = 32$ mV can be assigned to v(Au-S) of a metal-molecule link, while the others at $V_p = 70$ mV, 133 mV, 198 mV, and 368 mV are attributable to $\delta_r(CH_2)$, v(C-C), $\gamma_w(CH_2)$, and $v_s(CH_2)$ of an alkyl chain, in accordance to previous works⁴⁷⁻⁵⁰. This spectrum may thus be interpreted as a vibrational fingerprint for HDT molecules.

Supplementary Figure S4. Fitting of the average current versus bias voltage (*<b-V_b*) curve obtained for a HDT single-molecule junction. Simmon's model has been employed to fit the *<l>-V_b* plots shown in Fig. 2a of the main text, which describes exponential dependence of current flowing through a double-barrier tunnelling system on the tunnelling barrier height Φ_B and width $L^{45, 51-53}$. We fitted by using γ and Φ_B as fitting parameters under an empirical criterion of $\beta = \gamma \Phi_B$ 0.8 Å⁻¹ from literatures^{45,53} (green: $\gamma = 1.032$, $\Phi_B = 0.6$ eV; red: $\gamma = 0.843$, $\Phi_B = 0.9$ eV; $\gamma = 0.46$, $\Phi_B = 3.0$ eV). As we show above, we obtained a linear *I-V_b* in case when $\Phi_B = 3$ eV. This situation corresponds to an alignment of the Au Fermi level to the middle of the HOMO-LUMO gap of a hexanedithiol (HDT) molecule. To fit the plots with the Simmon's model, we find that Φ_B has to be lowered to 0.6 eV, the value of which seems to be too low considering the relatively wide HOMO-LUMO gap of HDT molecules (6 eV). These results serve to support the validity of the linear elastic tunnelling contributions assumed in the present study.

Supplementary References

41. Tsutsui, M., Shoji, K., Taniguchi, M. & Kawai, T. Formation and self-breaking mechanism of stable atom-sized junctions. *Nano Lett.* **8**, 345-349 (2008).

42. Tsutsui, M., Taniguchi, M. & Kawai, T. Atomistic mechanics and formation mechanism of metal-molecule-metal junctions. *Nano Lett.* **9**, 2433-2439 (2009).

43. Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. *Phys. Rep.* **377**, 81-279 (2003).

44. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. *Science* **301**, 1221 (2003).

45. Li, X., He, J., Hihath, J., Xu, B., Lindsay, S. M. & Tao, N. J. Conductance of single alkanedithiols: conduction mechanism and effect of molecule-electrode contacts. *J. Am. Chem. Soc.* **128**, 2135-2141 (2006).

46. Fujihira, M., Suzuki, M., Fujii, S. & Nishikawa, A. Contacts through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: Effects of conformational change in an alkane chain from gauche to trans and binding sites of thiolates on gold. *Phys. Chem. Chem. Phys.* **8**, 3876-3884 (2006).

47. Taniguchi, M., Tsutsui, M., Yokota, K. & Kawai, T. Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal-molecule-metal junctions. *Chem. Sci.* **1**, 247-253 (2010).

48. Wang, W., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. *Nano Lett.* **4**, 643-646 (2004).

49. Okabayashi, N., Konda, Y. & Komeda, T. Inelastic electron tunneling spectroscopy of an alkanethiol self-assembled monolayer using scanning tunneling microscopy. *Phys. Rev. Lett.*100, 217801 (2008).

50. Jiang, J.. Kula, M., Lu, W. & Luo, Y. First-principle simulations of inelastic electron tunneling spectroscopy of molecular electronic devices. *Nano Lett.* **5**, 1551-1555 (2005).

51. Simmons, J. G. Generalized formula for the electronic tunnel effect between similar electrodes separated by a thin insulating film. *J. Appl. Phys.* **34**, 1793 (1963).

52. Wang, W. Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. *Phys. Rev. B* **68**, 035416 (2003).

53. Tomfohr, J. K. & Sankey, O. F. Complex band structure, decay lengths, and Fermi level alignment in simple molecular electronic systems. *Phys. Rev. B* **65**, 245105 (2002).