Supplementary information

The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice

Kanako Tatsumi^{1, 2}, Harumi Yamamoto-Mukai², Ritsuko Shimizu³, Satoshi Waguri⁴, Yu-Shin Sou¹, Ayako Sakamoto¹, Choji Taya⁵, Hiroshi Shitara⁵, Takahiko Hara⁶, Chin Ha Chung⁷, Keiji Tanaka¹, Masayuki Yamamoto² and Masaaki Komatsu^{1, 8}

¹Protein Metabolism Project, ⁵Laboratory of Mouse Models for Human Heritable Diseases, ⁶Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan

²Department of Medical Biochemistry, ³Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8575, Japan ⁴Department of Anatomy and Histology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan

⁷School of Biological Science, Seoul National University, Seoul 151-742, Korea ⁸PRESTO, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan

Supplementary figures

Supplementary Figure S1. Uba5 activates Ufm1 but not other ubiquitin-like proteins (UBLs). (a) Immunoblot analysis. FLAG-Uba5^{C250S} together with each GFP-UBL were expressed in HEK293T cells. The cell lysates (top panels) and immunoprecipitants by anti-FLAG antibody (bottom panels) were subjected to SDS-PAGE, followed by immunoblot analysis with the indicated antibodies. (b) Immunoblot analysis of UBL-conjugations in *Uba5*-knockout mouse embryonic fibroblasts (MEFs). GFP-tagged UBLs were expressed in wild-type or *Uba5*-deficient MEFs. The cell lysates and immunoprecipitants by anti-GFP antibody were subjected to SDS-PAGE followed by immunoblot analysis with anti-GFP antibody. Asterisks: irrelevant bands.

Supplementary Figure S2. Generation of *Uba5* **knockout mice.** (a) Schematic representation of the targeting vector and the targeted allele of the *Uba5* gene. The coding exons numbered in accordance with the initiation site as exon 1 are depicted by black boxes. Asterisk: the essential cysteine residue on exon 7. SpeI, SpeI sites; BamHI, BamHI site; BgIII, BgIII site; neo, neomycin resistance gene cassette; DT-A, diphtheria toxin gene. (b) Expression of Uba5 transcript. Total RNA was extracted from each genotyped MEF. The Uba5 transcript level was detected by RT-PCR. (c) Immunoblot analysis of Uba5 in MEFs. The lysates were immunoblotted with anti-Ufm1, anti-Uba5 and anti-actin antibodies. Arrows: presumptive target proteins for ufmylation (e.g. 39- and 51-kDa bands).

Supplementary Figure S3. Schemas for erythroid differentiation and FACS analyses. (**a**) Schematic diagram of erythropoiesis from haematopoietic stem cells (HSCs). CMP, common myeloid progenitor; MEP, megakaryocyte/erythroid progenitor; BFU-E, erythroid burst-forming unit; CFU-E, erythroid colony-forming unit; Pro-EB, proerythroblast; Baso-EB, basophilic erythroblast; Poly-EB: polychromatic erythroblast; Ortho-EB, orthochromatic erythroblast; RBC, red blood cell; CLP, common lymphoid progenitor; GMP, granulocyte macrophage progenitor. (**b**) Schematic diagram of Pro-EB (Ter119^{med}CD71^{high}), Baso-EB (Ter119^{high}CD71^{high}), Poly-EB (Ter119^{high}CD71^{med}) and Ortho-EB (Ter119^{high}CD71^{low}) populations by FACS analysis. (**c**) Schematic diagram of CMP (CD34^{high}FcγRII/III^{low}), MEP (CD34^{low}FcγRII/III^{low}) and GMP (CD34^{high}FcγRII/III^{high}) populations by FACS analysis.

Supplementary Figure S4. Generation of mouse lines expressing *Uba5* in

erythroid lineage. (a) Genomic structure of the mouse *Gata-1* gene and construction of the *Gata-1*-HRD-*Uba5* and *Gata-1*-HRD-*GFP* transgenes. The coding exons numbered in accordance with the initiation site (IE) as exon 1 are depicted by black boxes. (b) Expression of Uba5 in the transgenic lines. Whole cell lysates were prepared from the spleen and bone marrow of 4-week-old transgenic mice and subsequently subjected to immunoblot analysis with an anti-Uba5 antibody. An anti-actin antibody was used as an internal control. (c) Expression of GFP in the transgenic lines. GFP-positive peripheral blood samples were analysed by FACS. Percent values denote the proportion of GFP-positive cells in peripheral blood of 4-week-old transgenic mice. (d, e, f and g) GFP-positive peripheral blood cells were sub-fractionated into erythroid cells (d), CD61-expressing cells representing lymphoid cells (f), and Gr1- and Mac1-expressing cells representing myeloid cells (g).

Supplementary Figure S5. Morphological comparison of the different mouse genotypes. (a) Haematoxylin & eosin-stained sections of livers from mice with the indicated genotype at E11.5 and E12.5. Arrows: abnormal multinucleated erythrocytes. Bars: top panel, 100 μ m; bottom panel, 20 μ m. (b) TUNEL staining of livers from mice with the indicated genotype at E12.5. Bars: top panel, 100 μ m; bottom panel, 20 μ m.

Supplementary table

Supplementary Table S1. List of E1s and their corresponding UBLs and E2s in humans.

E1 enzyme	UBL	E2 enzyme
UBA1	UBIQUITIN	Many
UBA2-AOS1	SUMO1, 2, 3	UBC9
UBA3-ULA1	NEDD8	UBC12
UBA4	URM1	Unknown
UBA5	UFM1	UFC1
UBA6	UBIQUITIN, FAT10	USE1
UBE1L	ISG15	UBCH8
ATG7	ATG12, LC3	ATG10, ATG3