
 

 

WEB APPENDIX   

Weight and survival estimation  

The weight, )( )(iyW is defined as,  
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 For observed visits prior to artificial censoring, the denominator of )( )(iyW  is a participant’s 

probability of remaining not censored due to artificial censoring through visit )(iy  given ( 1)L u  , 

V ,  and that the participant remained event and censor-free prior to visit )(iy . Similarly, the 

numerator is a participant’s probability of remaining not artificially censored through visit )(iy  

given that the participant remained event and censor-free prior to visit )(iy . For visits on or after 

artificial censoring, 0)( )( iyW . 

  To estimate the numerator and denominator of the weights for a given participant and 

visit, the following two pooled logistic regression models can be fit,  

logit 0[ ( ) 0 | ( 1) 0, ( 1) 0, ( 1) 0] uP A u A u B u M u          (2) 
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where logit ))1/(ln( ppp  . The parameters 0u and 0u  are the visit specific intercepts 

without and with inclusion of the time-fixed and time-varying common predictors in the pooled 

model, respectively. The parameter 1   is the transpose of the column vector of log hazard ratios 



 

 

for the time-fixed common predictors comprising V and 2   is the transpose of the column vector 

of log hazard ratios for the time-varying common predictor histories that comprise ( 1)L u  . 

Assuming exchangeability and correct model specification, the following equations adapted 

from Robins and Finkelstein (3) may be used to estimate the survival function corrected for 

selection bias due to artificial censoring.  
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Let jt be the time corresponding to the jth  visit where an event was observed to occur during the 

visit, jR be the subset of the baseline cohort where ji ty  , and jD is the subset of jR who 

develop the outcome at time jt . Therefore, in equations (4) and (5), 
^

( )i jW t  is the estimated 

weight for participant i at time jt , ˆ( )jt is the estimated hazard at time jt , and )(ˆ tS  is the 

estimated survival at time t . For the case when artificial censoring is non-informative,
^

( ) 1i jW t   

for each i at all jt ’s. Thus equation (4) reduces to the classical representation of the hazard at time 

jt , jj rd / , where jd and jr are  the number of observed events and risk set size at time jt , 

respectively. 



 

 

 Simulated bias and mean squared error estimates of the survival function in various settings  

Simulations were performed to demonstrate the bias in the IPCW survival function estimate 

that can occur in the context of each of the following: small sample size, strong selection bias, 

unmeasured common predictors, and model misspecification. For all examined scenarios, 500 

simulations of sample size 50 or 500 were performed. Failure times were generated from a 

Weibull distribution (i.e.,  ( ) exp{ / }S t t
  ) where   and  for the baseline survival 

function was 9.0 and 2.5, respectively. Failure times were generated as a function of time-fixed 

binary covariates 1z and 2z where the relative hazard of failure was specified to be 12.2 for both 

covariates. The prevalence of 1z and 2z was 50% and the proportion of failure times that were 

censored was 60%.  

Scenario (I) corresponded to a censoring mechanism that does not induce selection bias. The 

sample size was 500 and censoring times were generated from an exponential distribution (i.e., 

 ( ) exp{ / }S c c   ) independently of 1z and 2z . The for the baseline survival function was 

2.7.  Scenario (II) corresponded to a censoring mechanism that induces selection bias. The 

sample size was 500 and censoring times were generated from an exponential distribution as a 

function of 1z and 2z . The for the baseline survival function was 12.2 and the relative hazard of 

censoring as a function of 1z and 2z  was 4.5. Scenario (III) corresponded to a censoring 

mechanism that induces selection bias in the context of small sample size. The sample size was 

50 and censoring times were generated from an exponential distribution as a function of 1z and 

2z . The for the baseline survival function was 12.2 and the relative hazard of censoring as a 

function of 1z and 2z  was 4.5. 



 

 

Scenario (IV) corresponded to a censoring mechanism that induces strong selection bias. The 

sample size was 500 and censoring times were generated from an exponential distribution as a 

function of 1z and 2z . The  for the baseline survival function was 33.1 and the relative hazard 

of censoring as a function of 1z and 2z  was 12.2. Scenario (V) corresponded to a censoring 

mechanism that induces selection bias in the context of an unmeasured common predictor, 2z  . 

The sample size was 500 and censoring times were generated from an exponential distribution as 

a function of 1z and 2z . The for the baseline survival function was 12.2 and the relative hazard 

of censoring as a function of 1z and 2z  was 4.5. Scenario (VI) corresponded to a censoring 

mechanism that induces selection bias in the context of a misspecified common predictor, 2z  . 

The sample size was 500 and censoring times were generated from an exponential distribution as 

a function of 1z and 2z . The for the baseline survival function was 12.2. The relative hazard of 

censoring as a function of 1z and 2z  was 4.5. 

Web Figures 1 and 2 show mean survival and mean squared error (MSE) for the standard 

KM and IPCW estimates for each of the above described simulation scenarios. Scenario (I) 

demonstrates that in the absence of selection bias due to censoring and a sufficiently large 

sample size the standard KM and IPCW estimators can be used to obtain unbiased estimates of 

survival with MSEs equal to the variance. However, as in scenario (II), in the presence of 

selection bias the standard KM estimator will likely be biased, while the IPCW estimator when 

necessary assumptions are met will yield an unbiased estimate of the survival function. When 

necessary assumptions are violated by small sample size (scenario (III)), strong selection bias 

(scenario (IV)), an unmeasured common predictor (scenario (V)), or model misspecification 

(scenario (VI)), the IPCW survival function may be biased with a substantial MSE. However like 



 

 

in scenario (VI), violation of necessary assumptions does not always result in biased estimates. A 

similar pattern was observed for the median survival for the standard KM and IPCW estimates 

for each of the examined simulation scenarios.  

 

Distribution of AIDS events by calendar time and HAART initiation 

Web Figure 3 shows the distribution of AIDS events by calendar time and 

HAART initiation among 467 seroconverters in the MACS population. Nodes in 

dotted boxes correspond to participants who initiated HAART during follow-up.  

For the administrative censoring at 1996 analysis, the node labeled “205 (AIDS 

≤1996)” contributed the 205 AIDS events. The “2 (HAART <1996)” node, 26 from 

the “27 (HAART ≥1996)” node, the “13 (AIDS while HAART naïve)” node, 118 

from the “138 (initiated HAART) node and 71 from the “82 (remained HAART 

naïve)” node contributed the 230 censored observations. Differences between the 

specified sample size for a given node and the actual number of participants 

contributing to the administrative censoring at 1996 analysis are due to the exclusion 

of participants who seroconverted at or after 1996 from the administrative censoring 

at 1996 analysis.  

For the artificial censoring at HAART initiation analysis, the nodes labeled “205 

(AIDS ≤1996)” and “13 (AIDS while HAART naïve)” contributed the 218 AIDS 

events. The nodes labeled “220 AIDS-free” and “29 Post-HAART initiation” 

contributed the 249 censored observations.  

  



 

 

Distribution of weights for HAART initiation 

Web Figure 4 shows the distribution of the weights for HAART initiation among the 467 

seroconverters used in the IPCW analysis by years since infection. Lines at the 1st and 99th 

percentile are included in Web Figure 4. For all times, the minimum, 1st percentile, 25th 

percentile, median, 75th percentile, 99th percentile, and maximum weights were, 0.10, 0.30, 1.00, 

1.00, 1.00, 1.80, and 7.47, respectively. The mean weight was 0.98. The standard deviation of the 

weights was 0.26. Although the range of the weights increased with years since infection, no 

weights were extreme. 



 

 

Web Figure 1. Simulated Bias of Estimates of the Survival Function in Various Settings. 

Abbreviations: IPCW, inverse probability-of-censoring weights; KM, Kaplan-Meier. 



 

 



 

 

 

Web Figure 2. Simulated Mean Squared Error of Estimates of the Survival Function in Various 

Settings. Abbreviations: IPCW, inverse probability-of-censoring weights; KM, Kaplan-Meier.  



 

 



 

 

 

Web Figure 3. Distribution of AIDS Events by Calendar time and HAART 

Initiation among 467 Seroconverters in the Multicenter AIDS cohort study, 1984-

2008. Nodes in Dotted Boxes Correspond to Participants who Initiated HAART 

during Follow-up. Abbreviations: HAART, Highly Active Antiretroviral Therapy.  
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Web Figure 4. Distribution of Weights for HAART Initiation by Years since Seroconversion 

among 467 Seroconverters in the Multicenter AIDS Cohort Study, 1984-2008. 

 

 




