
1

Supplemental Data

GBOOST: A GPU-based tool

for detecting gene-gene interactions

in genome-wide case-control studies
Ling Sing Yung, Can Yang, Xiang Wan, and Weichuan Yu

In this supplementary document, we first describe some details of the Graphical

Processing Unit (GPU) implementation of Boolean operation based screening and

testing (BOOST) [1]. Then, we illustrate the performance improvement of GBOOST

and some visualization functions.

1 Recommended hardware, platform and software version

for GBOOST

CPU : Intel CPU 2.13GHz or above

Main Memory : 2 GB or above

Display Card : Nvidia GTX 285

Operating System : Windows Vista x64

CUDA Driver : 2.3

Please refer to http://www.nvidia.com/object/cuda_gpus.html for a list of CUDA

Enabled GPUs.

http://www.nvidia.com/object/cuda_gpus.html

2

2 GPU Implementation of BOOST

GBOOST is a C++ parallel implementation of the BOOST method [1] using Compute

Unified Device Architecture (CUDA) runtime application programming interface (API)

[2]. Threads, blocks and grids are basic components of CUDA architecture. A thread is

the smallest working unit in CUDA. A computation problem can be divided into

sub-tasks and every GPU core is responsible for one or multiple sub-tasks of the

original problem. A block is formed by multiple threads. Grids are a collection of

thread blocks. They represent all tasks of the original problem. The GPU

implementation of BOOST is divided into two main stages: problem partition and

memory optimization.

2.1 Problem Partition

BOOST collects contingency tables of all single-nucleotide polymorphism (SNP) pairs.

We use the contingency tables to compute the likelihood ratio statistic in the

screening stage. A predefined threshold is employed to filter out non-significant

interactions. The survivors are then scored by a classical likelihood ratio test in the

testing stage. For any SNP pair(𝑆𝑁𝑃𝑖 , 𝑆𝑁𝑃𝑗), the contingency table is the same as

that for the pair(𝑆𝑁𝑃𝑗 , 𝑆𝑁𝑃𝑖). Thus, half of the computation can be saved if we go

through all SNP pairs following a triangle pattern, as shown in figure S1.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

3

 𝑗 = 0 1 2 3 4 5 6 …

𝑖 = 0

1

2

3

4

5

6

…

Figure S1: Problem domain of the pairwise gene-gene interaction analysis. Each block

represents a SNP pair in the gene-gene interaction analysis and the shaded blocks are SNP pairs

required to examine. Here 𝒊 and 𝒋 indicates the SNP indices of a specified SNP pair.

To achieve load balancing and effectively utilize the computation resources,

GBOOST divides all SNP pairs (the shaded blocks in figure S1) into different subsets.

Figure S2 gives an example of the partition scheme for a dataset with 8 SNPs. A larger

number of threads running concurrently will lead to a better performance of the GPU

program, but one should note that the maximum number of concurrent threads is

limited by the registers used per thread. In GBOOST, most registers are used to

temporally store contingency tables. Considering that the memory requirement for

storing contingency tables of all SNP pairs from a human genome dataset far exceeds

the capacity of the best GPU available in the market and that the number of thread

blocks per grid is limited by the GPU hardware, we decided to compute partial results

and output significant SNP pairs step by step.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

4

 𝑗 = 0 1 2 3 4 5 6 7

𝑖 = 0 Grid 1, Block 1

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7

1 Grid 1, Block 2

Thread 8 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

2

Thread 6 Thread 7 Thread 8 Thread 1 Thread 2

3 Grid 1, Block 3

Thread 3 Thread 4 Thread 5 Thread 6

4

Thread 7 Thread 8 Thread 1

5 Grid 1, Block 4

Thread 2 Thread 3

6

Thread 4

7

Figure S2: A toy example of the partition scheme in GBOOST. Here 𝒊 and 𝒋 indicates the SNP

indices of SNP pairs. The grid size is 1, the block size is 8 and the thread size is 8. The thread size

can be any number smaller than or equal to the block size. If the thread size exceeds the block

size, some threads will be idle at all time and will waste valuable computer resources.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

5

2.2 Memory optimization

High memory bandwidth is one of the key advantages of GPU. While CPUs only have

cache and Random Access Memory (RAM), GPUs have more types of computer

memory with different speed and size. For Nivida display card with CUDA support,

there are four different types of computer memory: global memory, texture memory,

shared memory and constant memory. Optimizing the use of memory becomes the

key issue to achieve a high speed-up. Global memory is the largest memory available

in GPU. It supports coalesced memory access. A coalesced memory access completes

memory operations of multiple threads in a single transaction. Perfectly aligned

memory blocks speed up memory operations effectively.

 Normally, the genome-wide SNP data is represented as a 𝑝 × 𝑛 matrix with 𝑝

denoting the number of SNPs and 𝑛 the number of samples. Each element in this

huge matrix will have a value of 0, 1 or 2, corresponding to the genotype AA, Aa, aa,

respectively. In BOOST, we use Type index to indicate these three genotypes, i.e.

{Type 0, Type 1, Type 2} correspond to {AA, Aa, aa}. BOOST also compactly stores the

genotypes of every 64 samples in three bit strings (please refer to [1] for more

details). Figure S3 uses a toy example to illustrate the conversion of the 𝑝 × 𝑛

matrix to the bit representation used in BOOST.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

6

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8

𝑀 =

𝑋1 0 2 1 1 2 2 0 0 1 1 2 2 0 1 0 0

𝑋2 2 1 1 1 0 0 0 1 2 2 0 0 0 1 0 1

(a) Input matrix 𝐌

 Control Disease

𝑀𝑏𝑖𝑡 =

𝑋1 = 0 10000011 00001011

𝑋1 = 1 00110000 11000100

𝑋1 = 2 01001100 00110000

𝑋2 = 0 00001110 00111010

𝑋2 = 1 01110001 00000101

𝑋2 = 2 10000000 11000000

(b) Bit representation of 𝐌

Figure S3: Matrix conversion in BOOST. The input matrix is a 𝟐 × 𝟏𝟔 matrix. Each sample has a

genotype label {0,1,2} corresponding to {AA,Aa,aa}. 𝑪𝒙 and 𝑫𝒙 denote control samples and

disease sample, respectively. After performing type conversion, the eight control samples of

𝑿𝟏 [𝟎𝟐𝟏𝟏𝟐𝟐𝟎𝟎] have a new representation of three bit strings (i.e. 𝑿𝟏 = 𝟎: [𝟏𝟎𝟎𝟎𝟎𝟎𝟏𝟏],

𝑿𝟏 = 𝟏: [𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎], and 𝑿𝟏 = 𝟐: [𝟎𝟏𝟎𝟎𝟏𝟏𝟎𝟎]).

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

7

The data structure in BOOST follows the input order of SNP index, Type index

and Sample index, as shown in figure S4. However, this structure is bad for GPU

memory access and leads to a poor performance in collecting contingency tables in

GPU kernels. To accelerate the collection of contingency tables, the bit

representation of data has been restructured to maximize the number of coalesced

memory access. As SNP pairs follow a triangle pattern, a consecutive thread will work

on a consecutive SNP. The bit representation is therefore restructured to follow the

computational order of the SNP pairs in GBOOST with the data structure having an

order of Type index, Sample index, and SNP index, as shown in figure S5. This

converts most memory operations into coalesced memory access and reduces the

total number of memory transactions significantly.

The texture memory is a cached read-only memory. We use it to store the

pre-computed bin count for counting the number of 1's in a bit string. Shared

memory has similar performance as register and is shared between threads in the

same block. In GBOOST, computations of different SNP pairs are independent. Shared

memory is therefore used with constant memory and serves as temporal storage to

reduce register usage. Thus, more threads can run concurrently in a block as fewer

registers are used per thread.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

8

Address 1 Address 2 Address 3 Address 4 Address 5 Address 6

SNP 1 SNP 1 SNP 1 SNP 1 SNP 1 SNP 1

Type 0 Type 0 Type 1 Type 1 Type 2 Type 2

Sample 0-63 Sample 64-127 Sample 0-63 Sample 64-127 Sample 0-63 Sample 64-127

Address 7 Address 8 Address 9 Address 10 Address 11 Address 12

SNP 2 SNP 2 SNP 2 SNP 2 SNP 2 SNP 2

Type 0 Type 0 Type 1 Type 1 Type 2 Type 2

Sample 0-63 Sample 64-127 Sample 0-63 Sample 64-127 Sample 0-63 Sample 64-127

Address 13 Address 14 Address 15 Address 16 Address 17 Address 18

SNP 3 SNP 3 SNP 3 SNP 3 SNP 3 SNP 3

Type 0 Type 0 Type 1 Type 1 Type 2 Type 2

Sample 0-63 Sample 64-127 Sample 0-63 Sample 64-127 Sample 0-63 Sample 64-127

Figure S4: Structure of input data in BOOST. There are 128 samples in the figure. BOOST forms a

data group for every 64 samples and stores the group information in a 64-bit integer. The 64-bit

integers are then ordered by SNP index, Type index and Sample index in the memory.

Address 1 Address 2 Address 3 Address 4 Address 5 …

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

Type 0 Type 0 Type 0 Type 0 Type 0 …

Sample 0-63 Sample 0-63 Sample 0-63 Sample 0-63 Sample 0-63

Address N+1 Address N+2 Address N+3 Address N+4 Address N+5 …

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

Type 0 Type 0 Type 0 Type 0 Type 0 …

Sample 64-127 Sample 64-127 Sample 64-127 Sample 64-127 Sample 64-127

Address 2N+1 Address 2N+2 Address 2N+3 Address 2N+4 Address 2N+5 …

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

Type 1 Type 1 Type 1 Type 1 Type 1 …

Sample 0-63 Sample 0-63 Sample 0-63 Sample 0-63 Sample 0-63

Figure S5: Different structure of input data in GBOOST. Here N is the number of SNPs in the

dataset. There are 128 samples in the figure. GBOOST uses the same strategy as BOOST to

group every 64 samples into a 64-bit integer, but GBOOST orders the 64-bit integers by Type

index, Sample index and SNP index. Thus, consecutive threads have a better chance to group

memory access into coalesced memory access to maximize the memory throughput.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

9

3 Performance of GBOOST on different datasets with

different thread sizes, block sizes and optimization

techniques

In this section, we first present running time of GBOOST on different datasets with

different thread sizes and block sizes. Then, we show the work distribution of the

datasets. Finally, we compare the performance of GBOOST with different settings and

explain the reasons of the performance variations. The reported performance time in

this section includes the execution of “Screening”, “Testing” and overhead of the

memory transactions between GPU and CPU. We exclude time spent on loading data

from the disk to CPU main memory and time spent on saving the computation results

back to the disk.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

10

3.1 Performance on different datasets with different thread

sizes, block sizes

Figures S6, S7 and S8 show consistence performance of GBOOST under different

thread numbers and block sizes. This illustrates that GBOOST is scalable and achieves

stable performance for small simulation datasets as well as large genome-wide

datasets.

Figure S6: Performance of GBOOST on simulation data (p=1,000, n=5,000) with different thread

numbers and block sizes. Here 𝒑 denotes the number of SNPs and 𝒏 denotes the sample size.

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

10
5

Thread Number

T
im

e
 p

e
r

1
0

0
0

0
0
 S

N
P

 c
o

m
p

a
ri
s
o

n
s
 (

m
s
)

Blocksize = 1

Blocksize = 10

Blocksize = 100

Blocksize = 1000

Serial Program

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

11

Figure S7: Performance of GBOOST on simulation data (p=10,000, n=5,000) with different

thread numbers and block sizes. Here 𝒑 denotes the number of SNPs and 𝒏 denotes the

sample size.

Figure S8: Performance of GBOOST on Wellcome Trust Case Control Consortium Type 1

Diabetes (WTCCC T1D) chromosome 1 data (p=28,121, n=5,004) with different thread numbers

and block sizes. Here 𝒑 denotes the number of SNPs and 𝒏 denotes the sample size.

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

10
5

Thread Number

T
im

e
 p

e
r

1
0

0
0

0
0
 S

N
P

 c
o

m
p

a
ri
s
o

n
s
 (

m
s
)

Blocksize = 1

Blocksize = 10

Blocksize = 100

Blocksize = 1000

Blocksize = 10000

Serial Program

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

10
5

Thread Number

T
im

e
 p

e
r

1
0

0
0

0
0
 S

N
P

 c
o

m
p

a
ri
s
o

n
s
 (

m
s
)

Blocksize = 1

Blocksize = 10

Blocksize = 100

Blocksize = 1000

Blocksize = 10000

Serial Program

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

12

3.2 Work Distribution

(a) Simulation data (p=1,000, n=5,000)

(b) Simulation data (p=10,000, n=5,000)

(c) WTCCC T1D chromosome 1 data (p=28,121, n=5,004)

Figure S9: Work distribution of GBOOST on different datasets. Here 𝒑 denotes the number of

SNPs and 𝒏 denotes the sample size.

From the experimental results presented in figure S9, we observe that additional

overhead of the memory transactions between CPU and GPU is about 7 % of the

total execution time in GBOOST (excluding time on loading data from the disk and

saving the results to the disk).

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

13

3.3 Performance with different optimization techniques

Table S1: Algorithms with different data types, data structures, bit string counting algorithms

and register limits in GBOOST.

Figure S10 shows the performance of GBOOST with different settings on the

WTCCC T1D chromosome 1 data. We can observe a significant gap between the first

algorithm and other algorithms. This is because there is a limitation of concurrent

threads accessing the constant memory in GPUs. This limitation forces multiple

threads accessing the constant memory serially and leads to a significant degradation

in performance. Also, the gap between the second algorithm and the last algorithm

gives a conclusion that maximizing coalesced global memory operations is the key

optimization technique to achieve a high speed-up.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

14

Figure S10: Performance of GBOOST with different settings on Wellcome Trust Case Control

Consortium Type 1 Diabetes (WTCCC T1D) chromosome 1 data (p=28,121, n=5,004) with block

size 10000. Here 𝒑 denotes the number of SNPs and 𝒏 denotes the sample size. For

algorithm I, VI, and VII, there are not enough registers to run the setting of 512 threads. Table

S1 summaries the differences between the algorithms.

Setting a hard limit on register usage does not have serious effects on the

performance of GBOOST. GBOOST has a simple GPU kernel with a low register usage.

Thus, registers are not the bottleneck of the current GPU implementation of

GBOOST.

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

Thread Number

T
im

e
 p

e
r

1
0
0
0
0
 S

N
P

 c
o
m

p
a
ri
s
o
n
s
 (

m
s
)

Algorithm I

Algorithm II

Algorithm III

Algorithm IV

Algorithm V

Algorithm VI

Algorithm VII

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

15

4 Visualization Examples

4.1 Pathway Graph

Figure S11: A pathway graph generated using GBOOST GUI output API.

Figure S11 shows the relationship of different SNPs with different pathways. The

node in a pathway graph represents a SNP and its score denotes the marginal

association. The edge connecting two nodes represents the Chi-Square statistic of

the SNP pair. Nodes (SNPs) with the same pathway will be grouped and organized on

a circle. In figure S11, there are 4 groups of SNPs. The largest group contains SNPs

with unknown pathway, while the other three groups contain SNPs with known

pathway and have only one entry. Interfaces are available to selectively show the

score, pathway name or SNP name as the node label. The selected node is

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

16

highlighted in yellow and its neighbor nodes are highlighted in green. After inputting

a threshold, we can highlight edges with scores larger than the threshold value.

4.2 Manhattan Plot

Figure S12: A Manhattan plot generated using GBOOST GUI output API.

A Manhattan plot shows the marginal associations of all SNPs in one dataset.

Manhattan plot is a common visualization technique in Genome-Wide Association

Studies (GWAS). We implement this feature as a basic visualization tool in GBOOST

Graphical User Interface (GUI). SNPs at different chromosomes are indicated by

different colors. The x-axis and y-axis represent the location indices of all SNPs and

the Chi-Square values, respectively. Figure S12 shows the Manhattan plot of the

association analysis result obtained from the Wellcome Trust Case Control

Consortium Type 2 Diabetes (WTCCC T2D) dataset.

Supplementary
GBOOST : A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies

17

5 References

[1] X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan, N. Tang and W. Yu, "BOOST: A Boolean

Representation-based Method for Detecting SNP-SNP Interactions in Genome-wide

Association Studies," The American Journal of Human Genetics, vol. 87, pp. 325-340,

2010.

[2] Nvidia Corporation, "NVIDIA CUDA programming guide 2.3," 2009.

