Supplementary Data

Supplementary Data S1 (Text). Detailed metholology used for real-time PCR, T-RFLP analysis and clone library construction.

Supplementary Data S2 (Figure). Detrended correspondence analysis (DCA) of T-RFLP relative abundance profiles from a) 2006 and b) 2007. Coloured convex hulls indicate glacier groups. Distinct community structures are observed between glaciers, in particular, AB (red) appears to be considerably different from ML (blue) and VB (green).

Supplementary Data S3 (Figure). Mean linear correlation coefficient of logtransformed T-RFLP abundance data for all pairwise comparisons of all the holes on each glacier was lowest for AB

Supplementary Data S4 (Table). Distance matrices (metres) for the holes sampled on each glacier.

Supplementary Data S5 (Table). Summary of physiological measurements obtained from cryoconite holes in 2006 and used in CCA (Figure 4). Results of statistical analyses of differences between glaciers are also shown using ANOVA or Kruskal-Wallis (K-W) non-parametric tests.

Supplementary Data S6 (Table). Table of data (eigenvalues etc.) relating to the CCA presented as Figure 4.

•Supplementary Data S7 (Figure). Analysis of cryoconite dust particles. A) Size distribution of cryoconite ash from the three glaciers. B) Cryoconite granules from AB706 under plane polarising light showing the mineral particles aggregated into cryoconite granules by dark coloured material x10; C) Cross-polarising light micrograph showing asharp-edged lithic clast x25, AB703; D) A mica particle showing sharp edges also indicative of local origin, ML706 x63

•Supplementary Data S8 (Table). Sequence similarity (% identity) of clones identified as 54 OTUs discrete at the 97% identity cut-off threshold along with nearest SEQMATCH hit and predicted T-RF length.

Supplementary Data S9 (Table). Chi-squared analysis of clone abundance on different glaciers by OTU, phylum and class.

Supplementary Data S1 (Text). Detailed metholology used for Quantitative (real-time) PCR, T-RFLP analysis and clone library construction.

1. Real-time PCR estimation of bacterial and archaeal abundance

DNA (23 ng in5 μ l) extracted from the sediment of 12 cryoconites was used as template in real-time PCR reactions using a SYBR Green I Real-Time PCR mix (ABgene, Ltd. Epsom, Surrey, UK). Primer pairs 27F (5'-AGAGTTTGATCCTGGCTCAG) and 1389R (5'-ACGGGCGGTGTGTACAAG) were used for bacteria and either Arch021F (5'-TTCCGGTTGATCCYGCCGGA)-Arch958R (5'-YCCGGCGTTGAMTCCAATT) or *mcr*AF (5'-TTCGGTGGATCDCARAGRGC) – *mcr*AR (5'-GBARGTCGWAWCCGTAGAATCC) for archaea and methanogenic archaea respectively (each primer at a concentration of 300 nM). Four replicate PCR reactions were conducted for each DNA sample in a Bio-Rad iQ cycler with 15 min at 94°C to activate the hotstart *Taq* polymerase and 30 cycles of 90 sec at 94°C, 54°C and 105 sec at 72°C and a final extension of 30 min at 72°C. Melt curve analyses were conducted on samples after amplification and iQCycler software used to derive C_t values for each reaction. All reactions were conducted in a single run to allow comparisons.

Real-time PCR with bacterial 16S primers demonstrated the ubiquity and abundance of bacteria in cryoconites (Mean threshold cycle, C_t 19.3± 1.80 SD), with lower C_t values being observed for samples from VB glacier than AB and ML (ANOVA; *F*=6.19, *P*=0.004) for bacteria, as shown in Table 1. However, primers targeting the Archaea and methanogen 16S rRNA gene did not yield any specific product, with C_t values above 30 and 35 respectively (with no distinct PCR product by melt curve analysis or gel electrophoresis; data not shown). Subsequent attempts to amplify archaeal using the Archaea-specific primers and conditions suggested by Lyimo *et al.* (Arch07 [5'-TTGATCCTGCCAGAGGYYA] - Arch1406 [5'-ACGGGCGGTGTGTGCCAAG];; Arch021F [5'-TTCCGGTTGATCCYGCCGGA] -Arch1406) were also unsuccessful in amplifying archaeal DNA from cryoconite sediment. Even when nested PCR was tested, cloning and sequencing of the resulting PCR products did not reveal any archaeal 16S rRNA genes (data not shown).

2. Terminal Restriction Fragment Length Polymorphism (T-RFLP)

PCR amplification of DNA extracted from all 36 of the sampled cryoconites was conducted with primers 27F (5' tagged with fluorophore Cy5) and 1389R (without fluorophore). Reactions (25 μ L) contained 2 μ l (9 ng) DNA, 300 nM of each primer, 2.75 mM MgCl₂, 32 μ g BSA and 200 μ M of each dNTP in PCR buffer (Colourless Go*Taq* flexi) and Go*Taq* DNA polymerase, according to the manufacturer's instructions (Promega, Inc., Madison, Wisconsin, USA). The amplification conditions were as follows: 10 min at 94 °C, followed by 30 cycles of one min each at 94°C, 53°C and 72°C, followed by 10 min at 72°C.

In order to eliminate residual *Taq* polymerase activity, PCR products were subsequently treated for one hour at 37°C with *Exo*I nuclease (1U per reaction, Fermentas UK, York, UK; to degrade unbound primers) and shrimp alkaline phosphatase (0.025U per reaction, Fermentas UK; to dephosphorylate dNTPs). This treatment prevented both the filling-in of sticky ends and addition of "plus A" artefacts during subsequent restriction digestion.

Supplementary Data S1 (Text) continued

Restriction digestion of PCR products was conducted in 50 μ l volumes with 10 μ l of DNA and 30U of *Hae*III (Promega) incubated for five hours at 37°C. Digested DNA was purified using MinElute cleanup columns (Qiagen, Inc, Crawley, West Sussex, UK), eluted into 10 μ L water and quantified using a NanoDrop spectrophotometer (Labtech International). Fifty nanograms of DNA were mixed with 40 μ l SLS buffer (Beckman-Coulter, High Wycombe, Bucks, UK) and labelled size standard (DNA size Standard Kit -600 [608095]; bands from 50 bp to 600 bp; Beckman-Coulter) and loaded onto a Beckman-Coulter CEQ-8000 capillary electrophoresis system for separation using the Frag-4 program.

Raw data were analysed using the Fragments module of Beckman-Coulter's CEQ-8000 Genetic Analysis System. Samples were filtered to exclude peaks less than 100 relative fluorescence units or with a slope threshold less than 10% and a relative peak height threshold of 20% before sizing by Local Southern size calling with reference to the 600 bp size standard. Samples showing more than 5% current change per minute or missing more than 3 size standards were excluded from analysis using the *AFLP* routine of the software. A binary presence/absence matrix and a peak height matrix were exported to Microsoft Excel. Subsequently, peak height data was converted to relative abundance with each peak height as percentage of the total sample peak height.

2. Clone library construction and sequencing

Three clone libraries, one for each glacier, were constructed using the 27F-1389R PCR products obtained from the qPCR experiment (see above and Table 1). For each glacier, 16 PCR products (four replicates for four samples; two holes per year) were pooled, cleaned to remove residual primers and nucleotides using QIAQuick columns (Qiagen, Ltd. Crawley, Sussex UK) and concentrated using a SpeedVac (Thermo Savant, Reading, UK). Ligation into the T-tailed pGEM-T Easy vector (Promega UK, Ltd. Southampton, UK.) was conducted according to the manufacturer's instructions with 3 µl of PCR product, and transformed into High efficiency JM109 *Escherichia coli* chemically-competent cells (Promega UK, Ltd. Southampton, UK.) Following overnight selection on LB-carbenicillin:X-Gal:IPTG plates, white colonies per glacier were picked and incubated in Terrific Broth supplemented with carbenicillin (100 µg l⁻¹) PCR was conducted directly from 2 µl of bacterial cells with primers M13F (5'-GTAAAACGACGGCCAGT) and M13R (5'-CAGGAAACAGCTATGAC). The resulting PCR products (32 per glacier) were purified using Montage Seq96 sequencing reaction plates (Millipore, Inc. Bedford, MA. USA) and sequenced (Macrogen, Inc., Seoul, Korea) using the 27F

primer. Potentially chimeric sequences using Bellerophon (Huber et al., 2004) and Pintail (Ashelford et al., 2005). Sequence trace files were imported into *myRDP* (Cole et al., 2007) and trimmed using the Phred and Lucy components, before being individually aligned and classified against the ribosomal database using the RNACAD and the RDP classifier components.

References

Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005). At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71: 7724-7736.

Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM et al (2007). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35: D169-172.

Guo YQ, Liu JX, Zhu WY, McSweeney C (2007). Shifts of rumen microbial population detected by real-time PCR when methanogens are inhibited. J Anim Feed Sci **16**: 107-112.

Huber T, Faulkner G, Hugenholtz P (2004). Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319.

Lyimo TJ, Pol A, Jetten MSM, Op den Camp HJM (2009). Diversity of methanogenic archaea in a mangrove sediment and isolation of a new *Methanococcoides* strain. FEMS Microbiol Letters **291:** 247–253.

b) DCA of 2007 T-RFLP relative abundances

Supplementary Data S2 (Figure). Detrended correspondence analysis (DCA) of T-RFLP relative abundance profiles from a) 2006 and b) 2007. Coloured convex hulls indicate glacier groups. Distinct community structures are observed between glaciers, in particular, AB (red) appears to be considerably different from ML (blue) and VB (green).

Supplementary Data S3 (Figure). Mean linear correlation coefficient of logtransformed T-RFLP abundance data for all pairwise comparisons of all the holes on each glacier was lowest for AB • **Supplementary Data S4 (Table).** Distance matrices (metres) for the holes sampled on each glacier.

	ML701	ML702	ML703	ML704	ML705	ML706
ML701	0					
ML702	408	0				
ML703	466	61	0			
ML704	651	243	185	0		
ML705	598	193	133	61	0	
ML706	655	250	190	39	57	0

	AB702	AB703	AB704	AB705	AB706
AB702	0				
AB703	37	0			
AB704	23	58	0		
AB705	205	242	185	0	
AB706	334	371	315	130	0

	VB706	VB705	VB704	VB703	VB702	VB701
VB706	0					
VB705	154	0				
VB704	319	166	0			
VB703	625	476	310	0		
VB702	813	662	495	193	0	
VB701	1043	890	724	427	234	0

Supplementary Data S5 (Table). Summary of physiological measurements obtained from cryoconite holes in 2006. Only those samples listed in bold font were used for CCA analysis (Figure 4).. Results of statistical analyses of differences between glaciers are also shown using ANOVA or Kruskal-Wallis (K-W) and Mann-Whitney non-parametric tests. Different letters following glacier means indicate those means which are significantly different.

						Sediment	Meltwater				
Sample	Temp	Area	Volume	% ash	Depth	PP	PP	Respiration	DIC	pCO ₂	pН
code	(°C)	(m²)	(I)	weight	(cm)	(µg C g⁻¹h⁻¹)	(µg C l⁻¹h⁻¹)	(µg C g ⁻¹ h ⁻¹)	(mg l⁻¹)	(µatm)	
AB601	1.0	0.290	5.80	94.99	2.0	2.24	5.01	0.64	0.000	0.0	5.49
AB602	0.9	0.045	4.20	94.49	9.5	0.51	2.45	0.72	0.211	472.6	5.62
AB603	1.5	0.187	4.70	96.39	2.5	2.72	3.38	0.70	0.894	2046.3	5.56
AB604	0.5	0.104	6.20	96.27	6.0	2.99	5.29	0.75	0.401	880.3	5.68
AB605	1.0	0.161	16.10	95.49	10.0	0.79	8.00	0.43	0.283	614.2	5.71
AB606	0.2	0.127	3.80	96.59	3.0	3.38	0.53	0.26	0.727	1585.5	5.70
AB6a	0.2	0.083	1.70	ND	2.0	0.89	1.40	0.59	0.977	2358.8	5.34
AB6b	0.2	0.144	7.20	ND	5.0	1.10	1.13	0.69	0.138	335.5	5.30
AB6c	0.2	0.078	2.70	ND	3.5	0.63	1.66	1.19	0.003	6.4	5.00
AB6d	0.3	0.024	1.20	ND	5.0	0.82	8.41	0.75	0.005	12.1	4.86
AB6e	1.3	0.086	1.70	ND	2.0	0.47	10.49	0.59	0.002	4.8	5.06
AB6f	0.1	0.058	1.20	ND	2.0	4.40	6.57	0.38	0.049	115.7	5.43
AB6g	0.2	0.161	3.20	ND	2.0	1.43	4.32	0.67	0.001	3.3	5.14
AB6h	0.7	0.116	14.50	ND	12.5	2.67	9.01	0.55	0.003	6.4	5.00
AB6i	0.7	0.182	10.90	ND	6.0	5.25	7.43	0.67	0.001	3.7	5.12
AB Mean	0.6a	0.123a	5.67ab	ND	4.9	2.02a	5.01	0.64a	0.246	563.0	5.33
ML601	0.1	0.047	0.47	94.66	1.0	3.97	18.35	0.99	0.307	722.6	5.46
ML602	0.2	0.069	2.80	95.30	4.0	31.04	0.72	1.30	0.186	409.9	5.67
ML603	0.2	0.051	2.00	94.16	4.0	14.13	0.46	0.95	0.292	674.2	5.53
ML6a	0.1	0.023	0.70	ND	3.0	3.04	8.46	1.24	0.271	613.3	5.60
ML6b	0.1	0.023	3.30	ND	14.0	7.38	1.02	1.13	0.057	134.0	5.47
ML6c	0.2	0.055	3.30	ND	6.0	12.12	1.58	1.13	0.000	0.1	5.83
ML6d	0.1	0.064	1.30	ND	2.0	17.20	4.12	0.91	0.184	402.6	5.69
ML6e	0.2	0.032	1.30	ND	4.0	21.00	4.77	1.37	0.097	206.4	5.75
ML6f	0.1	0.044	2.60	ND	6.0	31.81	6.40	1.28	0.750	1767.7	5.45
ML6g	0.1	0.046	1.90	ND	4.0	7.02	0.38	1.44	0.000	0.4	5.60
ML Mean	0.1b	0.041b	2.06a	ND	5.6	14.22b	3.82	1.22b	0.194	446.4	5.63
VB601	0.1	0.175	19.30	93.36	11.0	8.43	3.10	1.33	0.206	452.6	5.68
VB602	0.1	0.119	3.60	91.82	3.0	10.13	2.40	1.58	0.000	0.7	5.47
VB603	0.2	0.043	1.70	91.36	4.0	5.43	5.28	1.42	0.000	0.6	5.53
VB6a	0.5	0.178	7.10	ND	4.0	4.24	10.85	1.41	0.000	0.8	5.46
VB6b	0.5	0.094	14.10	ND	15.0	15.51	5.45	1.40	0.001	2.7	5.19
VB6c	0.2	0.029	0.86	ND	3.0	2.24	0.05	0.92	1.745	1582.7	6.66
VB Mean	0.3ab	0.106ab	7.78b	ND	6.7	7.66b	4.52	1.34b	0.325	340.0	5.67
ANOVA (p)	ND	ND	ND	**	ND	ND	0.961	<0.001	ND	ND	ND
ANOVA (F)	ND	ND	ND	**	ND	ND	0.04	34.65	ND	ND	ND
KW (p)	0.004	0.006	0.049	ND	0.674	<0.001	ND	ND	0.512	0.4	0.077
KW (H)	11.29	10.03	6.02	ND	0.79	18.63	ND	ND	1.34	1.83	5.12

**Percentage organic matter content was measured for all the cryoconite holes listed in Table 1 (ie from 2006 and 2007). Means±SD for AB, ML and VB were 3.67±1.62, 6.46±3.78 and 8.14±1.18 respectively. % organic matter was significantly lower for AB than ML and VB (p<0.001; F=10.03).

The range of the data and average values of primary production and respiration for these and other glaciers are published in Anesio et al. (2009).

Supplementary Data S6 (Table). Table of data (eigenvalues etc.) relating to the CCA presented as Figure 4.

Scores scaled by sample

٠

	Weig	Weighted mean Weighted SD			Inflation Factor						
Cryoco	Cryoconite temperature					0.45			6.16		
		Volume		5.91		5.81	1	2.39			
	% In	organic	1	94.54		1.69			24.75		
Р	rimary pro	oduction		7.63		8.41	1		11.99		
Primary produ	uction (me	eltwater)		4.55		4.90)	3.41			
• •	Repsira	tion rate		0.95		0.40)		21.42		
	pCO2			689.57 771.11			11	14.69			
	Ha			5.59 0.13			2.64				
		•									
Figonyaluos											
Ligenvalues	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8	Axis 9	Axis 10	
Eigenvalues	0.286	0.161	0.104	0.08	0.068	0.053	0.049	0.028	0.123	0.083	
Percentage	27.65	15.54	10.07	7.75	6.56	5.08	4.75	2.70	11.86	8.03	
Cum. Percentage	27.65	43.19	53.26	61.01	67.57	72.65	77.41	80.11	91.97	100.00	
Specenv. correlations	34.52 0.99	53.91 0.99	0.90	76.16 0.97	84.35 0.99	90.70 0.93	96.63 0.96	100.00 0.82			

Supplementary Data S7 (Figure). Analysis of cryoconite dust particles. A) Size distribution of cryoconite ash from the three glaciers ([pooled samples from ashed sediments from 2006 [AB601-606, ML601-606; VB601-606]). B) Cryoconite granules from AB706 under plane polarising light showing the mineral particles aggregated into cryoconite granules by dark coloured material x10; C) Cross-polarising light micrograph showing a sharp-edged lithic clast x25, AB703; D) A mica particle showing sharp edges also indicative of local origin, ML706 x63

• **Supplementary Data S8 (Table).** Sequence similarity (% identity) of clones identified as 54 OTUs discrete at the 97% identity cut-off threshold along with nearest SEQMATCH hit and predicted T-RF length.

OTU (97%	Clone	Glacier	Clone	Length	Predicted T	Phylum	Cenus	Nearest SFOMATCH hit and GenBank Accession of hit	Similarity	Nearest SEOMATCH Hit Habitat
1	1	AB	pbAB46	776	208	Acidobacteria	Gp3	Acidobacteria bacterium MPL1011; AM887761	0.995	Sphagnum peat, Tomsk
2	2	VB	pbVB78	767	184	Proteobacteria	unclassified_Betaproteobacte	alpha proteobacterium BAC11; EU180508	0.96	GAC filter waste treatment plant NL
4	4 5	ML	pbv Ba5 pbML10	820 756	389	Proteobacteria	Rhodopila Bdellovibrio	Bdellovibrio sp. HEA; AY294216	0.934	Soil
5	6	AB	pbAB62	803	202	Proteobacteria	unclassified_Incertae sedis 5	beta proteobacterium BAC126; EU180537	0.95	GAC filter waste treatment plant NL
6	8	AB AB	pbAB59 pbAB35	814 804	76 79	Proteobacteria Proteobacteria	Gluconacetobacter Gluconacetobacter	Gluconacetobacter sp. CC-88226; AY961985 Gluconacetobacter sp. CC-88226; AY961985	0.924 0.946	Isolate Isolate
7	9	VB	pbVB89	770	254	Bacteroidetes	Hymenobacter	Hymenobacter sp. 1004; EF423320	0.952	Glacier 1 of Tianshan Mountains
8	12	VB AB	pbVB75 pbAB57	788 802	304 304	Cyanobacteria Cyanobacteria	Phormidium Phormidium	Phormidium pristleyi ANT.LH66.1; AY493581 Phormidium pristleyi ANT I H66 1: AV493581	0.959	Antarctica Antarctica
8	16	ML	pbML8	621	304	Cyanobacteria	Phormidium	Phormidium pristleyi ANT.LH66.1; AY493581	0.989	Antarctica
8	10	VB	pbVB84	815	301	Cyanobacteria	Phormidium Phormidium	Phormidium pristleyi ANT.LH66.1; AY493581	0.927	Antarctica
8	14	VB VB	pbv B91 pbVB79	798	301	Cyanobacteria	Phormidium Phormidium	Phormidium pristleyi ANT.LH66.1: AY495581 Phormidium pristleyi ANT.LH66.1: AY493581	0.991	Antarctica
8	15	VB	pbVB68	812	304	Cyanobacteria	Phormidium	Phormidium pristleyi ANT.LH66.1; AY493581	0.985	Antarctica
9 10	17	AB VB	pbAB52 pbVB73	805 803	207	Proteobacteria Proteobacteria	Thiobacillus Sphingomonas	Rhodocyclaceae bacterium FTL11; DQ451827	0.981	Lake Fryxell, Antarctica Biological soil grusts Colorado plateau
10	19	VB	pbVB73 pbVB77	853	213	Actinobacteria	Leifsonia	uncultured actinobacterium; BIhi33; AJ318140	0.901	Waste gas filter, Osnabruck
12	25	AB	pbAB61	793	218	Actinobacteria	unclassified_Micrococcineae	uncultured actinobacterium; CrystalBog022E4; AY792229	0.982	Humic lake, Wisconsin
12	24	ML	pbML13 pbML17	754	218	Actinobacteria	unclassified_Micrococcineae	uncultured actinobacterium; CrystalBog022E4; AY 792229 uncultured actinobacterium: CrystalBog022E4; AY 792229	0.986	Humic lake, Wisconsin Humic lake, Wisconsin
12	20	ML	pbML4	753	218	Actinobacteria	unclassified_Micrococcineae	uncultured actinobacterium; CrystalBog022E4; AY792229	0.985	Humic lake, Wisconsin
12	23	ML	pbML7	788 760	218	Actinobacteria	unclassified_Micrococcineae	uncultured actinobacterium; CrystalBog022E4; AY792229 uncultured actinobacterium; CrystalBog022E4; AY792229	0.984	Humic lake, Wisconsin Humic lake, Wisconsin
13	26	AB	pbAB39	786	208	Actinobacteria	unclassified Frankineae	uncultured actinobacterium; E1B-A4-114; EF016798	0.955	Soil, Yungay, Atacama
14	27	ML	pbML15	779	57	Actinobacteria	unclassified_Frankineae	uncultured actinobacterium; FBP460; AY250884	0.961	Antarctic cryptoendolith community
15	29	AB ML	pbAB64 nbML6	783	227	Proteobacteria Proteobacteria	Sandarakinorhabdus Sandarakinorhabdus	uncultured alpha proteobacterium; C5; AJ867917 uncultured alpha proteobacterium: C5: AJ867917	0.955	Nival lake, Swiss Alps Nival lake, Swiss Alps
15	30	VB	pbVB86	755	227	Proteobacteria	Sandarakinorhabdus	uncultured alpha proteobacterium; C5; AJ867917	0.955	Nival lake, Swiss Alps
15	32	VB	pbVB76	780	231	Proteobacteria	Sandarakinorhabdus	uncultured alpha proteobacterium; C5; AJ867917	0.964	Nival lake, Swiss Alps
15	33	AB	pbvB/4 pbAB51	855 779	293 171	Proteobacteria	Novosphingobium	uncultured alpha proteobacterium; C5; AJ86/91/ uncultured alpha proteobacterium; CrystalBog022E8; AY79	0.958	Humic lake, Wisconsin
17	34	VB	pbVB90	761	293	Proteobacteria	Novosphingobium	uncultured alpha proteobacterium; SW22; AJ575705	0.973	Humic lake, Germany
18	35	VB VB	pbVB81 pbVB66	799 854	236	Cyanobacteria	unclassified_Cyanobacteria	uncultured Antarctic bacterium LB3-53; AF076159	0.885	Perennial ice covered antarctic lake
20	37	ML	pbVB00 pbML18	712	223	unclassified	unclassified Bacteria	uncultured bacterium; 1174-1091-13; AB128880	0.914	Deep marine sediements Nankai trough
20	39	ML	pbML2	758	223	unclassified	unclassified_Bacteria	uncultured bacterium; 1174-1091-13; AB128880	0.941	Deep marine sediements Nankai trough
20 21	38 40	ML VB	pbML25 nbVB94	593 853	277	unclassified Bacteroidetes	unclassified_Bacteria	uncultured bacterium; 1174-1091-13; AB128880 uncultured bacterium: 118ds10: AV212569	0.937	Deep marine sediements Nankai troug Manure contaminated stream
22	40	AB	pbAB44	820	234	Proteobacteria	unclassified_Myxococcales	uncultured bacterium; 1506; AB286567	0.958	Activated sludge, Japan
23	42	VB	pbVB69	808	205	Proteobacteria	Curvibacter	uncultured bacterium; 164ds20; AY212616	0.982	Manure contaminated stream
24	44	ML	pbML25 pbML1	854	246	Cyanobacteria	GpVI	uncultured bacterium; 2/SC/24; EU340169 uncultured bacterium; 2/SC/24; EU340169	0.808	Aquatic macrophyte, geothermal lake l
25	45	AB	pbAB41	790	294	Proteobacteria	Novosphingobium	uncultured bacterium; 2\SC\34; EU340176	0.947	Aquatic macrophyte, geothermal lake l
26 27	46	ML AB	pbML22 pbAB60	801 811	201	Proteobacteria Proteobacteria	unclassified_Cystobacteracea	uncultured bacterium; AKIW811; DQ129589 uncultured bacterium; ANTLV1 H10; DQ521501	0.912	Urban aerosol US Perennial ice Lake Vida Antarctica
27	47	AB	pbAB58	761	389	Proteobacteria	Sphingomonas	uncultured bacterium; ANTLV1_H10; DQ521501	0.993	Perennial ice Lake Vida Antarctica
27	49	AB	pbAB54	804	397	Proteobacteria	Lysobacter	uncultured bacterium; ANTLV2_F07; DQ521521	0.986	Perennial ice Lake Vida Antarctica
28 29	50 51	VB ML	pbvB95 pbML5	778	209	Acidobacteria	Gp1 Gp1	uncultured bacterium; AS43; AY963407 uncultured bacterium: AS43: AY963407	0.965	Forest soil SW China Forest soil SW China
30	52	VB	pbVB83	732	177	Proteobacteria	unclassified_Acetobacteracea	uncultured bacterium; BF0002B036; AM697086	0.967	Indoor dust, Finland
31	54	ML	pbML11	727	172	Proteobacteria Proteobacteria	unclassified_Acetobacteracea	uncultured bacterium; BF0002B067; AM697117	0.945	Indoor dust, Finland Mine drainage sediment. China
32	56	ML	pbAB34 pbML12	794	178	Proteobacteria	unclassified Acetobacteracea	uncultured bacterium; DBS-69; EU409119	0.930	Mine drainage sediment, China
33	58	ML	pbML26	722	252	unclassified	unclassified_Bacteria	uncultured bacterium; DC-II-8; DQ660863	0.934	Acid mine drainage, China
33	59 57	VB VB	pbVB67 nbVB96	855 827	246 246	unclassified	unclassified_Bacteria	uncultured bacterium; DC-II-8; DQ660863 uncultured bacterium: DC-II-8: DO660863	0.943	Acid mine drainage, China Acid mine drainage, China
34	61	ML	pbML20	787	70	Proteobacteria	Rhodopila	uncultured bacterium; ERF-C4; DQ906066	0.95	Rhizophere, Tinto river, Spain
34	60	ML	pbML30	760	166	Proteobacteria	Rhodopila	uncultured bacterium; ERF-C4; DQ906066	0.943	Rhizophere, Tinto river, Spain
35 36	62	AB	pbAB38 pbAB36	851	205	OP10	OP10 genera incertae sedis 5	uncultured bacterium; FCPO562; EF515518	0.986	Grassland soil, N California US
37	65	VB	pbVB70	786	221	OP10	OP10_genera_incertae_sedis	uncultured bacterium; FCPT757; EF516140	0.898	Grassland soil, N California US
38	67 66	AB	pbAB43 nbAB49	790 753	294	Proteobacteria Proteobacteria	Sphingomonas Sphingomonas	uncultured bacterium; FFCH11333; EU133353 uncultured bacterium; FFCH11333; EU133353	0.963	Grass prairie, Oklahoma US Grass prairie, Oklahoma US
39	68	ML	pbML3	703	185	Bacteroidetes	unclassified_Sphingobacteria	uncultured bacterium; FFCH2786; EU133755	0.881	Grass prairie, Oklahoma US
40	69	VB	pbVB92	779	219	Chloroflexi	unclassified_Caldilineacea	uncultured bacterium; FFCH517; EU134014	0.857	Grass prairie, Oklahoma US
41 42	70	AB	pbvB95 pbAB47	852 776	317	Bacteroidetes	Terrimonas	uncultured bacterium; FFCH7/71; EU135026 uncultured bacterium; FFCH9723; EU133627	0.899	Grass prairie, Oklahoma US Grass prairie, Oklahoma US
43	72	ML	pbML14	687	209	unclassified	unclassified_Bacteria	uncultured bacterium; IYF26; DQ984576	0.916	Mountain litterfall, Taiwan
44 45	73 74	AB VB	pbAB33 pbVB80	775 760	268 227	Planctomycetes Proteobacteria	unclassified_Planctomycetac	(uncultured bacterium; JEG.d6; DQ228400 uncultured bacterium; IEG vsd4; DQ228414	0.9	John Evans Glacier, Canada John Evans Clacier, Canada
46	75	VB	pbVB72	792	236	Acidobacteria	Gp1	uncultured bacterium; MNM13.1; DQ202227	0.929	Peatlands - Northern US
47	79	AB	pbAB63	792	238	Proteobacteria	Sphingomonas	uncultured bacterium; ORCA-3N113; DQ823177	0.978	Trail, Oregon Caves US
47	76	AB	pbAB55 pbAB42	754	294 297	Proteobacteria	Sphingomonas Sphingomonas	uncultured bacterium; ORCA-3N113; DQ823177 uncultured bacterium; ORCA-3N113; DO823177	0.972	Trail, Oregon Caves US
47	78	AB	pbAB45	780	298	Proteobacteria	Sphingomonas	uncultured bacterium; ORCA-3N113; DQ823177	0.951	Trail, Oregon Caves US
48	81	AB VB	pbAB48	712	211	Proteobacteria	unclassified_Incertae sedis 5	uncultured bacterium; SRRB38; AB240512	0.993	Root base, Sosei River Japan
50	83	ML	pbWL32	754	192	unclassified	unclassified_Bacteria	uncultured forest soil bacterium; DUNssu391 (+7C) (OTU#0	0.908	Forest soil, Germany
51	84	AB	pbAB37	797	199	unclassified	unclassified_Bacteria	uncultured soil bacterium; C062; AF507696	0.901	Pinyon juniper soil Arizona US
52 52	86 87	ML ML	pbML28 pbML16	755	812 814	Bacteroidetes	unclassified_Sphingobacteria	uncultured Sphingobacteria bacterium; ADK-BTh02-62; EF uncultured Sphingobacteria bacterium: ADK-BTh02-62; EF	0.934	Acid impacted lake, Adirondack US Acid impacted lake, Adirondack US
52	88	ML	pbML24	739	815	Bacteroidetes	unclassified_Sphingobacteria	uncultured Sphingobacteria bacterium; ADK-BTh02-62; EF	0.94	Acid impacted lake, Adirondack US
52	89	ML MI	pbML27	748	824	Bacteroidetes	unclassified_Sphingobacteria	uncultured Sphingobacteria bacterium; ADK-BTh02-62; EF	0.94	Acid impacted lake, Adirondack US
52	90 85	ML	pbML21 pbML31	804 805	865	Bacteroidetes	unclassified Sphingobacteria	uncultured Sphingobacteria bacterium; ADK-B1002-62; EF	0.957	Acid impacted lake, Adirondack US
53	92	AB	pbAB55	732	194	Proteobacteria	Rhodobacter	unidentified bacterium; R-23041; AJ786815	0.967	Commercial nitrifying inoculum, Belgi
53 54	91 93	AB VB	pbAB50 pbVB65	760 852	196 188	Proteobacteria Proteobacteria	Rhodobacter Variovorax	unidentified bacterium; R-23041; AJ786815 Variovorax sp. KS2D-23: AR196432	0.97 0.894	Commercial nitrifying inoculum, Belgi Soil, S Korea
54	94	VB	pbVB71	804	188	Proteobacteria	Variovorax	Variovorax sp. KS2D-23; AB196432	0.892	Soil, S Korea
Putative chir	neras		nhMI 10	700	179	Protocha-t	unclossified Alph	alnha protechastarium DAC222, EU100520	0.60	CAC filter wests tusstm
3 31	5 53		pbML19 pbML29	709	178	r roteobacteria Proteobacteria	unclassified Acetobacteracea	auncultured bacterium BAC233; EU180520 auncultured bacterium; BF0002B036; AM697086	0.89	Indoor dust, Finland
38	64		pbVB82	765	237	Proteobacteria	unclassified_Acetobacteracea	uncultured bacterium; FCPT506; EF516502	0.88	Grassland soil, N California US
50	80		pbAB40	752	279	Proteobacteria	Sphingomonas	uncultured bacterium; ORCA-3N113; DQ823177	0.899	Trail, Oregon Caves US

Supplementary Data S9 (Table). Chi-squared analysis of clone abundance on different glaciers by OTU, phylum and class.

•

	No. of clones							
OTU (97% cutoff)	Nearest SEQMATCH hit	AB	ML	VB	Total	Р	DF	Chi
55	uncultured bacterium; EU409119	0	6	0	6	0.0025	2	12.00
49	uncultured bacterium; DQ521521	4	0	0	4	0.0183	2	8.00
9	Hymenobacter sp.; EF423320	0	1	5	6	0.0302	2	7.00
21	uncultured actinobacterium; AY792229	0	3	0	3	0.0498	2	6.00
28	uncultured alpha proteobacterium; AJ867917	3	0	0	3	0.0498	2	6.00
13	Phormidium pristleyi; AY493581	1	4	1	6	0.2231	2	3.00
34	uncultured alpha proteobacterium; AJ575705	0	1	2	3	0.3679	2	2.00
16	Phormidium pristleyi; AY493581	1	1	3	5	0.4493	2	1.60

		No. o	f clor	nes			
Phylum	AB	ML	VB	Total	Р	DF	Chi
Proteobacteria	22	7	12	41	0.0140	2	8.54
Bacteroidetes	1	7	2	10	0.0450	2	6.20
Cyanobacteria	1	3	7	11	0.0784	2	5.09
unclassified_Bacteria	1	6	4	11	0.1778	2	3.45
Chloroflexi	0	0	1	1	0.3679	2	2.00
Planctomycetes	1	0	0	1	0.3679	2	2.00
Actinobacteria	2	5	2	9	0.3679	2	2.00
OP10	1	0	1	2	0.6065	2	1.00
Acidobacteria	1	1	2	4	0.7788	2	0.50
		No. o	f clor	nes			
Class	AB	ML	VB	Total	Р	DF	Chi
Alphaproteobacteria	16	5	8	29	0.0353	2	6.69
Betaproteobacteria	4	0	4	8	0.1353	2	4.00