
Supplemental Methods.

Here we prove that the unweighted and weighted Unifrac metrics are in gen-
eral metrics. The proofs are given in a general context that includes both of
these metrics as special cases.

Case 1: Unweighted case.
Consider a fixed and given set of indices L and a finite rooted tree, where

leaves are labeled using subsets of L (Fig. S1). Furthermore, assume there is
a certain weight function W that associates to each edge e a finite quantity
W (e) ≥ 0. In the context of the unweighted Unifrac metric, L is the set of
environmental samples that each leaf (i.e. sequence) is found in, and W (e) is
just the branch length of e.

In what follows, we use the letters a, b, c and l to denote generic indices in
L. Furthermore, we use e to denote a generic edge in the tree. To each e, let
L(e) be the union of the labels of all the leaves that descend from e (Fig. S1).
We write l ∈ L(e) to denote that l is in L(e). Otherwise, we write l /∈ L(e).

We show that the tree and weight function always induce a pseudo-metric
over L and give a necessary and sufficient condition for it to be a metric. In
particular, the unweighted UniFrac metric defines a pseudo-metric on the space
of environments, but a metric on the “location” of those environments relative
to a tree (Fig. S1).

Before stating the main definition and result, we introduce a notation clar-
ified via examples. Define Sab as the sum of the weights of all the e’s such
that a ∈ L(e) and b ∈ L(e). On the other hand, using the symbol ¬ to denote
negation, define Sa(¬b)(¬c) as the sum of the weights of all the edges e such that
a ∈ L(e), b /∈ L(e) and c /∈ L(e).

Define the d1-distance between a and b as the quantity:

d1(a, b) =

{
0 , when Sa(¬b) + S(¬a)b = 0;

Sa(¬b)+S(¬a)b

Sab+Sa(¬b)+S(¬a)b
, when Sa(¬b) + S(¬a)b > 0.

Theorem 1. For all a, b and c the following properties apply:

(i) d1(a, b) = d1(b, a) ≥ 0;

(ii) If a = b then d1(a, b) = 0;

(iii) d1(a, b) ≤ d1(a, c) + d1(c, b).

In particular, d1 defines a pseudo-metric over L. Furthermore, d1 is a metric
if and only if Sa(¬b) + S(¬a)b > 0, for all a 6= b.

Proof. The first and second properties are direct from the definition. To show
that d1 is a pseudo-metric, it only remains to show property (iii) i.e. that d1
satisfies the triangular inequality. For this, it suffices to consider the following
three cases:

(1) d1(a, b) = 0,

(2) d1(a, c) = 0 or d1(c, b) = 0, and

(3) d1(a, b) > 0, d1(a, c) > 0 and d1(c, b) > 0.

The first case is obvious because d1 is nonnegative.
For the second case, assume without loss of generality that d1(a, c) = 0 i.e.

that Sa(¬c) + S(¬a)c = 0. This means that a ∈ L(e) if and only if c ∈ L(e), for
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each edge e such that W (e) > 0. Therefore:

Sa(¬b) =
∑

e: a∈L(e), b/∈L(e)

W (e) =
∑

e: c∈L(e), b/∈L(e)

W (e) = Sc(¬b);

S(¬a)b =
∑

e: a/∈L(e), b∈L(e)

W (e) =
∑

e: c/∈L(e), b∈L(e)

W (e) = S(¬c)b;

Sab =
∑

e: a∈L(e), b∈L(e)

W (e) =
∑

e: c∈L(e), b∈L(e)

W (e) = Scb;

from which we deduce that d1(a, b) = d1(c, b); in particular, since d1(a, c) = 0,
d1(a, b) ≤ d1(c, b) +d1(a, c). This shows the triangular inequality for the second
case.

For the third and last case, consider the partition of the edges in the tree
according to the Venn diagram in Figure S2. Following the diagram, define
S1 = Sa(¬b)(¬c), S4 = Sab(¬c), S7 = Sabc, etc and notice that:

Sa(¬b) = (S1 + S6) ; S(¬a)b = (S2 + S5) ; Sab = (S4 + S7);
Sa(¬c) = (S1 + S4) ; S(¬a)c = (S3 + S5) ; Sac = (S6 + S7);
Sc(¬b) = (S3 + S6) ; S(¬c)b = (S2 + S4) ; Scb = (S5 + S7).

Therefore:

d1(a, b) =
S1 + S2 + S5 + S6

S1 + S2 + S4 + S5 + S6 + S7
;

d1(a, c) =
S1 + S3 + S4 + S5

S1 + S3 + S4 + S5 + S6 + S7
;

d1(c, b) =
S2 + S3 + S4 + S6

S2 + S3 + S4 + S5 + S6 + S7
.

Based on the previous identities, if one defines

p = (S1+S2+S4+S5+S6+S7)·(S1+S3+S4+S5+S6+S7)·(S2+S3+S4+S5+S6+S7);

q = S2
1S2 + S2

1S3 + S2
1S4 + S2

1S6 + S1S
2
2 + S1S

2
3 + 3S1S

2
4 + S1S

2
6

+S2
2S3 + S2

2S4 + S2
2S5 + S2S

2
3 + 3S2S

2
4 + S2S

2
5 + 2S2

3S4 + S2
3S5

+S2
3S6 + 2S2

3S7 + 4S3S
2
4 + S3S

2
5 + S3S

2
6 + 2S3S

2
7 + 2S2

4S4+ 4S2
4S5

+4S2
4S6 + 4S2

4S7 + 2S4S
2
5 + 2S4S

2
6 + 2S4S

2
7 + 2S1S2S3 + 4S1S2S4

+2S1S2S5 + 2S1S2S6 + 2S1S2S7 + 4S1S3S4 + 2S1S3S5 + 2S1S3S6

+2S1S3S7 + 3S1S4S5 + 4S1S4S6 + 3S1S4S7 + S1S5S6 + S1S6S7

+4S2S3S4 + 2S2S3S5 + 2S2S3S6 + 2S2S3S7 + 4S2S4S5 + 3S2S4S6

+3S2S4S7 + S2S5S6 + S2S5S7 + 5S3S4S5 + 5S3S4S6 + 6S3S4S7

+2S3S5S6 + 3S3S5S7 + 3S3S6S7 + 4S4S5S6 + 4S4S5S7 + 4S4S6S7;

then p · {d1(a, c) + d1(c, b) − d1(a, b)} = q. Since p > 0 and q ≥ 0, d1 satisfies
the triangular inequality, proving that d1 is a pseudo-metric.

Due to properties (I)-(III), d1 is a metric only when d1(a, b) > 0, for all
a 6= b. From the given definition, it is clear that this last property applies only
when Sa(¬b) + S(¬a)b > 0, for all a 6= b, which completes the proof of the theo-
rem. �

Case 2: Weighted case.
Consider now a finite rooted tree where leaves are labeled using multi-subsets

of L (Fig. S3). As before, assume there is a certain weight function W that
associates to each edge e a finite quantity W (e) ≥ 0. In addition, for each l ∈ L,
assume there is a weight function Wl that associates to each e a nonnegative
and finite quantity Wl(e). For the weighted Unifrac metric, W (e) is the branch
length of e, and Wl(e) is the fraction of times that l occurs as an element in
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the multi-sets associated with the leaves that descend from e, relative to the
number of times that l occurs in all of the multi-sets (Fig. S3).

The d2-distance between a and b is now defined as the quantity:

d2(a, b) =
∑
e

W (e) · |Wa(e)−Wb(e)|.

Theorem 2. d2 defines a pseudo-metric over L. Furthermore, d2 is a met-
ric if and only if, for all a 6= b, there exists e such that W (e)·|Wa(e)−Wb(e)| > 0.

Proof. It is immediate from the definition that d2(a, b) ≥ 0 and if a = b then
d2(a, b) = 0. On the other hand, using that |x + y| ≤ |x| + |y|, for any pair of
real numbers x and y, we obtain that

d2(a, b) =
∑
e

W (e) · |Wa(e)−Wb(e)|;

=
∑
e

W (e) ·
∣∣(Wa(e)−Wc(e)

)
+
(
Wc(e)−Wb(e)

)∣∣ ;
≤

∑
e

W (e) · |Wa(e)−Wc(e)|+
∑
e

W (e) · |Wc(e)−Wb(e)|;

= d2(a, c) + d2(c, b).

This shows that d2 is a pseudo-metric. In particular, d2 is a metric only when
d2(a, b) > 0, for all a 6= b. Since this last property holds only when, for all a 6= b,
there is e such that W (e) · |Wa(e)−Wb(e)| > 0, the theorem follows. �

Figure S1. Rooted tree in which leaves are labeled using subsets of L = {a, b, c, d}.
Notice that L(e1) = {a, b, c, d} and L(e2) = {a}. On the other hand, S(¬a)b = W (e5),

Sa(¬b) = W (e2) + W (e7) + W (e9), and Sab = W (e1) + W (e3) + W (e4). Relative to

this tree and weight function W , if S(¬a)b + Sa(¬b) > 0 then:

d1(a, b) =
W (e2) +W (e5) +W (e7) +W (e9)

W (e1) +W (e2) +W (e3) +W (e4) +W (e5) +W (e7) +W (e9)
.

Due to Theorem 1, d1 is a pseudo-metric. In this particular case, however, d1 is

not a metric because, for instance, c 6= d and yet d1(c, d) = 0. This is consistent with

the fact that c and d cannot be told apart in any leave. Hence, in a sense, c and d are

located at the same “place” on the tree.
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Figure S2. Venn diagram used to prove the triangular inequality in Theorem 1. A

is the set of all those edges e such that a ∈ L(e). Similarly, B = {e : b ∈ L(e)} and

C = {e : c ∈ L(e)}. The various possible intersections between A, B and C or their

complements are denoted numerically.

Figure S3. Tree in which leaves are labeled using multi-subsets of L = {a, b, c, d}. (A
multi-set is an unordered list of possibly repeated objects. We use square-brackets to

denote multi-sets. For instance, [a, a, b] is a multi-set that contains twice a and once

b. Since multi-sets are unordered, [a, a, b] = [b, a, a] = [a, b, a].) Relative to the above

tree and weight functions W , Wa, Wb, Wc and Wd, the d2-distance between a and b

is:

d2(a, b) =

4∑
i=1

W (ei) · |Wa(ei)−Wb(ei)|.

For the weighted Unifrac metric, we have that Wa(e1) = 2/3, Wb(e1) = 3/4,
Wa(e2)=2/3, Wb(e2)=1/4, Wa(e3)=0, Wb(e3)=1/2, Wa(e4)=1/3, andWb(e4)=1/4.
As a result, if W (e) denotes the branch-length of e then the weighted Unifrac distance
between a and b is:

d2(a, b) =
W (e1)

12
+

5 ·W (e2)

12
+

W (e3)

2
+

W (e4)

12
.
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