
 Supplementary Figure 1

Image Data Storage Components: ~1.28 TB, 6.4x105 objects
40,000-component RNAi library (416 x 96 well plates)
4 image fields per well
4 different wavelengths
640,000 image planes
= ~1.28 TB data (640,000 images * 2MB/image)

Extracted Data Storage Component: ~0.16 TB (12.5% of 1.28TB)
4MB/well (empirically determined via an average dataset)
= 160 GB data (4MB/well * 40,000 wells)

Extracted Data Elements: ~8x108 objects (1250% of 6.4x105 objects)
40,000 wells
4 fields/well
2,500 cells/field
2 compartments/cell
= 800,000,000 objects

Supplementary Figure 1: Details of calculations for full genome RNAi image-based screens.

HT-Biochemical Assays/mRNA microarraya

Supplementary Figure 2

c

b

Data
Meta

Feature Values

Feature Names
Feature Units

Live-Cell Microscopy
HDF5

Feature Values
(All Cells)

C
om

pa
rtm

en
ts Data

Meta

Compartment
Name

Feature Values
(Single-Cell)

Feature Names

Pixel Coordinates

Experimental
Design

XML

Feature Units

M
ov

ie
s

...

1
2

N

0

Meta

Children

Fr
am

es

...

1
2

N

0

Meta

Children

...

1
2

N

0

Data

Children

C
el

ls

...

1
2

N

0

Data

Children

Experimental
Design

XML

W
el

ls

...

1
2

N

0

Meta

Children

Flow Cytometry
HDF5

Data

Meta

Data

Feature Values
(Single-Cell)

Feature Names

Feature Values
(All Cells)

Feature Units
Experimental

Design

XML

Tu
be

s

...

1
2

N

0

Meta

Children

HDF5

C
el

ls

...

1
2

N

0

Children

Hierarchy
Level

Data

Meta

Raw FCS file

Tube Cell

sample_stdev
sample_mean

feature_units
feature_names

XML

0 1

Feature Values
(Single-Cell)

Source Files

Hierarchy
Level

well_stdevs
well_means

Data

Meta

Raw

feature_units
feature_names

XML

Well
0

frame_stdevs
frame_means

Hierarchy
Level Movie

well_stdevs
well_means

feature_values pixel_coords

compartment
name

Data

Meta

Raw

plate_well

TIFFs

Frame Cell Compartment
0 1 2 3

feature_units
feature_names

XML

Supplementary Figure 2: Detailed description of various HDF5 structures taken from SDCubes
applied to other biological assays in an illustration (left) and table format (right). (a) High-throughput
biochemical assays and mRNA microarrays naturally fit into a single level of hierarchy, whereas assays
with more data resolution such as (b) flow cytometry or (c) live-cell microscopy need multiple levels.

Bubble #1

Bubble #2

Supplementary Figure 3
a

M
ea

n
 In

te
ns

ity
M

ea
n

 In
te

ns
ity

M
ea

n
 In

te
ns

ity

b

c

X-Coordinate

X-Coordinate

X-Coordinate

Supplementary Figure 3: Example of artifact filtering via scatter plots. (a) Scatter plot of cells from
an image (right) plotting the x-coordinates of each cell on the X-axis and mean image intensity on
the Y-axis. (b) Selection of a subset of cells in the scatter plot with elevated mean intensity values
(green box) show they represent a bubble in the corresponding image (right). (c) Second example
of cells that are actually an optical artifact caused by a bubble.

pixel
coordinate

pixel
intensity

Nuclear
Threshold

Cytoplasm

STEP 4:
Compute mean background pixel
intensity for each channel and store

Background

Blue Whole Cell Dye

Hoechst 33342
a

Supplementary Figure 4

b

c

Watershed

Background
Pixels

Nucleus

Cytoplasm

STEP 1:
Create nuclei by thresholding
intensities and connecting
contiguous pixels

STEP 3:
Grow outward to cytoplasm
boundary threshold

STEP 2:
Split overlapping
nuclei with watershed

Supplementary Figure 4: Details of segmentation process used by ImageRail. (a) Cells are
stained with a DNA and protein stain. (b) The stains emit at the same wavelength but have
significantly different intensities at the dilutions used. This allows for different intensity thresholds
to be identified for nuclei, cytoplasm and background within a single fluorescent channel. (c) The
segmentation algorithm uses these threshold parameters to identify nuclei (step 1), attempt to cut
apart overlapping nuclei (step 2), grow cytoplasms outward from the nuclei seeds to cytoplasm
threshold levels (step 3) and compute the mean background intensities for each image channel of
each field (step 4).

10-3 10-2 10-1 100 101 102
0

650

1300

EGF (ng/mL)

pp
ER

K
5

m
in

10-3 10-2 10-1 100 101 102
0

650

1300

pp
ER

K

0
0.032

gefitinib (µM)

0.1
0.32
1
3.2

5
m

in

EGF (ng/mL)

10-3 10-2 10-1 100 101 102 10-3 10-2 10-1 100 101 102

ppERK pcJUN

90 min

60 min

45 min

30 min

20 min

15 min

10 min

5 min
pE

RK - I
res

sa
-0

pE
RK - I

res
sa

-0.
03

2

pE
RK - I

res
sa

-0.
1

pE
RK - I

res
sa

-0.
32

pE
RK - I

res
sa

-1

pE
RK - I

res
sa

-3.
2

pc
JU

N - I
res

sa
-0

pc
JU

N - I
res

sa
-0.

03
2

pc
JU

N - I
res

sa
-0.

1

pc
JU

N - I
res

sa
-0.

32

pc
JU

N - I
res

sa
-1

pc
JU

N - I
res

sa
-3.

2

90 min

60 min

45 min

30 min

20 min

15 min

10 min

5 min

a b

c d

Supplementary Figure 5

Supplementary Figure 5: Storage of high-throughput data in SDCubes facilitates storage of high dimen-
sionality data sets and allows rapid plotting through the use of publicly available tools like DataPflex. (a)
ppERK was measured in cells treated with increasing doses of EGF up to 100 ng/ml for 5 min. To enable
DataPflex to plot all available data, controls not treated with EGF are plotted as receiving 0.003 ng/ml in
all panels. (b) Cells treated as in a were pre-incubated with increasing doses of gefitinib. (c) Cells treated
as in b were treated with EGF for different times. pcJUN was measured in addition to ppERK. (d) The
same data as in c is presented as individual plots.

pp
ER

K

EGFEGF (ng/mL) EGF (ng/mL)

 MCF7
 T47D
 SKBR3

0.01 0.1 1 10 100

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

pA
kt

EGF(ng/ml)

Imaging Assay

Imaging Assay

0.01 0.1 1 10 100

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

pA
kt

EGF(ng/ml)

Biochemical Assay

0.01 0.1 1 10 100
EGF(ng/ml)

0.01 0.1 1 10 100
EGF(ng/ml)

0.01 0.1 1 10 100
EGF(ng/ml)

0.01 0.1 1 10 100
EGF(ng/ml)

a b

c

pA
kt

pA
kt

pp
Er

k

pp
Er

k

Biochemical Assay

Supplementary Figure 6

Supplementary Figure 6: The high throughput imaging assay agrees well with a biochemical bead-based
ELISA assay (Bioplex). (a) High-throughput microscopy measurements of EGF induced AKT kinase phos-
phorylation in three cell lines: SKBR3, T47D and MCF7, measured at 10 min post stimulation. (b) Corre-
sponding measurements for same treatments as a measured by bead-based ELISA. (c) Comparison of the
EC10, EC50 and EC90 values for both ppERK (shown in Fig. 4c) and pAKT displayed as high-mid-low
whisker plots for both the imageWoRx and Bioplex.

-8 -7 -6 -5
0

200

400

600

800
0
0.01
0.032
0.1
0.32
1
3.2
10
32
100

[gefitinib] log(M)

SKBR3
[EGF] ng/mL

pp
ER

K
(R

FU
)

[EGF] ng/mLT47D

-8 -7 -6 -5
[gefitinib] log(M)

0

200

400

600

800

pp
ER

K
(R

FU
)

0
0.01
0.032
0.1
0.32
1
3.2
10
32
100

[EGF] ng/mLMCF7

-8 -7 -6 -5
[gefitinib] log(M)

0

200

400

600

800

pp
ER

K
(R

FU
)

0
0.01
0.032
0.1
0.32
1
3.2
10
32
100

Supplemental Figure 7

Supplementary Figure 7: Details of curve fitting and IC10, IC50 and IC90 value extraction. (a) Gefitinib
ppERK-inhibition dose response curves were fitted using a non-linear equation model using GraphPad
Prism software (http://www.graphpad.com/prism/Prism.htm) for each dose of EGF in all cell lines (SKBR3,
T47D and MCF7). (b) Equation used by software for the nonlinear inhibition curve fit (top). The equation
was inverted (bottom) to determine the IC10, IC50, and IC90 concentration values. (c) Comparison of
SKBR3, T47D and MCF-7 cell lines ERK phosphorylation response surfaces over concentration ranges of
EGF and gefitinib where color represents extent of cell-to-cell variation.

a

b

c

Y = (Max-Min) / (1+10^((LogIC50-X)*HillSlope))

X = LogIC50 - Log((Max-Min)/(Y-Min)-1))/HillSlope

c.

T47D Cells

[E
GF]

 (n
g/m

L)

0.01
0

0.1
1

10
100

[gefitinib] log(M)

-6

-7

-8

0

MCF7 Cells

[E
GF]

 (n
g/m

L)
0.01

0

0.1
1

10
100

[gefitinib] log(M)

-7

-8

-9

0

[E
GF]

 (n
g/m

L)

0.01
0

0.1
1

10
100

[gefitinib] log(M)

-6

-7

-8

0

SKBR3 Cells

Variation ppERK
(normalized) 10 .5

pp
ER

K
 (A

U)

pp
ER

K
 (A

U)

pp
ER

K
 (A

U)

Supplementary Figure 8: The SDCube data format serves as an interface between analysis software
programs with the input/output supported by the SDCube Programming Library. ImageRail (yellow) ana-
lyzes TIFF images produced by high-throughput microscopes (orange), segments cells, extracts cellular
features and stores the resulting data into an SDCube project (blue). The ImageRail SDCube can be
visualized and read either by internal ImageRail viewers or other software packages that help with data
storage (pink) and data analysis (purple).

Supplementary Figure 8

Data View/Plot

ImageRail Image Viewer

OME internal
Image Viewer

Store Analysis and Experimental Metadata

ImageRail External Analysis

Segment

Experiment MetaData

Feature
Calculations

DataRail

Spotfire

Excel

Other
Programs

SDCube API

.

.

.

read/write data

OMERO

HTM

TIFFs

MetaData.xml

XML

Field.h5

HDF5

.SDC project

Supplementary Table 1

References to image analysis tools:

Definiens, http://www.definiens.com

Metamorph, http://www.moleculardevices.com/pages/software/metamorph.html

Cellomics, http://www.cellomics.com

ImageJ, http://rsbweb.nih.gov/ij/

CellProfiler, http://www.cellprofiler.org

ImageRail, http://code.google.com/p/sbpipeline/downloads/

Supplementary Note 1

Programming Library Manual – v1.0.1

Software for the creation and manipulation of semantically

typed data hypercubes (SDCubes)

Bjorn L Millard1, Mario Niepel1, Michael P Menden1,3, Jeremy L Muhlich1,
and Peter K Sorger1,2

January 11, 2011

1Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston,

MA 02115, USA, 2Department of Biological Engineering, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA 3Current address: University of Applied Sciences Weihenstephan-Triesdorf

This manual © Copyright 2011 - Bjorn Millard

This manual licensed under the Creative Commons Attribution-NoDerivs 3.0 United States License

Email: imagerail-users@googlegroups.com
Web: http://www.semanticbiology.com/software/sdcube

SDCube Programming Manual v1.0.1 !"

License

SDCube Programming Library: Software for the creation and manipulation of
semantically-typed data hypercubes

Copyright (C) 2011 Bjorn Millard <bjornmillard@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.

SDCube Programming Manual v1.0.1 #"

Contents

1. The SDCube. 3

2. DataObjects. .5

3. DataModules. 6

4. The Experimental Design 8

5. The SDCube Sample10

1 Introduction

 This short document describes software for creating and semantically-typed data
hypercubes (SDCubes), a data structure first described by Millard B, Niepel M, Menden
M, Muhlich J, Sorger PK. Adaptive informatics for multi-factorial and high content
biological data. Nature Methods (2011) Additional resources and periodic updates can
be found at: http://www.semanticbiology.com/software. Further details on a software
program that creates and manipulates SDCubes (ImageRail), can be found in the
ImageRail Software Manual available at the same Semantic Biology Web site.
Developers interesting in using SDCubes are advised to refer to ImageRail software for
an example implementation (also open-source under GPL)

 SDCubes are a data structure built from the HDF5 and XML file formats.
SDCubes were developed to efficiently store data arising in molecular and cellular
biology but are designed be adaptable to other data storage needs. However, the full
benefits of SDCubes will become apparent when more programs can read and
manipulate HDF5-encoded data and the XML-encoded experimental design data to
analyze and navigate efficiently through the digitized single-cell data. Currently,
ImageRail can create, modify and read SDCubes, but more advanced functional
analysis and plotting of SDCubes will be handled by a sister program, DataRail v2.0,
which is currently under development [2].
"

SDCube Programming Manual v1.0.1 $"

1. SDCube

An SDCube consists of 2 files: 1) a single HDF5 file, always
called Data.h5, containing the acquired data values, and 2) an
associated XML file called ExpDesign.xml, that describes
how each of the data samples have been perturbed and what
was measured. These two files are located together inside of
an arbitrarily named parent folder that has a file
extension “.sdc”. The associated XML file is also stored
inside of the HDF5 file as a byte array dataset at the
relative path: “./Meta/ExpDesign.xml”. If the XML and
HDF5 files ever get separated or if the XML integrity is
questionable, the embedded XML can be extracted from the
HDF5 with the given Java-SDCube API method call:

How to extract embedded byte[] files from the Data.h5 file:

// Use the H5IO object to pull out an HDF5 embedded file
H5IO io = new H5IO();
Io.readFileFromHDF5(hdfFilePath, relativePathInHDF5, destinationFilePath);

"

SDCube Programming Manual v1.0.1 %"

The SDCube is composed of a collection of SDCube_Samples objects in Java,
but as 2 separate files (HDF5-XML) on disk. Below describes common Java code
to create, manipulate, write and read SDCubes:

"
Creating an SDCube

"
 // Initialize a sdcube without a path
 SDCube sdc = new SDCube();
// Initialize a sdcube with a path

 SDCube sdc = new SDCube(sdcPath);

SDCube I/O

// Set the file path of the sdcube
 sdc.setPath(path);

// Write the SDCube to the currently set Path
 sdc.write();

// Write the SDCube to the given Path
 sdc.write(sdcubePath);

// Loads the SDCube from the currently set Path
 sdc.load();

// Loads the SDCube from the given Path
 sdc.load(sdcPath);

Getting info from SDCubes

 SDCube_DataModule data = sdc.getRootDataModule(sdcPath);
 ArrayList<ExpDesign_Sample> expDs = sdc.getExpDesigns();

Adding samples to the SDCube

 sdc.addSample(SDCube_Sample sample);
 sdc.addSamples(ArrayList<SDCube_Sample> samples);

Getting Samples from the SDCube

 sdc.getSampleIDs(sdcPath);
 sdc.getNumSamples(sdcPath);
 sdc.getSamplesWithDescriptorNames_AND(sdcPath, names);
 sdc.getSamplesWithDescriptorNames_OR(sdcPath, names);

 sdc.getSample(sdcPath, id);

SDCube Programming Manual v1.0.1 &"

2. DataObjects

Data stored in the Data.h5 file are contained within HDF datasets of various data types
and dimensionality. The Java-SDCube API creates, writes and reads these datasets as
Java data objects that implement the DataObject interface. The 1- and 2-dimensional
data objects are called Data_1D and Data_2D respectively. Currently only 1- and 2-
dimensional DataObjects have been implemented in this release of the API since they
are capable of storing nearly all data encountered in biological applications when used
in combination with HDF5 groups. It is trivial for other developers to create N-
dimensional DataObjects through the use of the provided Java interface.

How to create and write DataObjects:

// Create an array or matrix of any given data type (not primitives!)
Float[] floatArray = ...
// Create the DataObject with the data, dataType, and dataName
Data_1D data1d = new Data_1D(floatArray, "FLOAT", "name");
//Write the dataset to the given relativePath of the given h5FilePath
new H5IO().writeDataset(h5FilePath, relativeDSpath, data1d);
"
//NOTE: the same process can also be done with Data_2D objects

How to read DataObjects from HDF5:
"
//NOTE: the same process can also be done with Data_2D objects
DataObject data = new H5IO().readDataset(h5FilePath, datasetPath);

How to get information from DataObjects:

//Basic method calls for all DataObjects
long[] dimensions = data.getDimensions();
String type = data.getDataType();
String name = data.getName();
int rank = data.getRank();

//Once the rank is known, we can cast the DataObject appropriately
if(rank==1)

Data_1D data1d = (Data_1D) data;
else if (rank==2)
 Data_2D data2d = (Data_2D) data;

How to get the data from DataObjects:

//Since we know it is a 1D object and a Float data type, we can cast it
Float[] floatArray = (Float[]) data1d.getData();

SDCube Programming Manual v1.0.1 '"

3 DataModules

The DataModule is the core building block of SDCubes. It is a data object capable of
forming tree structures of arbitrary size and complexity. Each DataModule has 4
groups: Children, Data, Meta and Raw. The Data, Meta and Raw group store numerical
and text datasets defining the DataModule. The Children group contains an arbitrary
number of child DataModules. In this manner, it is trivial to create trees of
DataModules. The root of the Data.h5 file is a single DataModule.

How to create an empty DataModule:

// Create a DataModule by giving it the path of the H5 and its location
SDCube_DataModule dataMod = new SDCube_DataModule(h5Path, relativeDMpath);

 // Note: relativeDMpath looks like a normal file system path where
 // the root of the path (“.”) is the top level of the HDF5 file.

Adding data to the DataModule:

// Creating a sample DataObject to add to our DataModule

 Data_2D data2d_1 = new Data_2D(...);
Data_2D data2d_2 = new Data_2D(...);

// Adding data to the groups of this DataModule
dataMod.addData(data2d_1);

 dataMod.addMeta(data2d_2);
 dataMod.addRaw(byteArrayEncodedFile);

// Adding Children DataModules to this Parent
" dataMod.addDataModule(new SDCube_DataModule(...));
"

Retrieving data from the DataModule:
"

// Retrieving data from DataModule
ArrayList<DataObject> data = dataMod.getDataGroup();
ArrayList<DataObject> meta = dataMod.getMetaGroup();
ArrayList<DataObject> raw = dataMod.getRawFileArrays();
ArrayList<DataModules> children = dataMod.getDataModules();

"

SDCube Programming Manual v1.0.1 ("

Write a DataModule to an HDF5 file:

"
// Writes to the H5FilePath to RelativePath already set
dataMod.write();

// Writes to the given H5FilePath and GroupPath if different from current
dataMod.write(H5FilePath, RelativeGroupPath);

Load a DataModule from an HDF5 file:

"
// Create and loads from the initialized path

 SDCube_DataModule dataMod = new SDCube_DataModule(h5Path, relativeDMpath);
dataMod.load();

// Change H5path and groupPath of existing DataModule before loading

" dataMod.setFilePath(H5path);
 dataMod.setGroupPath(relativePath);

dataMod.load();
"

SDCube Programming Manual v1.0.1)"

4. The Experimental Design

The experimental design for an SDCube sample is stored in an ExpDesign_Sample
object when instantiated in Java and XML when stored on disk. Each
ExpDesign_Sample contains a collection of ExpDesign_Descriptors that describe
specifically how the experimental sample has been treated or what was measured. The
following parameters describe a single ExpDesign_Descriptor:

Id = Text ID that links samples between XML/HDF5
Type = Either a “Treatment” or “Measurement”
Name = Text name of the descriptor
Value = Quantitative value associated with descriptor
Units = Units that correspond to the Value
Time = Time of treatment or measurement
Time_Units = Units that correspond to the Time

"
"

"

"
"

"
"
!
!
!
!

!
!

Example XML syntax to describe a Sample in the ExpDesign.xml file"
"

<Sample id='ID_1'>
 <Descriptor>
 <type>Treatment</type>
 <name>EGF</name>
 <value>1e-9</value>
 <units>M</units>
 <time>0</time>
 <time_units>min</time_units>
 </Descriptor>

 <!--Add as many Descriptors or this sample as needed -->
</Sample>

SDCube Programming Manual v1.0.1 *+"

!

!
!

"
Creating and Writing an ExpDesign_Sample

"
// Initialize Descriptor with all parameters
ExpDesign_Descriptor desc = new ExpDesign_Descriptor(

sample_id, type, name, value, units, timeValue, timeUnits);

. . .

/ ... or set them one at a time
ExpDesign_Descriptor desc = new ExpDesign_Descriptor();

 desc.setId(id);
 desc.setName(name);
 desc.setType(type);
 desc.setValue(value);
 desc.setUnits(units);
 desc.setTime(time);
 desc.setTimeUnits(tUnits);

 // Creating a Sample and adding our descriptor to it
 ExpDesign_Sample sample = new ExpDesign_Sample();
 sample.addDescription(desc)

"
// Adding this sample to the collection of samples for the SDCube

 ArrayList<ExpDesign_Sample> allSamples = new ...
 allSamples.add(sample);"

"
// Writing all the samples to the given XML path
ExpDesign_IO.write(xmlFilePath, allSamples);

Reading samples from XML
"
ArrayList<ExpDesign_Samples> parsedSamples;"
// Reading all the samples from the given XML path
parsedSamples = ExpDesign_IO.parseSamples(xmlFilePath);
// Reading all the samples that have the given ID
parsedSamples = ExpDesign_IO.parseSamplesWid(xmlFilePath, id);
// Reading all the samples that have one of the given (String[])ids
parsedSamples = ExpDesign_IO.parseSamplesWids(xmlFilePath, ids);
// Reading samples that contain descriptors with ALL the dNames
parsedSamples = ExpDesign_IO.parseSamplesWithDescriptorNames_AND(

String xmlPath, String[] dNames))
// Reading samples that contain descriptors of at least 1 dName
parsedSamples = ExpDesign_IO.parseSamplesWithDescriptorNames_OR(

String xmlPath, String[] dNames))

SDCube Programming Manual v1.0.1 **"

5. The SDCube Sample

!
The SDCube is composed of one or more SDCube_Sample objects. A Sample contains
two components: the HDF5 encoded data and the XML experimental design. A String
ID links the both components of the SDCube_Sample. Refer to prior sections for the
specifics of these individual components. Here the SDCube_Sample is described:

!

!
!
!

Acknowledgements
This work was supported by National Institute of Health (NIH) grants HG006097,
HG005693 and GM68762.

!

"

"
Creating an SDCube_Sample

"
// Initialize SDCube_Sample
SDCube_Sample sample = new SDCube_Sample(
 SDCube_DataModule rootDM, ExpDesign_Sample expD, String id);

Getting information from an SDCube_Sample

// Getting the Sample ID
String id = sample.getID();
// Getting the root DataModule
SDCube_DataModule data = sample.getDataModule();
// Getting the ExpDesign_Sample

 ExpDesign_Sample expD = sample.getExpDesign();

Supplementary Note 2

Software Manual – v1.2.1

High-throughput image analysis software using SDCubes for single-cell

data storage and adaptive experimental design

Bjorn L Millard1, Mario Niepel1, Michael P Menden1,3, Jeremy L Muhlich1,
and Peter K Sorger1,2

January 11, 2011

1Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston,

MA 02115, USA, 2Department of Biological Engineering, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA 3Current address: University of Applied Sciences Weihenstephan-Triesdorf

This manual © Copyright 2011 - Bjorn Millard

This manual licensed under the Creative Commons Attribution-NoDerivs 3.0 United States License

Email: imagerail-users@googlegroups.com
Web: http://www.semanticbiology.com/software/imagerail

ImageRail Manual v1.2.1 2

License

ImageRail: Software for high-throughput microscopy image analysis

Copyright (C) 2011 Bjorn Millard <bjornmillard@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

ImageRail Manual v1.2.1 3

Contents

1 Introduction

2 Installation and Quick Start

3 ImageRail Projects
3.1 Creating New Project
3.2 Opening Existing Project

4 Images
4.1 Image Formats and Conventions
4.2 Loading Images
4.3 Image Viewing
4.3.1 Field Viewer
4.3.2 Montage Viewer

5. Image Processing
5.1 Well Means
5.2 Single-Cell Segmentation
5.2.1 Load cells into RAM after segmentation
5.2.2 Coordinates for HDF5 Storage
5.3 Parameter Selection

6. Data Viewing
6.1 Plate Graph
6.2 Line Plot
6.3 Dot Plot
6.4 Histogram Plot

7. Data Export
7.1 CSV – Well Means
7.2 MIDAS
7.2.1 Well Means
7.2.2 Single-Cells

8. Experimental Design Metadata

9 Acknowledgments

ImageRail Manual v1.2.1 4

1 Introduction

 This short document is a manual for ImageRail software first described by Millard et al.

[1]. Additional resources and periodic updates can be found at:

http://www.semanticbiology.com/software. This website also offers further details on SDCubes,

the storage format used by ImageRail, including a separate manual and software library.

 The goal of ImageRail software is to provide an open-source, stand-alone program built

around the SDCube data structure that 1) facilitates high-throughput image analysis, including

segmentation and feature computation, 2) provides basic data exploration tools such as line plots,

scatter plots, histograms and heat maps, and 3) encodes and manipulates experimental design

metadata and links it to extracted data from the source images.

 ImageRail data and metadata are stored in semantically-typed data hypercubes (SDCubes),

a data structure built from the HDF5 and XML file formats. SDCubes were developed to

efficiently store large amounts of experimental biology data (in this case, single-cell data

acquired via high-throughput microscopy; HTM) and to link it to digitized experimental

metadata describing how each sample was perturbed experimentally and then measured.

Although ImageRail data is stored primarily in SDCubes, user-defined subsets of the data can be

exported in CSV format for analysis in other software programs such as Excel, MatLab and

Spotfire.

 The default ImageRail segmentation algorithm is implements a simple watershed-style

method. Currently, alternative algorithms can be substituted by performing some Java

programming. We are currently creating new programming APIs that will create a direct

interface with open-source image analysis programs ImageJ.

 The full benefits of SDCubes will become apparent when more programs can read and

ImageRail Manual v1.2.1 5

manipulate HDF5-encoded data and the XML-encoded experimental design data to analyze and

navigate efficiently through the digitized single-cell data. Currently, ImageRail can create,

modify and read SDCubes, but more advanced functional analysis and plotting of SDCubes will

be handled by a sister program, DataRail v2.0, which is currently under development [2].

ImageRail Manual v1.2.1 6

2 Installation and Quick Start

ImageRail downloads can be found at: http://www.semanticbiology.com/software/imagerail

Windows:

1) Download the Windows installer .exe file

2) Double click the installer file to initiate installation

3) Optional: To make a Desktop shortcut, drag the ImageRail icon from

the Start menu Programs folder to your desktop while holding the Ctrl

key.

 4) ImageRail may be launched from the Start menu's Programs folder, or your

 desktop shortcut if you chose to create one.

Mac OS X (OS X 10.6 - Snow Leopard or greater is required)

1) Download the Mac OS X .dmg

2) Double-click the .dmg to mount it and display its contents

3) Drag the ImageRail application to your Applications folder

4) Optional: Drag the instruction manual PDF file to your Documents

folder or wherever you would like to keep it.

5) To launch ImageRail, open your Applications folder and double-click the

 ImageRail application.

ImageRail Manual v1.2.1 7

3 The ImageRail Project

 After the ImageRail splash screen goes away, a dialog box should appear (Figure 1a). This

box will let you create a new ImageRail project or re-open an existing project.

3.1 Creating New Projects

 To create a new project, you must specify how many plates and how many wells per plate

you want to initialize using the appropriate dialog box (Figure 1b).

a

b

Figure 1

ImageRail Manual v1.2.1 8

3.2 Opening Existing Projects

 If you want to re-open an existing project, a file chooser will appear so you can select the

directory and project of interest. Once a project has been initialized or opened, a graphical user

interface should appear (Figure 2). This is an example of a new project created with four 96 well

plates.

Figure 2

ImageRail Manual v1.2.1 9

4 Images

4.1 Image Formats and Conventions

 Currently, ImageRail reads grayscale-TIFF images

(different images correspond to different filter

combinations in the usual manner, thereby enabling multi-

spectral analysis). Before getting started you must make

sure that all TIFF images for a given plate are put into

their own directory folder. All the images representing

each field for all wells and various wavelengths for each

individual plate will be mixed together in this directory.

(Figure 3). ImageRail will parse through and organize the

images based on a simple file naming convention.

Each image file name has 4 key properties:

 1. Prefix string

 2. Well identifier

 3. Field number identifier

 4. Wavelength identifier

An example file name would look like:

experiment1_A01_1_w488.tif

 In this example, the prefix! "experiment1", well identifier! "A01", field number! "1",

Figure 3

ImageRail Manual v1.2.1 10

and wavelength! "w488". Note that all these identifiers are separated by an underscore ("_").

Also note that the label for an image arising from well B01 must contain a “01;” “B1” will not

work.

4.2 Loading Images

 To begin your analysis, you will first load images into each plate. Please refer to section

4.1 to learn more about current image format requirements. We are actively working to make

image formats compliant with Open Microscopy Environment (OME) standards.

 Once images conform to the required naming convention and each directory contains

images from one plate, drag and drop each directory into the appropriate GUI-plate.

 If successfully loaded, the wells of the plate that contain images will now display a NxM

indicator, where N represents the number of fields acquired and M represents the number of

channels per field (Figure 4). In this example, the outer wells were not imaged.

 Thus the total number of image files within each well is equal to: NumFields x

Figure 4

ImageRail Manual v1.2.1 11

NumChannels. In the above example we have 4 fields and 3 channels for a total of 12 separate

TIFF images per well.

 Note that the original images are moved into the ImageRail project and not copied, so be

sure to make a copy of your images if you want to store them elsewhere as well.

ImageRail Manual v1.2.1 12

4.3 Viewing Images

4.3.1 Field Viewer

 To display the loaded images, click or drag on the plate to select the wells of interest and

then either select menu item Display!Display Images or press ctrl+d.

 An image browser will open displaying an image, four slider bars and a mini-plate map

(Figure 5). NOTE: Mousing over the image will display the pixel intensity on the right margin

below the mini-plate.

 1. Bottom-most Slider - Changing fields and wells:

Figure 5

ImageRail Manual v1.2.1 13

 The default start image is from the upper left-most of the selected wells in the plate, with its

first field and lowest wavelength. The bottom-most slider will first scroll through any other fields

of the first well, then move on to the first field of the second well and so forth. The sliding order

of the wells is always left to right, top to bottom. The plate map will indicate the current well

being viewed, and clicking on a white-highlighted well will skip directly to the first field of that

well.

 2. Bottom-top Slider - Changing Wavelengths:

 Scrolls through the various channels acquired for the currently selected field.

 3. Right (1st-left) Slider - Min Value Scaling:

 Changes the minimum value of the image; pixels with values lower than this limit are set to 0

(black).

 4. Right (2nd-right) Slider - Max Value Scaling:

 Changes the maximum value of the image to make it brighter or dimmer; pixels with values

higher than this limit are saturated and displayed white.

ImageRail Manual v1.2.1 14

4.3.2 Montage Viewer

 The montage button on top of each plate panel will produce a montage image viewer that

displays an image from one field from each well (Figure 6). By default, the viewer is initialized

with the first wavelength and the first field for each well. The Options menu allows selection of

other channels and fields. The mouse wheel controls the image zoom. If zoomed, mouse

dragging will pan the viewer.

Figure 6

ImageRail Manual v1.2.1 15

5 Image Processing

Preprocessing

 In its default form, ImageRail does not perform image pre-processing such as image flat-

field calibration, contrast enhancements or convolution filtering. These features as well as other

segmentation algorithms can be implemented as plug-ins. When we need preprocessing for our

purposes, we use the open-source NIH software program ImageJ (http://rsbweb.nih.gov/ij).

5.1 Well Means

 If you are only interested in population average fluorescent intensities, then there is no

need for single-cell segmentation. Well-mean computations can be done quickly. This

measurement would be similar to the data acquired from standard fluorescence-based plate

readers that specifically ignores image regions without cells, as opposed to performing single-

cell analysis and then averaging the data over all cells in the plate.

 To begin, highlight the wells in the plate you want to process and use the menu option:

Process!Well Means

ImageRail Manual v1.2.1 16

 A dialog box will prompt the input of three parameters: 1) channel for cell identification, 2)

intensity threshold, which sets a minimum defining where cells exist, and 3) background

threshold, which establishes an upper bound for defining background pixels (Figure 7). Refer to

section 5.3 to learn how to determine optimal parameters.

5.2 Single-Cell Segmentation

 The default ImageRail segmentation algorithm is simple yet effective for the 2D tissue

cultures for which it was originally designed. When cells grow on top of each other or 3D

samples are to be analyzed, more sophisticated segmentation is required. It is currently necessary

to do additional programming to integrate new processing routines.

 To perform single-cell segmentation of loaded images, use the menu item Process!Single

Cells

Figure 7

ImageRail Manual v1.2.1 17

 Depending on the version of ImageRail or the segmentation algorithm you are using, the

dialog window may look different (Figure 8), but in the original version there are three essential

user supplied parameters:

 1. Nucleus Threshold

 2. Cytoplasm Threshold

 3. Background Threshold

 For both the nucleus and cytoplasm thresholds, the user must specify which channel should

be used. NOTE: the channel used to threshold the nucleus can be different from the channel used

to threshold the cytoplasm.

Refer to section 5.3 to learn how to determine optimal parameters.

5.2.1 Load Cells into RAM after Segmentation:

 Unless this box is checked, the single-cell data for each processed well will be cleared from

Figure 8

ImageRail Manual v1.2.1 18

the RAM and only cached to the HDF5 file on the hard drive. If processed for single-cells, the

plate will display the number of image fields that have data processed and ready for analysis.

These are displayed as icons that look like white document icons within the wells, where each

icon represents data for a single field as shown in the top row of the plate (Figure 9).

 In this example, the single-cell data has not been loaded. By using the menu option,

Options!Load Cells, or by clicking the “Load Cells into RAM after Segmentation” checkbox

before processing the wells, the cells will be loaded into RAM and a mini-histogram of all cells

will be displayed for the selected feature. Note that there is an option to only load the single-cell

data without the pixel coordinates as an alternative to loading both. This will save RAM space if

no Data"!Image link is required. See section 6.3 for more details.

5.2.2 Coordinates for HDF5 Storage:

 Once a full segmentation has been performed, all features are computed for each cell using

the complete coordinate list. See Supplementary Fig. 4 of Millard et al. [1] for a more detailed

Figure 9

ImageRail Manual v1.2.1 19

description of the “segmentation and feature computation” process.

 For long-term storage and data sharing, a complete coordinate list for all cells may not be

necessary: in many situations a centroid or bounding box for each cell is sufficient and

significantly reduces the amount of data to be stored on the hard drive (Figure 10).

5.3 Parameter Selection

 To determine the numerical values for the segmentation parameters, open a sample image

of the wells you want to segment. Highlight a region in the image that contains representative

cells in the channel that will be used for segmentation and select: Options!Threshold Wizard.

A separate window will open and display the selected region of the original image and three

sliders at the bottom (Figure 11). The top slider changes the nuclear threshold values by coloring

pixels greater than the selected value pink. The middle slider does the same for the cytoplasm,

coloring pixels greater than the selected threshold green (excluding any enclosed nuclear pixels

which remain pink). The bottom slider colors pixels lower than the current value white, which

represents background pixels. The currently selected threshold values from all sliders are

displayed in the upper right corner of the window, where N = nucleus, C = cytoplasm and B =

background. Note that even though the green and pink pixel regions may appear contiguous in

Outlines Bounding Boxes Centroids

Figure 10

ImageRail Manual v1.2.1 20

the Threshold Wizard, this does not represent the final segmentation result; the segmentation

algorithms will subsequently attempt to cut overlapping cells apart with a standard watershed

procedure.

 In this example, images were acquired using Hoechst stain to identify DNA and a blue

whole protein dye to mark the cytoplasm. Note that the stains have drastically different intensity

values, such that it is possible to select two different thresholds for the different compartments

while using a single fluorescent channel.

In this example, the following parameters were selected:

 1. Nucleus = 1000

 2. Cytoplasm = 250

 3. Background = 200

Figure 11

ImageRail Manual v1.2.1 21

6 Data Viewing

6.1 Plate Graph

 The right panel of the main ImageRail GUI contains all plates included in the project

currently loaded (Figure 12). The graphical plate interface acts both as a controller for actions to

be performed on specific wells of specific plates and as a plate-wide data display that includes

well heat maps and mini-histograms.

Figure 12

ImageRail Manual v1.2.1 22

6.2 Line Plot

 Well mean features can be plotted as contiguous well data series in a line plot (Figure 13).

Currently, data series can be constructed based on contiguous wells as rows, columns, or across

the same well of multiple plates (trans-plate). Note that if experimental metadata have been

entered to denote how each well has been treated, the line plot will attempt to create proper x-

axis labels and series legend labels.

6.3 Scatter Plot

 Single-cell data can be plotted in a 2D scatter plot, where each dot represents one cell with

an X-Y coordinate in the plot based on computed features whose identities are selected at the

bottom of the plot window (Figure 14).

Figure 13

ImageRail Manual v1.2.1 23

 If

multiple wells are highlighted, then multiple plots will be constructed in a “side-by-side”

fashion. The plots are ordered based on well location within the plate: left-to-right, top-to-

bottom. A green line connects the centroids of distributions. Note that each well’s scatter plot is

a collection of the cells from all image fields within that well.

6.3 Scatter Plot / Image Linkage

 The single-cell data within the scatter plot can be directly linked to the source image if the

data was loaded via: Options! Load Cells! Data & Coords. Once the scatter plot has been

Figure 14

ImageRail Manual v1.2.1 24

displayed with the appropriate wells highlighted, initiate the image link by opening the image

viewer via the menu: Display!Display Images. Once the image viewer is open, highlighting

dots within the scatter plot will dynamically display the corresponding cell within the image

(Figure 15).

 Note that the extent of coordinates stored for this linkage was determined during the

segmentation step (see Section 5.2.2). Users can decide to store from as little as a centroid up to

all the pixel coordinates that represent the location of each cell. Most often a centroid will

suffice for post-segmentation analysis, whereas viewing outlines is most useful to confirm proper

parameters for segmentation (this is usually done with a test well before switching to centroids

for the rest of the plate).

Figure 15

ImageRail Manual v1.2.1 25

6.4 Histogram Plot

 In addition to scatter plots, single-cell data can also be plotted as 1D histograms (Figure

16) of the feature selected in the combo-box at the top of the plate panel. The plots are ordered

based on well location within the plate: left-to-right, top-to-bottom. The plot can be translated,

zoomed and rotated by holding down Shift or Control with left-button drag or a right-button

mouse drag.

Figure 16

ImageRail Manual v1.2.1 26

7 Data Export

7.1 CSV – Well Means

 Mean value and Standard Deviation data can be exported to a comma-separated value file

(CSV) for external analysis in other software programs such as Excel and Spotfire. To perform

the export, use the menu option File! Save as CSV. A dialog will be displayed that allows the

user to select which features to export to CSV (Figure 17). This file will contain blocks of data

for each feature organized in an NxM block, where N=number of rows, M=number of columns.

The left block represents the well mean feature values and the right block represents the well

population standard deviation.

 Note: The number of cells for each well will be appended to the bottom of the CSV export

Figure 17

ImageRail Manual v1.2.1 27

file by default. No selection for cell number is necessary in the dialog window for export.

7.2 MIDAS file formats

 MIDAS is a CSV file format capable of encoding experimental data that are coupled to the

corresponding experimental design metadata. A complete description is provided in the

reference section of publication [2].

7.2.1 Well Means

 The MIDAS file format was originally developed for well mean, multiplexed data. To

export well means from your plates, highlight the wells you want to export and select the menu

item, File!Save as MIDAS!Well Means. The dialog box shown at the header of section 7 will

allow selection of features that you would like to export. Note that MIDAS export can be done

without metadata input.

7.2.2 Single-Cells

 Although the MIDAS file format was originally developed for well mean values it is

capable of storing small amounts of single-cell data. To export single cell data from your plates,

highlight the wells you want to export and select the menu item, File!Save as MIDAS!Single-

Cells. The dialog box shown at the header of section 7 will allow selection of desired features to

export. Note that MIDAS export can be done without metadata input.

ImageRail Manual v1.2.1 28

8 Experimental Design Metadata

To enter experimental design metadata select the yellow “Mi” button on the top toolbar

of the left panel (Figure 18). Mi stands for MIDAS, a file standard for experimental design that

we have previously described [2]. First select the wells you wish to annotate in the plate view at

right. Then enter the desired metadata in the left MIDAS panel. To modify each field, the

checkbox above that field must be selected.

 The top two text fields allow for entry of a free-text based Date and Description.

Treatments can be added, edited or deleted. A treatment is composed of a compound name,

value, units, time of treatment and time units. Measurements for each well can be added to

document what each wavelength of the images acquired represents. For example, each

fluorescently tagged secondary antibody typically binds a primary antibody specific to a

particular protein epitope. Thus fluorescence from each channel is a surrogate read-out for the

presence of specific biological components. Note that the addition of a measurement description

in the metadata is only for documentation purposes and does not change the exported value

Figure 18

ImageRail Manual v1.2.1 29

names, which continue to be based on the specific feature that was computed (ex: size_nuclear or

Nucleus_w685 (Mean)). Finally, since each well has been fixed at a specific time point, the time

of sample acquisition can be added in the bottom text field. Both a time value and time unit can

be added (e.g., 10 min), and ImageRail will parse the value and the units accordingly.

9 Acknowledgments

We thank Emily Pace, Gerard Ostheimer, Deborah Flusberg, John Albeck, Laura Kleiman and

Somponnat Sampattavanich for testing ImageRail and providing valuable development insight.

This work was supported by National Institute of Health (NIH) grants HG006097, HG005693

and GM68762.

References

[1] Millard B, Niepel M, Menden M, Muhlich J, Sorger PK. Adaptive informatics for multi-

factorial and high content biological data. Nature Methods 2011

[2] Saez-Rodriguez J, Goldsipe A, Muhlich J, Alexopoulos L, Millard B, Lauffenburger D,

Sorger PK. Flexible informatics for linking experimental data to mathematical models via

DataRail. Bioinformatics 2008

