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Image Data Storage Components: ~1.28 TB, 6.4x105 objects 
40,000-component RNAi library (416 x 96 well plates) 
4 image fields per well 
4 different wavelengths 
640,000 image planes 
= ~1.28 TB data (640,000 images * 2MB/image) 
 
Extracted Data Storage Component: ~0.16 TB (12.5% of 1.28TB) 
4MB/well (empirically determined via an average dataset) 
= 160 GB data (4MB/well * 40,000 wells) 
 
Extracted Data Elements: ~8x108 objects (1250% of 6.4x105 objects) 
40,000 wells 
4 fields/well 
2,500 cells/field 
2 compartments/cell 
= 800,000,000 objects 

Supplementary Figure 1: Details of calculations for full genome RNAi image-based screens.
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Supplementary Figure 2:   Detailed description of various HDF5 structures taken from SDCubes 
applied to other biological assays in an illustration (left) and table format (right).  (a) High-throughput 
biochemical assays and mRNA microarrays naturally fit into a single level of hierarchy, whereas assays 
with more data resolution such as (b) flow cytometry or (c) live-cell microscopy need multiple levels.
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Supplementary Figure 3: Example of artifact filtering via scatter plots.  (a) Scatter plot of cells from 
an image (right) plotting the x-coordinates of each cell on the X-axis and mean image intensity on 
the Y-axis.  (b)  Selection of a subset of cells in the scatter plot with elevated mean intensity values 
(green box) show they represent a bubble in the corresponding image (right).  (c) Second example 
of cells that are actually an optical artifact caused by a bubble.
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Supplementary Figure 4:  Details of segmentation process used by ImageRail.  (a) Cells are 
stained with a DNA and protein stain.  (b) The stains emit at the same wavelength but have 
significantly different intensities at the dilutions used. This allows for different intensity thresholds 
to be identified for nuclei, cytoplasm and background within a single fluorescent channel.  (c) The 
segmentation algorithm uses these threshold parameters to identify nuclei (step 1), attempt to cut 
apart overlapping nuclei (step 2), grow cytoplasms outward from the nuclei seeds to cytoplasm 
threshold levels (step 3) and compute the mean background intensities for each image channel of 
each field (step 4). 
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Supplementary Figure 5

Supplementary Figure 5: Storage of high-throughput data in SDCubes facilitates storage of high dimen-
sionality data sets and allows rapid plotting through the use of publicly available tools like DataPflex. (a) 
ppERK was measured in cells treated with increasing doses of EGF up to 100 ng/ml for 5 min. To enable 
DataPflex to plot all available data, controls not treated with EGF are plotted as receiving 0.003 ng/ml in 
all panels. (b)  Cells treated as in a were pre-incubated with increasing doses of gefitinib. (c) Cells treated 
as in b were treated with EGF for different times. pcJUN was measured in addition to ppERK. (d) The 
same data as in c is presented as individual plots. 
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Supplementary Figure 6

Supplementary Figure 6: The high throughput imaging assay agrees well with a biochemical bead-based 
ELISA assay (Bioplex).  (a) High-throughput microscopy measurements of EGF induced AKT kinase phos-
phorylation in three cell lines: SKBR3, T47D and MCF7, measured at 10 min post stimulation.  (b) Corre-
sponding measurements for same treatments as a measured by bead-based ELISA.  (c) Comparison of the 
EC10, EC50 and EC90 values for both ppERK (shown in Fig. 4c) and pAKT displayed as high-mid-low 
whisker plots for both the imageWoRx and Bioplex. 
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Supplemental Figure 7

Supplementary Figure 7:  Details of curve fitting and IC10, IC50 and IC90 value extraction.  (a) Gefitinib 
ppERK-inhibition dose response curves were fitted using a non-linear equation model using GraphPad 
Prism software (http://www.graphpad.com/prism/Prism.htm) for each dose of EGF in all cell lines (SKBR3, 
T47D and MCF7).  (b) Equation used by software for the nonlinear inhibition curve fit (top). The equation 
was inverted (bottom) to determine the IC10, IC50, and IC90 concentration values.  (c) Comparison of 
SKBR3, T47D and MCF-7 cell lines ERK phosphorylation response surfaces over concentration ranges of 
EGF and gefitinib where color represents extent of cell-to-cell variation.
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Supplementary Figure 8:  The SDCube data format serves as an interface between analysis software 
programs with the input/output supported by the SDCube Programming Library.  ImageRail (yellow) ana-
lyzes TIFF images produced by high-throughput microscopes (orange), segments cells, extracts cellular 
features and stores the resulting data into an SDCube project (blue).  The ImageRail SDCube can be 
visualized and read either by internal ImageRail viewers or other software packages that help with data 
storage (pink) and data analysis (purple). 
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References to image analysis tools: 
 
Definiens, http://www.definiens.com 
 
Metamorph, http://www.moleculardevices.com/pages/software/metamorph.html 
 
Cellomics, http://www.cellomics.com 
 
ImageJ, http://rsbweb.nih.gov/ij/ 
 
CellProfiler, http://www.cellprofiler.org 
 
ImageRail, http://code.google.com/p/sbpipeline/downloads/ 
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License 
 
SDCube Programming Library: Software for the creation and manipulation of 
semantically-typed data hypercubes 
 
Copyright (C) 2011 Bjorn Millard <bjornmillard@gmail.com> 
 
This program is free software: you can redistribute it and/or modify 
it under the terms of the GNU Lesser General Public License as 
published by the Free Software Foundation, either version 3 of the 
License, or (at your option) any later version. 
 
This program is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
GNU Lesser General Public License for more details. 
 
You should have received a copy of the GNU Lesser General Public 
License along with this program.  If not, see <http://www.gnu.org/licenses/>. 
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1 Introduction  
 
 This short document describes software for creating and semantically-typed data 
hypercubes (SDCubes), a data structure first described by Millard B, Niepel M, Menden 
M, Muhlich J, Sorger PK. Adaptive informatics for multi-factorial and high content 
biological data. Nature Methods (2011) Additional resources and periodic updates can 
be found at: http://www.semanticbiology.com/software.  Further details on a software 
program that creates and manipulates SDCubes (ImageRail), can be found in the 
ImageRail Software Manual available at the same Semantic Biology Web site. 
Developers interesting in using SDCubes are advised to refer to ImageRail software for 
an example implementation (also open-source under GPL) 
 
 SDCubes are a data structure built from the HDF5 and XML file formats.  
SDCubes were developed to efficiently store data arising in molecular and cellular 
biology but are designed be adaptable to other data storage needs. However, the full 
benefits of SDCubes will become apparent when more programs can read and 
manipulate HDF5-encoded data and the XML-encoded experimental design data to 
analyze and navigate efficiently through the digitized single-cell data.  Currently, 
ImageRail can create, modify and read SDCubes, but more advanced functional 
analysis and plotting of SDCubes will be handled by a sister program, DataRail v2.0, 
which is currently under development [2]. 
"
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1.  SDCube 
 

An SDCube consists of 2 files:  1) a single HDF5 file, always 
called Data.h5, containing the acquired data values, and 2) an 
associated XML file called ExpDesign.xml, that describes 
how each of the data samples have been perturbed and what 
was measured.  These two files are located together inside of 
an arbitrarily named parent folder that has a file 
extension “.sdc”.  The associated XML file is also stored 
inside of the HDF5 file as a byte array dataset at the 
relative path: “./Meta/ExpDesign.xml”.  If the XML and 
HDF5 files ever get separated or if the XML integrity is 
questionable, the embedded XML can be extracted from the 
HDF5 with the given Java-SDCube API method call: 

 

 
 

 
How to extract embedded byte[] files from the Data.h5 file: 

 
// Use the H5IO object to pull out an HDF5 embedded file 
H5IO io = new H5IO(); 
Io.readFileFromHDF5(hdfFilePath, relativePathInHDF5, destinationFilePath); 

"
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The SDCube is composed of a collection of SDCube_Samples objects in Java, 
but as 2 separate files (HDF5-XML) on disk. Below describes common Java code 
to create, manipulate, write and read SDCubes: 
 

 

"
Creating an SDCube 

"
 // Initialize a sdcube without a path  
 SDCube sdc = new SDCube(); 
// Initialize a sdcube with a path 

   SDCube sdc = new SDCube(sdcPath); 
 

SDCube I/O 
 

// Set the file path of the sdcube  
   sdc.setPath(path); 

// Write the SDCube to the currently set Path 
   sdc.write(); 

// Write the SDCube to the given Path 
   sdc.write(sdcubePath); 

// Loads the SDCube from the currently set Path 
   sdc.load(); 

// Loads the SDCube from the given Path 
   sdc.load(sdcPath); 
 

Getting info from SDCubes 
    
   SDCube_DataModule data = sdc.getRootDataModule(sdcPath); 
   ArrayList<ExpDesign_Sample> expDs = sdc.getExpDesigns(); 
 

Adding samples to the SDCube 
    
   sdc.addSample(SDCube_Sample sample); 
   sdc.addSamples(ArrayList<SDCube_Sample> samples); 
 

Getting Samples from the SDCube 
   
   sdc.getSampleIDs(sdcPath); 
   sdc.getNumSamples(sdcPath); 
   sdc.getSamplesWithDescriptorNames_AND(sdcPath, names); 
   sdc.getSamplesWithDescriptorNames_OR(sdcPath, names); 

   sdc.getSample(sdcPath, id); 
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2.  DataObjects 
 

Data stored in the Data.h5 file are contained within HDF datasets of various data types 
and dimensionality.  The Java-SDCube API creates, writes and reads these datasets as 
Java data objects that implement the DataObject interface.  The 1- and 2-dimensional 
data objects are called Data_1D and Data_2D respectively.  Currently only 1- and 2-
dimensional DataObjects have been implemented in this release of the API since they 
are capable of storing nearly all data encountered in biological applications when used 
in combination with HDF5 groups.  It is trivial for other developers to create N-
dimensional DataObjects through the use of the provided Java interface. 

 

 
How to create and write DataObjects: 

 
// Create an array or matrix of any given data type (not primitives!) 
Float[] floatArray = ... 
// Create the DataObject with the data, dataType, and dataName 
Data_1D data1d = new Data_1D(floatArray, "FLOAT", "name"); 
//Write the dataset to the given relativePath of the given h5FilePath 
new H5IO().writeDataset(h5FilePath, relativeDSpath, data1d); 
"
//NOTE: the same process can also be done with Data_2D objects  
 
 

How to read DataObjects from HDF5: 
"
//NOTE: the same process can also be done with Data_2D objects  
DataObject data = new H5IO().readDataset(h5FilePath, datasetPath); 
 
 

How to get information from DataObjects: 
 
//Basic method calls for all DataObjects  
long[] dimensions = data.getDimensions(); 
String type = data.getDataType(); 
String name = data.getName(); 
int rank = data.getRank(); 
 
//Once the rank is known, we can cast the DataObject appropriately   
if(rank==1) 

Data_1D data1d = (Data_1D) data; 
else if (rank==2) 
 Data_2D data2d = (Data_2D) data; 

 
 

How to get the data from DataObjects: 
 
//Since we know it is a 1D object and a Float data type, we can cast it   
Float[] floatArray = (Float[]) data1d.getData(); 
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3  DataModules 
 

 
 
 
 
 
 
 
 
 
 

The DataModule is the core building block of SDCubes.   It is a data object capable of 
forming tree structures of arbitrary size and complexity.  Each DataModule has 4 
groups: Children, Data, Meta and Raw.  The Data, Meta and Raw group store numerical 
and text datasets defining the DataModule.  The Children group contains an arbitrary 
number of child DataModules.  In this manner, it is trivial to create trees of 
DataModules.  The root of the Data.h5 file is a single DataModule. 

 
How to create an empty DataModule: 

 
// Create a DataModule by giving it the path of the H5 and its location 
SDCube_DataModule dataMod = new SDCube_DataModule(h5Path, relativeDMpath); 

 
 // Note: relativeDMpath looks like a normal file system path where  
 // the root of the path (“.”) is the top level of the HDF5 file. 
 

Adding data to the DataModule: 
 
// Creating a sample DataObject to add to our DataModule 

 Data_2D data2d_1 = new Data_2D(...); 
Data_2D data2d_2 = new Data_2D(...); 
 
// Adding data to the groups of this DataModule 
dataMod.addData(data2d_1); 

 dataMod.addMeta(data2d_2); 
 dataMod.addRaw(byteArrayEncodedFile); 

// Adding Children DataModules to this Parent 
" dataMod.addDataModule(new SDCube_DataModule(...)); 
"

Retrieving data from the DataModule: 
"

// Retrieving data from DataModule 
ArrayList<DataObject> data = dataMod.getDataGroup(); 
ArrayList<DataObject> meta = dataMod.getMetaGroup(); 
ArrayList<DataObject> raw = dataMod.getRawFileArrays(); 
ArrayList<DataModules> children = dataMod.getDataModules(); 

"



SDCube Programming Manual v1.0.1 ("

 
 

 
 
 
 
 
 
 

 
Write a DataModule to an HDF5 file: 

"
// Writes to the H5FilePath to RelativePath already set 
dataMod.write(); 
 
// Writes to the given H5FilePath and GroupPath if different from current 
dataMod.write(H5FilePath, RelativeGroupPath); 

  
Load a DataModule from an HDF5 file: 

"
// Create and loads from the initialized path 

 SDCube_DataModule dataMod = new SDCube_DataModule(h5Path, relativeDMpath); 
dataMod.load(); 
 
// Change H5path and groupPath of existing DataModule before loading 

" dataMod.setFilePath(H5path); 
 dataMod.setGroupPath(relativePath); 

dataMod.load(); 
"
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4. The Experimental Design 
 

The experimental design for an SDCube sample is stored in an ExpDesign_Sample 
object when instantiated in Java and XML when stored on disk.  Each 
ExpDesign_Sample contains a collection of ExpDesign_Descriptors that describe 
specifically how the experimental sample has been treated or what was measured.  The 
following parameters describe a single ExpDesign_Descriptor: 

 
 

Id = Text ID that links samples between XML/HDF5 
Type = Either a “Treatment” or “Measurement” 
Name = Text name of the descriptor 
Value = Quantitative value associated with descriptor 
Units = Units that correspond to the Value 
Time = Time of treatment or measurement 
Time_Units = Units that correspond to the Time 

"
"

"

"
"

"
"
!
!
!
!

!
!

Example XML syntax to describe a Sample in the ExpDesign.xml file"
"

<Sample id='ID_1'> 
  <Descriptor> 
   <type>Treatment</type> 
   <name>EGF</name> 
   <value>1e-9</value> 
   <units>M</units> 
   <time>0</time> 
   <time_units>min</time_units> 
  </Descriptor> 

   <!--Add as many Descriptors or this sample as needed --> 
</Sample> 
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!

!
!

"
Creating and Writing an ExpDesign_Sample  

"
// Initialize Descriptor with all parameters   
ExpDesign_Descriptor desc = new ExpDesign_Descriptor( 

sample_id, type, name, value, units, timeValue, timeUnits); 
 
. . . 

 
/ ... or set them one at a time 
ExpDesign_Descriptor desc = new ExpDesign_Descriptor(); 

  desc.setId(id); 
  desc.setName(name); 
  desc.setType(type); 
  desc.setValue(value); 
  desc.setUnits(units); 
  desc.setTime(time); 
  desc.setTimeUnits(tUnits); 
 
 
  // Creating a Sample and adding our descriptor to it 
  ExpDesign_Sample sample = new ExpDesign_Sample(); 
  sample.addDescription(desc) 

"
// Adding this sample to the collection of samples for the SDCube 

  ArrayList<ExpDesign_Sample> allSamples = new ... 
  allSamples.add(sample);"

"
// Writing all the samples to the given XML path 
ExpDesign_IO.write(xmlFilePath, allSamples); 
 
 

Reading samples from XML 
"
ArrayList<ExpDesign_Samples> parsedSamples;"
// Reading all the samples from the given XML path 
parsedSamples = ExpDesign_IO.parseSamples(xmlFilePath); 
// Reading all the samples that have the given ID 
parsedSamples = ExpDesign_IO.parseSamplesWid(xmlFilePath, id); 
// Reading all the samples that have one of the given (String[])ids 
parsedSamples = ExpDesign_IO.parseSamplesWids(xmlFilePath, ids); 
// Reading samples that contain descriptors with ALL the dNames 
parsedSamples = ExpDesign_IO.parseSamplesWithDescriptorNames_AND( 

String xmlPath, String[] dNames)) 
// Reading samples that contain descriptors of at least 1 dName 
parsedSamples = ExpDesign_IO.parseSamplesWithDescriptorNames_OR( 

String xmlPath, String[] dNames)) 
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5. The SDCube Sample 

!
The SDCube is composed of one or more SDCube_Sample objects.  A Sample contains 
two components: the HDF5 encoded data and the XML experimental design.  A String 
ID links the both components of the SDCube_Sample. Refer to prior sections for the 
specifics of these individual components.  Here the SDCube_Sample is described: 

!

!
!
!
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"

"
Creating an SDCube_Sample 

"
// Initialize SDCube_Sample  
SDCube_Sample sample = new SDCube_Sample( 
 SDCube_DataModule rootDM, ExpDesign_Sample expD, String id); 
 

 
Getting information from an SDCube_Sample 

 
// Getting the Sample ID  
String id = sample.getID(); 
// Getting the root DataModule  
SDCube_DataModule data = sample.getDataModule(); 
// Getting the ExpDesign_Sample 

  ExpDesign_Sample expD = sample.getExpDesign(); 
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License 
 
ImageRail: Software for high-throughput microscopy image analysis 
 
Copyright (C) 2011 Bjorn Millard <bjornmillard@gmail.com> 
 
This program is free software: you can redistribute it and/or modify 
it under the terms of the GNU General Public License as published by 
the Free Software Foundation, either version 3 of the License, or 
(at your option) any later version. 
 
This program is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
GNU General Public License for more details. 
 
You should have received a copy of the GNU General Public License 
along with this program.  If not, see <http://www.gnu.org/licenses/>.
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1 Introduction  

 This short document is a manual for ImageRail software first described by Millard et al. 

[1]. Additional resources and periodic updates can be found at: 

http://www.semanticbiology.com/software. This website also offers further details on SDCubes, 

the storage format used by ImageRail, including a separate manual and software library. 

 The goal of ImageRail software is to provide an open-source, stand-alone program built 

around the SDCube data structure that 1) facilitates high-throughput image analysis, including 

segmentation and feature computation, 2) provides basic data exploration tools such as line plots, 

scatter plots, histograms and heat maps, and 3) encodes and manipulates experimental design 

metadata and links it to extracted data from the source images. 

 ImageRail data and metadata are stored in semantically-typed data hypercubes (SDCubes), 

a data structure built from the HDF5 and XML file formats.  SDCubes were developed to 

efficiently store large amounts of experimental biology data (in this case, single-cell data 

acquired via high-throughput microscopy; HTM) and to link it to digitized experimental 

metadata describing how each sample was perturbed experimentally and then measured.  

Although ImageRail data is stored primarily in SDCubes, user-defined subsets of the data can be 

exported in CSV format for analysis in other software programs such as Excel, MatLab and 

Spotfire. 

 The default ImageRail segmentation algorithm is implements a simple watershed-style 

method.  Currently, alternative algorithms can be substituted by performing some Java 

programming. We are currently creating new programming APIs that will create a direct 

interface with open-source image analysis programs ImageJ. 

 The full benefits of SDCubes will become apparent when more programs can read and 
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manipulate HDF5-encoded data and the XML-encoded experimental design data to analyze and 

navigate efficiently through the digitized single-cell data.  Currently, ImageRail can create, 

modify and read SDCubes, but more advanced functional analysis and plotting of SDCubes will 

be handled by a sister program, DataRail v2.0, which is currently under development [2]. 
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2 Installation and Quick Start  

ImageRail downloads can be found at: http://www.semanticbiology.com/software/imagerail   

 

Windows: 

1) Download the Windows installer .exe file 

2) Double click the installer file to initiate installation 

3) Optional: To make a Desktop shortcut, drag the ImageRail icon from 

the Start menu Programs folder to your desktop while holding the Ctrl 

key. 

 4) ImageRail may be launched from the Start menu's Programs folder, or your 

 desktop shortcut if you chose to create one. 

 

Mac OS X  (OS X 10.6 - Snow Leopard or greater is required) 

1) Download the Mac OS X .dmg 

2) Double-click the .dmg to mount it and display its contents 

3) Drag the ImageRail application to your Applications folder 

4) Optional: Drag the instruction manual PDF file to your Documents 

folder or wherever you would like to keep it. 

5) To launch ImageRail, open your Applications folder and double-click the 

 ImageRail application.
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3 The ImageRail Project 

 After the ImageRail splash screen goes away, a dialog box should appear (Figure 1a). This 

box will let you create a new ImageRail project or re-open an existing project.  

 

 

 

 

 

3.1 Creating New Projects  

 To create a new project, you must specify how many plates and how many wells per plate 

you want to initialize using the appropriate dialog box (Figure 1b). 

 

a 

b 

Figure 1 
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3.2 Opening Existing Projects  

 If you want to re-open an existing project, a file chooser will appear so you can select the 

directory and project of interest. Once a project has been initialized or opened, a graphical user 

interface should appear (Figure 2).  This is an example of a new project created with four 96 well 

plates. 

 

 

 

Figure 2 
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4 Images 

4.1 Image Formats and Conventions  

 Currently, ImageRail reads grayscale-TIFF images 

(different images correspond to different filter 

combinations in the usual manner, thereby enabling multi-

spectral analysis). Before getting started you must make 

sure that all TIFF images for a given plate are put into 

their own directory folder.  All the images representing 

each field for all wells and various wavelengths for each 

individual plate will be mixed together in this directory. 

(Figure 3). ImageRail will parse through and organize the 

images based on a simple file naming convention. 

 

Each image file name has 4 key properties: 

   1. Prefix string 

   2. Well identifier 

   3. Field number identifier 

   4. Wavelength identifier 

 

An example file name would look like: 

experiment1_A01_1_w488.tif 

 

 In this example, the prefix! "experiment1", well identifier! "A01", field number! "1", 

Figure 3 
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and wavelength! "w488". Note that all these identifiers are separated by an underscore ("_").  

Also note that the label for an image arising from well B01 must contain a “01;” “B1” will not 

work. 

 

4.2 Loading Images  

 To begin your analysis, you will first load images into each plate. Please refer to section 

4.1 to learn more about current image format requirements. We are actively working to make 

image formats compliant with Open Microscopy Environment (OME) standards. 

 Once images conform to the required naming convention and each directory contains 

images from one plate, drag and drop each directory into the appropriate GUI-plate. 

 If successfully loaded, the wells of the plate that contain images will now display a NxM 

indicator, where N represents the number of fields acquired and M represents the number of 

channels per field (Figure 4). In this example, the outer wells were not imaged. 

 

 

 

 Thus the total number of image files within each well is equal to: NumFields x 

Figure 4 
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NumChannels. In the above example we have 4 fields and 3 channels for a total of 12 separate 

TIFF images per well. 

 Note that the original images are moved into the ImageRail project and not copied, so be 

sure to make a copy of your images if you want to store them elsewhere as well. 
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4.3 Viewing Images  

 

 

 

4.3.1 Field Viewer  

 To display the loaded images, click or drag on the plate to select the wells of interest and 

then either select menu item Display!Display Images or press ctrl+d. 

 An image browser will open displaying an image, four slider bars and a mini-plate map 

(Figure 5).  NOTE: Mousing over the image will display the pixel intensity on the right margin 

below the mini-plate. 

 

   1. Bottom-most Slider - Changing fields and wells: 

Figure 5 
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      The default start image is from the upper left-most of the selected wells in the plate, with its 

first field and lowest wavelength. The bottom-most slider will first scroll through any other fields 

of the first well, then move on to the first field of the second well and so forth. The sliding order 

of the wells is always left to right, top to bottom. The plate map will indicate the current well 

being viewed, and clicking on a white-highlighted well will skip directly to the first field of that 

well. 

   2. Bottom-top Slider - Changing Wavelengths: 

      Scrolls through the various channels acquired for the currently selected field. 

   3. Right (1st-left) Slider - Min Value Scaling: 

      Changes the minimum value of the image; pixels with values lower than this limit are set to 0 

(black). 

   4. Right (2nd-right) Slider - Max Value Scaling: 

      Changes the maximum value of the image to make it brighter or dimmer; pixels with values 

higher than this limit are saturated and displayed white. 
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4.3.2 Montage Viewer 

 The montage button on top of each plate panel will produce a montage image viewer that 

displays an image from one field from each well (Figure 6).  By default, the viewer is initialized 

with the first wavelength and the first field for each well.  The Options menu allows selection of 

other channels and fields.  The mouse wheel controls the image zoom.  If zoomed, mouse 

dragging will pan the viewer.   

 

Figure 6 
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5 Image Processing 

Preprocessing 

 In its default form, ImageRail does not perform image pre-processing such as image flat-

field calibration, contrast enhancements or convolution filtering.  These features as well as other 

segmentation algorithms can be implemented as plug-ins.  When we need preprocessing for our 

purposes, we use the open-source NIH software program ImageJ (http://rsbweb.nih.gov/ij). 

  

5.1 Well Means  

 If you are only interested in population average fluorescent intensities, then there is no 

need for single-cell segmentation. Well-mean computations can be done quickly. This 

measurement would be similar to the data acquired from standard fluorescence-based plate 

readers that specifically ignores image regions without cells, as opposed to performing single-

cell analysis and then averaging the data over all cells in the plate. 

 To begin, highlight the wells in the plate you want to process and use the menu option: 

Process!Well Means 
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 A dialog box will prompt the input of three parameters: 1) channel for cell identification, 2) 

intensity threshold, which sets a minimum defining where cells exist, and 3) background 

threshold, which establishes an upper bound for defining background pixels (Figure 7).  Refer to 

section 5.3 to learn how to determine optimal parameters.  

 

5.2 Single-Cell Segmentation 

 The default ImageRail segmentation algorithm is simple yet effective for the 2D tissue 

cultures for which it was originally designed. When cells grow on top of each other or 3D 

samples are to be analyzed, more sophisticated segmentation is required. It is currently necessary 

to do additional programming to integrate new processing routines.  

 To perform single-cell segmentation of loaded images, use the menu item Process!Single 

Cells 

 

Figure 7 
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 Depending on the version of ImageRail or the segmentation algorithm you are using, the 

dialog window may look different (Figure 8), but in the original version there are three essential 

user supplied parameters: 

 1. Nucleus Threshold 

 2. Cytoplasm Threshold 

 3. Background Threshold 

 For both the nucleus and cytoplasm thresholds, the user must specify which channel should 

be used. NOTE: the channel used to threshold the nucleus can be different from the channel used 

to threshold the cytoplasm. 

 

Refer to section 5.3 to learn how to determine optimal parameters. 

 

5.2.1 Load Cells into RAM after Segmentation: 

 Unless this box is checked, the single-cell data for each processed well will be cleared from 

Figure 8 
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the RAM and only cached to the HDF5 file on the hard drive. If processed for single-cells, the 

plate will display the number of image fields that have data processed and ready for analysis.  

These are displayed as icons that look like white document icons within the wells, where each 

icon represents data for a single field as shown in the top row of the plate (Figure 9). 

  

 

 

 

 In this example, the single-cell data has not been loaded. By using the menu option, 

Options!Load Cells, or by clicking the “Load Cells into RAM after Segmentation” checkbox 

before processing the wells, the cells will be loaded into RAM and a mini-histogram of all cells 

will be displayed for the selected feature.  Note that there is an option to only load the single-cell 

data without the pixel coordinates as an alternative to loading both.  This will save RAM space if 

no Data"!Image link is required.  See section 6.3 for more details. 

 

5.2.2 Coordinates for HDF5 Storage: 

 Once a full segmentation has been performed, all features are computed for each cell using 

the complete coordinate list. See Supplementary Fig. 4 of Millard et al. [1] for a more detailed 

Figure 9 
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description of the “segmentation and feature computation” process. 

 For long-term storage and data sharing, a complete coordinate list for all cells may not be 

necessary: in many situations a centroid or bounding box for each cell is sufficient and 

significantly reduces the amount of data to be stored on the hard drive (Figure 10). 

 

   

 

5.3 Parameter Selection 

 To determine the numerical values for the segmentation parameters, open a sample image 

of the wells you want to segment. Highlight a region in the image that contains representative 

cells in the channel that will be used for segmentation and select: Options!Threshold Wizard.  

A separate window will open and display the selected region of the original image and three 

sliders at the bottom (Figure 11).  The top slider changes the nuclear threshold values by coloring 

pixels greater than the selected value pink. The middle slider does the same for the cytoplasm, 

coloring pixels greater than the selected threshold green (excluding any enclosed nuclear pixels 

which remain pink).  The bottom slider colors pixels lower than the current value white, which 

represents background pixels.  The currently selected threshold values from all sliders are 

displayed in the upper right corner of the window, where N = nucleus, C = cytoplasm and B = 

background.  Note that even though the green and pink pixel regions may appear contiguous in 

Outlines Bounding Boxes Centroids 

Figure 10 
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the Threshold Wizard, this does not represent the final segmentation result;  the segmentation 

algorithms will subsequently attempt to cut overlapping cells apart with a standard watershed 

procedure. 

 

 

 In this example, images were acquired using Hoechst stain to identify DNA and a blue 

whole protein dye to mark the cytoplasm. Note that the stains have drastically different intensity 

values, such that it is possible to select two different thresholds for the different compartments 

while using a single fluorescent channel. 

 

In this example, the following parameters were selected: 

   1. Nucleus = 1000 

   2. Cytoplasm = 250 

   3. Background = 200 

Figure 11 
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6 Data Viewing 

6.1 Plate Graph 

 The right panel of the main ImageRail GUI contains all plates included in the project 

currently loaded (Figure 12).  The graphical plate interface acts both as a controller for actions to 

be performed on specific wells of specific plates and as a plate-wide data display that includes 

well heat maps and mini-histograms. 

 

 

Figure 12 
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6.2 Line Plot 

 Well mean features can be plotted as contiguous well data series in a line plot (Figure 13).  

Currently, data series can be constructed based on contiguous wells as rows, columns, or across 

the same well of multiple plates (trans-plate). Note that if experimental metadata have been 

entered to denote how each well has been treated, the line plot will attempt to create proper x-

axis labels and series legend labels. 

 

 

 

 

6.3 Scatter Plot 

 Single-cell data can be plotted in a 2D scatter plot, where each dot represents one cell with 

an X-Y coordinate in the plot based on computed features whose identities are selected at the 

bottom of the plot window (Figure 14).  

Figure 13 
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 If 

multiple wells are highlighted, then multiple plots will be constructed in a “side-by-side” 

fashion.  The plots are ordered based on well location within the plate: left-to-right, top-to-

bottom.  A green line connects the centroids of distributions.  Note that each well’s scatter plot is 

a collection of the cells from all image fields within that well. 

 

6.3 Scatter Plot / Image Linkage 

 The single-cell data within the scatter plot can be directly linked to the source image if the 

data was loaded via: Options! Load Cells! Data  & Coords.  Once the scatter plot has been 

Figure 14 
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displayed with the appropriate wells highlighted, initiate the image link by opening the image 

viewer via the menu:  Display!Display Images.  Once the image viewer is open, highlighting 

dots within the scatter plot will dynamically display the corresponding cell within the image 

(Figure 15).  

 

 

 Note that the extent of coordinates stored for this linkage was determined during the 

segmentation step (see Section 5.2.2).  Users can decide to store from as little as a centroid up to 

all the pixel coordinates that represent the location of each cell.  Most often a centroid will 

suffice for post-segmentation analysis, whereas viewing outlines is most useful to confirm proper 

parameters for segmentation (this is usually done with a test well before switching to centroids 

for the rest of the plate). 

 

Figure 15 
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6.4 Histogram Plot 

 In addition to scatter plots, single-cell data can also be plotted as 1D histograms (Figure 

16) of the feature selected in the combo-box at the top of the plate panel. The plots are ordered 

based on well location within the plate: left-to-right, top-to-bottom.  The plot can be translated, 

zoomed and rotated by holding down Shift or Control with left-button drag or a right-button 

mouse drag. 

 

 

Figure 16 
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7 Data Export  

7.1 CSV – Well Means 

 

 

 Mean value and Standard Deviation data can be exported to a comma-separated value file 

(CSV) for external analysis in other software programs such as Excel and Spotfire.  To perform 

the export, use the menu option File! Save as CSV.  A dialog will be displayed that allows the 

user to select which features to export to CSV (Figure 17).  This file will contain blocks of data 

for each feature organized in an NxM block, where N=number of rows, M=number of columns.  

The left block represents the well mean feature values and the right block represents the well 

population standard deviation.   

 Note: The number of cells for each well will be appended to the bottom of the CSV export 

Figure 17 
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file by default.  No selection for cell number is necessary in the dialog window for export.   

 

7.2 MIDAS file formats 

 MIDAS is a CSV file format capable of encoding experimental data that are coupled to the 

corresponding experimental design metadata.  A complete description is provided in the 

reference section of publication [2].  

 

7.2.1 Well Means 

 The MIDAS file format was originally developed for well mean, multiplexed data.  To 

export well means from your plates, highlight the wells you want to export and select the menu 

item, File!Save as MIDAS!Well Means.  The dialog box shown at the header of section 7 will 

allow selection of features that you would like to export.  Note that MIDAS export can be done 

without metadata input. 

 

7.2.2 Single-Cells 

 Although the MIDAS file format was originally developed for well mean values it is 

capable of storing small amounts of single-cell data.  To export single cell data from your plates, 

highlight the wells you want to export and select the menu item, File!Save as MIDAS!Single-

Cells.  The dialog box shown at the header of section 7 will allow selection of desired features to 

export.  Note that MIDAS export can be done without metadata input. 
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8 Experimental Design Metadata 

To enter experimental design metadata select the yellow “Mi” button on the top toolbar 

of the left panel (Figure 18). Mi stands for MIDAS, a file standard for experimental design that 

we have previously described [2].  First select the wells you wish to annotate in the plate view at 

right.  Then enter the desired metadata in the left MIDAS panel.  To modify each field, the 

checkbox above that field must be selected.  

 

  

 The top two text fields allow for entry of a free-text based Date and Description.  

Treatments can be added, edited or deleted.  A treatment is composed of a compound name, 

value, units, time of treatment and time units. Measurements for each well can be added to 

document what each wavelength of the images acquired represents.  For example, each 

fluorescently tagged secondary antibody typically binds a primary antibody specific to a 

particular protein epitope.  Thus fluorescence from each channel is a surrogate read-out for the 

presence of specific biological components.  Note that the addition of a measurement description 

in the metadata is only for documentation purposes and does not change the exported value 

Figure 18 
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names, which continue to be based on the specific feature that was computed (ex: size_nuclear or 

Nucleus_w685 (Mean)).  Finally, since each well has been fixed at a specific time point, the time 

of sample acquisition can be added in the bottom text field.  Both a time value and time unit can 

be added (e.g., 10 min), and ImageRail will parse the value and the units accordingly.   
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