
A APPENDIX
We prove that if all error estimators are unbiased, then
limK→∞B(m,n,K) = 0.

LEMMA A.1. If all error estimators are unbiased, then
B(m,n,K) ≤ 0.

PROOF. Define the set Sn = {S1
n,S2

n, . . . ,SKn }, where Skn, k =
1, 2, . . . ,K is a random sample taken from the distribution Fk for
k = 1, 2, . . . ,K. Also, we can rewrite Equation (9) as
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where i = 1, 2, . . . , r and j = 1, 2, . . . , s. Owing to the
unbiasedness of the error estimators, ESk
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Referring to Equations (10) and (A.1), we have
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≤ 0. (A.2)

where the relations in the third and sixth lines result from
Jensen’s inequality and unbiasedness of the error estimators,
respectively.

LEMMA A.2. If all error estimators are unbiased, then
limK→∞B(m,n,K) ≥ 0.

PROOF. Let
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Owing to the unbiasedness of the error estimators, ESn [A
i,j ] =

T i ≤ 1. Without loss of generality, we assume T 1 ≤ T 2 ≤ . . . ≤

T r . To avoid cumbersome notation, we will further assume that
T 1 < T 2 (with some adaptation, the proof goes through without
this assumption). Let 2δ = T 2 − T 1 and
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(
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)
. (A.4)

Because |εi,j,kest | ≤ 1, VarSn [A
i,j ] ≤ 1/K. hence, for τ > 0, there

exists Kδ,τ such that K ≥ Kδ,τ implies P (Bδ(K)) > 1 − τ .
Hence, referring to Equation (10), for K ≥ Kδ,τ ,
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Again referring to Equation (10) and recognizing that imin = 1 in
Bδ , for K ≥ Kδ,τ ,
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Putting Equations (A.5) and (A.6) together and referring to Equation
(10) yields, for K ≥ Kδ,τ ,

B(m,n,K) ≥ (T 1 − δ)(1− τ)− T 1 − τ ≥ −(2τ + δ) (A.7)

Since δ and τ are arbitrary positive numbers, this implies that
for any η > 0, there exists Kη such that K ≥ Kη implies
limK→∞B(m,n,K) ≥ 0, which is precisely what we want to
prove.

Combining Lemmas A.1 and A.2, we have proven that
limK→∞B(m,n,K) = 0 under the assumption that all the error
estimators are unbiased.
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