A APPENDIX

We prove that if all error estimators are unbiased, then
limg 00 B(m,n, K) = 0.

LEMMA A.l.
B(m,n,K) <0.

If all error estimators are unbiased, then

PROOF. Define the set S,, = {S},S2,...,SX}, where S¥, k =

1,2,..., K is a random sample taken from the distribution F}, for
k=1,2,..., K. Also, we can rewrite Equation (9) as
X
min . 1,7,k
Eest (K) _I’Ill’ljn{K Zsesjt } ’ (Al)
k=1
where ¢+ = 1,2,...,7 and 5 = 1,2,...,s. Owing to the

unbiasedness of the error estimators, Egr [ehiF] = Esk [eik ],
Referring to Equations (10) and (A.1), we have
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where the relations in the third and sixth lines result from
Jensen’s inequality and unbiasedness of the error estimators,
respectively. O

LEMMA A.2. If all error estimators are unbiased, then
limg 00 B(m,n, K) > 0.

PROOF. Let
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Owing to the unbiasedness of the error estimators, Es, [A™7]
T* < 1. Without loss of generality, we assume TV <T?2< ...

IA I

T". To avoid cumbersome notation, we will further assume that
T' < T? (with some adaptation, the proof goes through without

this assumption). Let 26 = T2 — T and
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Because |¢7"| < 1, Vars, [A"7] < 1/K. hence, for 7 > 0, there

exists K5, such that K > K; , implies P(Bs(K)) > 1 — 7.
Hence, referring to Equation (10), for K > K5 -,
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Again referring to Equation (10) and recognizing that ¢min = 1 in
Bs, for K > Ks -,
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Putting Equations (A.5) and (A.6) together and referring to Equation
(10) yields, for K > Ks -,

B(m,n,K)> (T" =8)(1—7)=T"'—7>—(274+46) (A7)

Since § and 7 are arbitrary positive numbers, this implies that
for any n > 0, there exists K, such that K > K, implies
limg oo B(m,n, K) > 0, which is precisely what we want to
prove. O

Combining Lemmas A.1 and A.2, we have proven that
limg 00 B(m,n, K) = 0 under the assumption that all the error
estimators are unbiased.




