
Supporting Information
McNerney et al. 10.1073/pnas.1017298108
1. SI Introduction
Each curve in Fig. 1 was rescaled and shifted to show all curves
on a single plot. The x- and y-coordinates of each series were
transformed via

logx→ aþb logx logy→ cþd logy:

The values of the constants a, b, c, and d for each series are shown
in Table S1.

2. SI The Model
2.1. Relation to the Production Recipe Model. The original produc-
tion recipe (PR) model of Auerswald et al. (1) contained 6 para-
meters. We made the following simplifications of their model:

• Implementations per component s → ∞. In the PR model,
each component could be implemented in s possible ways.
By setting s ¼ ∞, we postulate that new implementations
for a component can always be found. We consider this limit
because: (i) many technologies perpetually benefit over time
from scientific and engineering advances, and (ii) the main
effect of finite s is that costs plateau once the global minimum
or an inescapable local minimum is achieved [as Auerswald
et al. already noted (1)]. Because our goal is to understand
the dynamics of cost reduction, we set s ¼ ∞.

• Length of production run T → ∞. Because we are interested in
the shape of the cost evolution, which is unaffected by T, we set
no constraint on the number of recipe changes.

• Recipe changes per cost measurement τ → 1. The original
model allowed for τ cost changes between observations. Alter-
natively, the inverse of τ is the frequency at which costs are
observed, and has no effect on the underlying evolution.
Setting τ ¼ 1 assumes a cost measurement is made for every
recipe change.

• Search distance δ → 1. In the PR model, up to δ components
are allowed to change each time a new recipe is tried. For
simplicity, we consider modifying components to change one
at a time.

Thus we retain only two parameters of the PR model: n, the
number of components, and d, the number of dependencies
per component.

2.2. Simulation Algorithm. The simplest way to simulate the model
is as follows:

Simple_sim
for each time step do
pick a component i
generate new component cost c0j for each j ∈ Ai
if a0i < a then
cj←c0j for each j ∈ Ai

end
end

Although this algorithm is straightforward to implement, it is
extremely inefficient. When improvements become rare, a pro-
gram using the above algorithm will spend most iterations reject-
ing new costs.

A substantially more efficient procedure would be to only
simulate successful steps, where cost variables are updated. This
idea leads to the following algorithm:

Fast_sim
for each cost update do
pick a component i
generate new component cost c0j for each j ∈ Ai
such that a0i < ai

generate the time-taken to achieve the update
end

The challenge is to use the correct distributions for the random
variables in each of the three steps of the fast algorithm.

Before describing the three distributions needed, recall that

pðþjiÞ¼ ðnaiÞdi
di!

is the probability of accepting a change, given that i has been
picked. We can use these probabilities to write down the correct
distributions for each of the three steps of the fast algorithm.

When ai > 1∕n, the target region is not simply the volume un-
der a simplex. This problem is circumvented easily, by running the
simulation using the straightforward algorithm initially, until all
the target volumes have shrunk sufficiently. This happens when

ai ≤
1

n

is satisfied for all i. In practice, this happens very quickly, so little
time is lost by using the straightforward algorithm initially.

Step 1: Pick a component i. We should pick i with frequency equal
to the probability that i is the component responsible for the next
update. This probability, which we will call qðiÞ, is proportional
to pðþjiÞ, the probability that i yields an update once picked.
Because the qðiÞ should sum to 1 (some component is definitely
responsible for the next update), to compute qðiÞ, we should nor-
malize by the sum over pðþjiÞ:

qðiÞ≡ pðþjiÞ
∑

n

j¼1
pðþjjÞ :

Step 2:Generate new component cost c0j for each j ∈ Ai such that
a0i < ai. This step is composed of two substeps. First we generate
a0i < ai, the new total cost of the members ofAi. Second we parti-
tion a0i among the members of Ai.

To obtain the appropriate distribution from which to draw a0i,
let the members of Ai be indexed 1 through di. The probability
that the members of Ai have total cost a0i is

pða0ijþ ;iÞ¼
R a0i
0 dc01

R a0i−c
0
1

0 dc02…
R a0i−∑

di
k¼1

c0k
0 dc0dipðc01Þpðc02Þ…pðc0di Þδða0i−∑

di
k¼1

c0kÞ
pðþjiÞ :

The numerator computes the probability of drawing costs
(c1;⋯;cdi) such that a0i is their sum. Because we integrated only
over the range corresponding to a0i < ai [i.e., a subset of the range
of (c1;⋯;cdi)], we must normalize by the total probability of that
subset, pðþjjÞ. Evaluating the integral, we have

McNerney et al. www.pnas.org/cgi/doi/10.1073/pnas.1017298108 1 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1017298108


pða0ijþ ;iÞ¼
�
di
adii

�
a0di−1i a0i ∈ ½0;ai�:

A random variable with this distribution can be easily generated,
using standard numerical techniques. See, for example, ref. 2.

Step 3:Generate the time-taken to achieve the update. The prob-
ability of achieving an update via component i is pðiÞpðþjiÞ ¼
1
n pðþjiÞ. The probability pany of achieving an update via any com-
ponent is the sum of 1

n pðþjiÞ over all components:

pany ¼
1

n∑
n

i¼1

pðþjiÞ:

The probability that T steps are taken to achieve an update is
simply the geometric distribution with parameter pany,

pðTÞ¼ ð1−panyÞT−1pany;

i.e., the probability that no update occurs T − 1 times and then
occurs on the Tth step.

3. SI Independent Components
3.1 Background. 3.1.1. Useful Definitions and Nomenclature. We de-
fine the outset of component i, Ai, as the set of components that
depend on component i. Because the elements of the design
structure matrix are given by Dji ¼ 1 if j depends on i and
Dji ¼ 0 otherwise, Ai formally is

Ai≡fj:Dji ¼ 1g: [S1]

It is also useful to define the inset of components Zi that i
depends on as

Zi≡fj:Dij ¼ 1g: [S2]

Viewing the relationships between components as a graph, the
out-degree di of component i is the number of components in
Ai,

di ¼∑
j

Dji; [S3]

whereas the in-degree of i is the number of components inZi. For
a given design structure matrix D, the outset Ai corresponds to
the nonzero rows of column i and the insetZi corresponds to the
nonzero columns of row i.

Let cj be the cost of an individual component j and let ai be the
cost of cluster Ai:

ai≡∑
j∈Ai

cj ¼∑
n

j¼1

Djicj: [S4]

Component costs are updated by the following rule: A compo-
nent i is picked at random, and new costs c0j for j ∈ Ai are gen-
erated. If the resulting cluster cost satisfies a0i < ai, all
components in Ai are updated with their new values.

This rule implies that a component i can be updated in
two ways:

1. Component i is chosen and the components in Ai updated.
2. Component j ∈ Zi (j ≠ i) is chosen and the components in Aj

updated.

When the out-degree is different for each node, components
may improve at different rates. An important characterization is
the minimum out-degree of the inset of i

dmin
i ¼min

j∈Zi

dj:

For reasons that will become apparent, we term the inverse of this
quantity the improvement rate of component i. We also define
the design complexity as

d� ¼max
i
fdmin

i g:

3.1.2. Statistical Equivalence, Independence, and Bottlenecks. For the
purpose of this document, we use the notation f ðxÞ ∼ gðxÞ to mean
there exists a constant C ≠ 0 such that in the limit x → ∞,
f ðxÞ∕gðxÞ → C. We will say that f and g are asymptotically statis-
tically equivalent.

Components i and j are asymptotically statistically equivalent if
the expectation value of their costs scale with time in the same
way; i.e.,

EðciðtÞÞ∼EðcjðtÞÞ:

The average is performed over different realizations of random
trials of new component costs. Similarly, clusters i and j are
asymptotically statistically equivalent if EðaiðtÞÞ ∼ EðajðtÞÞ.

Components can be grouped into equivalence classes accord-
ing to their improvement rate dmin

i . We will argue that clusters
that have the same dmin

i are statistically equivalent. If the under-
lying network of components has diverse values of dmin

i , we call
any component with dmin

i ¼ d� a bottleneck. As we will show,
bottleneck components improve the slowest, so that they asymp-
totically dominate the cost of the entire technology.

Another important property is that of independence, in which
individual clusters or components do not depend on each other.
Two components are independent if pðci;cjÞ ¼ pðciÞpðcjÞ; here
pðci;cjÞ denotes the joint probability that components i and j have
respective costs ci and cj, whereas pðciÞ is the probability that
component i has cost ci.

3.2. Average Cost Versus Time. Let the total cost of a technology be
κðtÞ ¼ ∑n

i¼1 ci. Its expectation value at time t is

EðκðtÞÞ≡
Z

κpðκ;tÞdκ¼∑
n

i¼1

Z
cipðc1;…;cn;tÞdc1…dcn

¼∑
n

i¼1

EðciðtÞÞ; [S5]

where EðciðtÞÞ is the expected cost of component i after t innova-
tion attempts.

Whereas we are unable to compute the distribution
pðc1;…;cn;tÞ exactly, we can find effective approximations under
certain circumstances, and we can compute the asymptotic scal-
ing. We use extreme value theory for this purpose in sections 4.1
and 4.2, whereas in 4.3 and 4.4 we use a continuous-time approx-
imation and cast the problem in terms of a differential equation
for the average cost.

We now derive the cost evolution for d ¼ 1 by extreme value
theory. Let ti be the number of times component i is chosen after t
time steps, where ∑iti ¼ t. The expected cost of component i can
be written

McNerney et al. www.pnas.org/cgi/doi/10.1073/pnas.1017298108 2 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1017298108


EðciðtÞÞ¼∑
ti¼t

ti¼0

PðtijtÞEðcijtiÞ; [S6]

where PðtijtÞ is the probability that component i is chosen ti times
given t innovation steps, and EðcijtiÞ is the expected cost of com-
ponent i given that it was chosen ti times. Because each compo-
nent is chosen with equal probability 1∕n, the conditional
probability PðtijtÞ is the binomial distribution

PðtijtÞ¼ t
ti

� ��
1

n

�
ti
�
1−

1

n

�
t−ti

: [S7]

The expected cost EðcijtiÞ, in contrast, requires stronger assump-
tions to be computable.

When the degree d ¼ 1 for every node, each component is
isolated and independent. This means that at any time t,
pðc1;…;cn;tÞ ¼ pðc1;tÞ…pðcn;tÞ, and we can compute EðcijtiÞ as
follows:

EðcijtiÞ¼
Z

cipðc1;…;cn;tÞdc1…dcn ¼
Z

cipðci;tÞdci: [S8]

The strategy of the calculation is to compute pðci;tÞ for a single
representative component with cost ci ¼ c, and then compute the
final result using Eqs. S5–S7.

Under the assumptions of the model, each trial cost value is
independently drawn from a continuous distribution f ðcÞ, which
is fixed in time. From extreme value theory (3), the probability
that the minimum cost exceeds c after ti such trials is ½1 − FðcÞ�ti ,
where FðcÞ ¼ ∫ c

0f ðcÞdc is the cumulative distribution. The prob-
ability density pðc;tiÞ of the cost of a component after ti improve-
ment attempts is therefore

pðc;tiÞ¼−
d
dc

½1−FðcÞ�ti ¼ tif ðcÞ½1−FðcÞ�ti−1: [S9]

For the case where f ðcÞ ¼ γnγcγ−1 on ½0;1∕n�, then FðcÞ ¼ ðncÞγ ,
and the expectation of the cost of component i after ti improve-
ment attempts is

EðcijtiÞ¼
Z

1∕n

0

cipðci;tiÞdci ¼ γti
R 1∕n
0 ðnciÞγ ½1− ðnciÞγ �ti−1dci

¼ ti
n

Z
1

0

x1∕γð1− xÞti−1dx¼ ti
n
B
�
1þ1

γ
;ti

�
: [S10]

In the last step, we substitute x ¼ ðnciÞγ to express the integral in
terms of the beta function Bða;bÞ (4). When γ ¼ 1 Eq. 10 reduces
to EðcijtiÞ ¼ 1

n
1

tiþ1
, similar to the original result of Muth (5) (who

solved the even simpler case of a technology with one compo-
nent). To highlight the asymptotic dependence on ti, we use
the large-b approximation Bða;bÞ ∼ ΓðaÞb−a, where ΓðaÞ is Euler’s
gamma function, to give

EðcijtiÞ∼
t−1∕γi

n
Γ
�
1þ1

γ

�
: [S11]

We now average over ti. Substituting Eq. S7 and [S11] into Eq. S6
gives, in the long-time limit

EðciðtÞÞ∼
1

n
Γ
�
1þ1

γ

�
∑
t

ti¼0

t−1∕γi
t
ti

� ��
1

n

�
ti
�
1−

1

n

�
t−ti

≡ 1

n
Γ
�
1þ1

γ

�
E½t−1∕γi �;

where E½t−1∕γi � is the noninteger moment of the binomial distribu-
tion. This quantity is known to have the asymptotic expansion (6)

E½t−1∕γi � ¼
�
t
n

�
−1∕γ

�
1þ

1
γ ð1γþ1Þð1− 1

nÞ
2t∕n

þ⋯
�
: [S12]

The leading term corresponds to merely replacing ti by its average
value t∕n so that

EðciÞ∼
1

n
Γ
�
1þ1

γ

��
t
n

�
−1∕γ

½1þOðn∕tÞ�; [S13]

where Oðn∕tÞ indicates that the answer is accurate to order n∕t.
This agrees with the intuition that in the limit when t is large
the binomial distribution becomes sharply peaked around its
mean value. Summing over over all n components in Eq. S5 gives
EðκðtÞÞ ¼ nEðciðtÞÞ.

4. SI Interacting Components, Fixed Out-Degree
4.1. Cost Evolution for Constant Out-Degree d > 1 by Extreme Value
Theory. In this section we derive an asymptotic approximation for
the cost when the out-degree d of each component is the same,
but greater than one, so that components are no longer indepen-
dent. The strategy of the calculation is to express the average cost
as a sum over clusters rather than components, and to treat each
cluster as independent.

We first express the total cost as a sum over clusters. Let the
design structure matrix (DSM) D be invertible. (We can show
numerically that our approximation also works when D is not
invertible). Then we can write the component costs in terms of
the cluster costs as ci ¼ ∑jD

−1
ji aj and the total cost κ as

κ¼∑
n

j¼1

cj ¼∑
i;j

D−1
ij ai ¼∑

n

i

kiai; [S14]

where ki ≡∑jD
−1
ij . For example, for a fully connected network,

ki ¼ 1∕n ∀i, whereas for a network where each component is
isolated ki ¼ 1 ∀i.

We can now express Eq. 5 in terms of cluster costs rather than
component costs. Let ~pða1;…;an;tÞ be the joint probability density
function for the clusters. The expected cost of the technology can
then be written

EðκðtÞÞ¼
Z �

∑
n

i¼1

ci

�
pðc1;…;cn;tÞdc1…dcn

¼
Z �

∑
n

i¼1

kiai

�
~pða1;…;an;tÞda1…dan ¼∑

n

i¼1

kiEðaiðtÞÞ:

[S15]

We now make the approximation that the clusters evolve inde-
pendently, so that ~pða1;…;an;tÞ ¼ ~pða1;tÞ…pðan;tÞ. This implies
that

EðκðtÞÞ¼∑
n

i¼1

kiEðaiðtÞÞ¼∑
n

i¼1

ki

Z
ai ~pðai;tÞdai: [S16]

Because the out-degree is constant we can also make the approx-
imation that all clusters behave similarly, so that we can write the
cost ai of any particular cluster as that of a generic cluster; i.e.,
ai ¼ a. This implies

McNerney et al. www.pnas.org/cgi/doi/10.1073/pnas.1017298108 3 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1017298108


EðκðtÞÞ≈nk̄EðaðtÞÞ: [S17]

In the constant out-degree case it is straightforward to show that

k̄≡ 1

n∑
i

ki ¼
1

d
: [S18]

The problem is now reduced to computing ~pða;tÞ and performing
the integral. Following analogous steps as those for the d ¼ 1 case
of isolated components, the distribution ~pða;tiÞ is

~pða;tiÞ¼ ti ~f ðaÞ½1− ~FðaÞ�ti−1; [S19]

where ~F is the cumulative parent distribution of cluster costs, ~f
is the corresponding probability density, and ti is the number of
times cluster i is chosen.

We now express the parent cost distribution for clusters, ~f ðaÞ,
in terms of those of individual components. As before, we use
f ðcÞ ¼ γnγcγ−1 (so that FðcÞ ¼ ðncÞγ) for small c, so that the
cluster cost distribution ~f is

~f ðaÞ¼
Z

f ðc1Þ⋯f ðcdÞδðc1þ⋯þ cd−aÞdc1⋯dcd:

For concreteness, first consider the case d ¼ 3, after which the
general case follows easily. The distribution ~f ðaÞ is

~f ðaÞ¼ ðγnγÞ3
Z

a

0

dc1

Z
a−c1

0

dc2

Z
a−c1−c2

0

dc3c
γ−1
1 cγ−12 cγ−13 δðc1þ c2

þ c3−aÞ

¼ ðγnγÞ3
Z

a

0

dc1c
γ−1
1

Z
a−c1

0

dc2c
γ−1
2 ½ða− c1Þ− c2�γ−1

¼ðγnγÞ3Bðγ;γÞ
Z

a

0

dc1c
γ−1
1 ða− c1Þ2γ−1

¼ a3γ−1ðγnγÞ3Bðγ;γÞBðγ;2γÞ:

The corresponding result for general d is

~f ðaÞ¼ aγd−1ðγnγÞd
Yd−1
j¼1

Bðγ;jγÞ¼ aγd−1ðγnγÞd ΓðγÞ
d

ΓðγdÞ : [S20]

Using the latter form, we obtain for ~F:

~FðaÞ∼aγd
ðγnγÞd
γd

ΓðγÞd
ΓðγdÞ≡aγdHðn;d;γÞ: [S21]

Substituting Eq. S20 and [S21]into Eq. S19 gives

~pða;tiÞ¼ γdaγd−1tiH½1−aγdH�ti−1∼ γdaγd−1tiH exp½−aγdHti�
t→∞; a→ 0.

[S22]

We can now compute EðciðtÞÞ as before using Eq. S6. The average
over PðtijtÞ is no longer tractable in closed form, but we assume
that ti ≈ ðd∕nÞt. As before, each component is chosen 1∕n of the
time; the factor d appears because components belong to d clus-
ters on average, and are therefore updated d times as often.

~pða;tÞ∼ γdaγd−1t∕nH exp½−aγddHt∕n� t→∞; a→ 0. [S23]

This expression has the form of a Weibull distribution:

pðxÞ¼ k
λ

�
x
λ

�
k−1

e−ðx∕λÞk ;

with x ¼ a and parameters k ¼ γd and λ ¼ ðdHt∕nÞ−1∕ðγdÞ. The
average value EðxÞ for a Weibull distribution in terms of these
standard parameters is λΓð1þ 1

kÞ, which implies that the average
cluster cost in the limit as t → ∞ is

EðaðtÞÞ¼Γ
�
1þ 1

γd

�
ðdHt∕nÞ−1∕ðγdÞ: [S24]

From [S17] the total cost of the technology is

EðκðtÞÞ¼ n
d
Γ
�
1þ 1

γd

�
ðdHt∕nÞ−1∕ðγdÞ: [S25]

Note that this reduces to [S13] when d ¼ 1. This functional form
matches our numerical simulations. It gives the correct asympto-
tic scaling exponent, and the constant is accurate within a factor
of 2.

4.2. Alternative Derivation of Average Cost Evolution in the Constant
Out-Degree Case.We now present an alternative derivation for the
case of constant d > 1 by writing and solving a differential equa-
tion for the average cluster cost. This second derivation requires
stronger assumptions than the first, but we include this latter ap-
proach for three reasons: (i) Simulations show it gives better
agreement for small t. (ii) It illustrates the cause of the power
law behavior more clearly than the first derivation. (iii) Most im-
portantly, it provides intuition and justification for the solution of
the more general case where the out-degree is not constant in the
next section.

We use the same decomposition as in the previous section, and
use [S17] and Eq. S18 to express the total technology cost as
EðκðtÞÞ ≈ nEðaðtÞÞ∕d, thereby reducing the computation of the
average cost of the whole technology in terms of that of a single
cluster. As in our previous discussion, we are thus assuming that
the clusters are independent and roughly identical.

We now compute the average rate at which clusters improve,
and then solve the resulting differential equation. For brevity, let
a0 ¼ aðtþ 1Þ, and a ¼ aðtÞ. The expected change in the cost of a
cluster, Δa ¼ a0 − a, given that its current cost is a, can be written
as

E½Δaja� ¼
Z

a

0

ða0−aÞ~f ða0Þda0 ¼
Z

a

0

a0
d ~F
da0

da0−a ~FðaÞ

¼
Z

a

0

�
d
da0

ða0 ~Fða0ÞÞ− ~Fða0Þ
�
da0−a ~FðaÞ

¼ ½a0 ~Fða0Þ�a0−
Z

a

0

~Fða0Þda0−a ~FðaÞ¼−
Z

a

0

~Fða0Þda0:
[S26]

Using [S21], we obtain

E½Δaja�∼−
Hðn;d;γÞ
γdþ1

aγdþ1: [S27]

This calculation assumes that a ¼ aðtÞ is given. However, aðtÞ is
itself a random variable that depends on the previous t − 1 steps.
Therefore, one must also average over these previous steps to
obtain the unconditional rate of change EðΔaÞ:

EðΔaÞ∼−
Hðn;d;γÞ
γdþ1

Eðaγdþ1Þ: [S28]

McNerney et al. www.pnas.org/cgi/doi/10.1073/pnas.1017298108 4 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1017298108


We now make three assumptions. First, as in the previous section
(and motivated by the calculation in section 4.1), we assume that
each component is chosen t∕n times, and we neglect indirect up-
dates of individual components when other clusters are chosen.
Second, we take the continuous-time limit by noting that the aver-
age change in a in a unit time step is EðΔaÞ, so that for long times
(when EðΔaÞ is small) we can write EðΔaÞ ≈ dEðaÞ∕dti. Third, we
assume that

EðapÞ∼EðaÞp: [S29]

The first two assumptions are clearly excellent approximations in
the long-time limit, whereas [S29] implies that the pth power of
the fluctuation about the average has the same time dependence
as the average raised to the pth power. For sufficiently small p this
assumption is numerically supported, as we illustrate in Fig. S1.
For large p this assumption may break down, however, even
though it is valid for all the examples that we have studied.
(As p increases, extreme fluctuations of a will dominate the aver-
age EðapÞ. As long as the distribution of costs decays faster than a
power law for large costs, the time dependence of EðapÞ must be
the same as that of ½EðaÞ�p as t → ∞; it is worth noting that the
calculation of EðapÞ in the previous section does not assume an
upper bound on p, suggesting that EðapÞ ∼ EðaÞp is always valid).

Combining [S28] and [S29], substituting EðaÞ ≈ EðκÞd∕n from
[S17], and substituting ti ¼ ðd∕nÞt as before, gives the differential
equation

dEðκÞ
dti

∼−
�
d
n

�
γdþ1Hðn;d;γÞ

γdþ1
EðκÞγdþ1; [S30]

whose solution is

EðκðtÞÞ¼
��

d
n

�
γdþ1 γd

1þ γd
Hðn;d;γÞtþ1

�
−1∕ðγdÞ

; [S31]

where we imposed the model’s initial condition Eðκð0ÞÞ ¼ 1.
At large times, this becomes

EðκðtÞÞ∼n
d

�
γd

γdþ1

�
−1∕ðγdÞ�dHt

n

�
−1∕ðγdÞ

: [S32]

This result has the same asymptotic time scaling as Eq. S25 of the
previous section, though with a different prefactor. A comparison
of these prefactors can be seen in Fig. S2. The prefactors never
differ by more than a factor of 2, and quickly approach 1 for
larger values of γd.

5. SI Interacting Components, Variable Out-Degree
When components have variable out-degree, different compo-
nents can exhibit different scaling dependences of cost versus
time and the assumptions of the previous sections break down.
Our strategy for finding a solution in this case is to identify
the dominant components (those whose costs decrease the slow-
est) and neglect everything else (for reasons explained below).
Unlike earlier calculations, we can only perform this calculation
for γ ¼ 1. (When γ ≠ 1 the integrals involved lack closed-form
solutions).

To calculate the evolution of the cost, we study Δci ¼ c0i − ci,
the change in ci at a given time step. To compute the expected
value EðΔciÞ it is useful to define the following three quantities:

• pðþjjÞ is the probability that component j is improved, given
that a cluster that contains it is chosen.

• pðc0ij þ ;jÞ. Given that component j is chosen and that it
improves, the probability that component i has cost c0i
is pðc0ij þ ;jÞ.

• EðΔcij þ ;jÞ. Given that component j is chosen and it improves,
the expected change in its cost is given by

EðΔcijþ ;jÞ¼
Z

ðc0i− ciÞpðc0ijþ ;jÞdc0i:

As before, we assume that in the long-time limit each compo-
nent is chosen t∕n times. The average change of ci can then be
written as

EðΔciÞ¼
1

n∑
j∈Zi

EðpðþjjÞEðΔcijþ ;jÞÞ: [S33]

Note that the sum is over all the components j in the inset of i; i.e.,
all components that could potentially cause i to be updated. Thus
the prefactor 1∕n is the probability that component j is picked.
Notice the existence of two averages. First, there is an average
over the single step that takes the cost from c to c0 to compute
EðΔcij þ ;jÞ given that the system is in the state ~c ¼ ðc1;…;cnÞ.
Second, there is an average over all states ~c.

As already mentioned, we assume the parent distribution of
individual component costs F is the uniform distribution on
½0;1∕n�. Let the members of Aj be indexed from 1 through dj.
We now compute each of the components on the right side
of Eq. S33:

The first term is

pðþjjÞ¼
Z
<
pðc01Þpðc02Þ…pðc0djÞdc01dc02…dc0dj

¼
Z

aj

0

dc01

Z
aj−c01

0

dc02…
Z

aj−∑
dj

k¼1

c0k

0

dc0djpðc01Þpðc02Þ…pðc0djÞ

¼ ðnajÞdj
dj!

; [S34]

where the subscript < denotes integration over the range
a0i < ai ∀i.

For the second term we must first compute the probability

pðc0ijþ ;jÞ

¼
R aj
0 dc1

R aj−c1
0 dc2…

R aj−∑
n−1

k¼1

ck

0 dcnpðc1Þpðc2Þ…pðcnÞδðci− c0iÞ
pðþjjÞ :

The numerator gives the probability of sampling the costs
(c1;⋯;cn) such that ci takes on the particular value c0i. Because
we integrate only over the range corresponding to a0i < ai [i.e.,
a subset of the range of (c1;⋯;cn)], we must normalize by the total
probability of that subset, pðþjjÞ. Evaluating the integral gives

pðc0ijþ ;jÞ¼ ndjðaj− c1Þdj−1∕ðdj−1Þ!
ðnajÞdj∕dj!

¼ dj
ðaj− c0iÞdj−1

a
dj
j

: [S35]

The expected conditional change in the cost of component i is
therefore

EðΔcijþ ;jÞ¼
Z

aj

0

ðc0i− ciÞdj
ðaj− c0iÞdj−1

a
dj
j

dc0i ¼
aj

djþ1
− ci: [S36]

Using the results of Eqs. S34 and S36, Eq. S33 becomes

EðΔciÞ¼−
1

n∑
j∈Zi

ndj

ðdjþ1Þ! ½ðdjþ1ÞEðadjj ciÞ−Eðadjþ1

j Þ�: [S37]

McNerney et al. www.pnas.org/cgi/doi/10.1073/pnas.1017298108 5 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1017298108


Because the change in the cost of a single component involves
sums of terms raised to powers, an analytic solution of [S37] is
not possible. Nevertheless, it is possible to derive a good approx-
imation of the total cost in the long-time limit by identifying the
components whose costs dominate, and neglecting everything
else. (As we will show numerically, this is a reasonable approx-
imation because the dominant component costs rapidly become
orders of magnitude larger than all others.)

We first determine those components whose costs asymptoti-
cally dominate, which we call the bottleneck components. We
make this determination as follows: during the early part of
the evolution all components have the same cost ci ¼ g. Assuming
they remain the same, Eq. S37 becomes

EðΔciÞ¼−
1

n∑
j∈Zi

ðndjÞdj
ðdjþ1Þ!Eðg

djþ1Þ¼−∑
j∈Zi

KjEðgdjþ1Þ: [S38]

When g is small the prefactor Kj is unimportant—only the expo-
nent of Eðgdjþ1Þ matters. Because g < 1, the largest term in the
sum is given by the index j with the smallest exponent dj þ 1.
Thus, the largest contribution to the change of the cost of com-
ponent i is given by the member of i’s inset with the smallest out-
degree dj; i.e.,

dmin
i ¼min

j∈Zi

dj: [S39]

The key role of dmin
i in determining the asymptotic scaling is ver-

ified numerically in Fig. S3. We use the DSM from Fig. 5B of the
main article. The simulation result for EðciðtÞÞ is plotted for each
component i. We see that all components that are characterized
by the same value of dmin

i have the power-law decay with exponent
−1∕dmin

i . In simulations with many different DSMs we invariably
observe that dmin

i determines the asymptotic scaling of each com-
ponent. (The top right corner of Fig. S2 shows the time evolution
of two components in a single realization: a bottleneck (compo-
nent 7) and a nonbottleneck (component 1) whose cost decreases
more quickly. Note the prominent upticks in c1 at three distinct
times. These occur because component 1 is in cluster 7, so that
when component 7 is successfully updated, the value of c1 is chan-
ged to a new value that is of the order of c7. These updates of
component 7 occur rarely, as seen by the long flat steps in
c7ðtÞ. After an uptick, however, component 1 is updated many
times in succession and its cost rapidly returns close to its pre-
vious value.) The dominant components will be those that de-
crease the slowest; i.e., those with the largest value of dmin

i .
This maximal value is

d� ¼maxdmin
i : [S40]

To derive the asymptotic evolution of the cost for a general DSM,
suppose that there are m components that are bottlenecks. We
define the set of these bottleneck components as

B¼fijdmin
i ¼ d�g: [S41]

Consider the change in cost for bottleneck components. Wemake
the assumption, that is justified numerically, that all bottlenecks
have a common cost g that is much larger than that of all other
components at long times. That is

cj≈
�
g if j∈B
0 otherwise: [S42]

With this approximation Eq. S37 becomes

EðΔgÞ≈−∑
j∈B

KjEðgdjþ1Þ≈−mK�Eðgd�þ1Þ; [S43]

where we make use of the fact that there are m bottlenecks, each
of which has dj ¼ d�, and K� is the value of Kj with dj ¼ d�. Using
approximation [S29] that a single scale accounts for all moments
of the cost, we can write

EðΔgÞ¼ dEðgÞ
dt

≈−mK�½EðgÞ�d�þ1: [S44]

Solving, substituting for K�, and recalling that because there are
m bottlenecks, EðκðtÞÞ ≈mEðgðtÞÞ, the expected total cost of the
technology becomes

EðκðtÞÞ∼m
�
d�

m
n

ðnd�Þd�
ðd� þ1Þ! t

�
−1∕d�

: [S45]

Fig. S4 compares the observed asymptotic slope of EðκðtÞÞ to the
theoretically predicted slope −1∕d� for DSMs with d� values
1;2;…;9. For each value of d�, 10 random DSMs were generated.
For each DSM the cost reduction process was simulated 300
times, from which the value EðκðtÞÞ was computed. The asymp-
totic slope of this expected value was then measured by a least-
squares fit, whereas the theoretical slope −1∕d� was found di-
rectly from the DSM. The data lie close to the dashed diagonal
line, in agreement the theoretical prediction. (The small devia-
tion for the largest values of d� arises because EðκðtÞÞ approaches
its asymptotic behavior extremely slowly, thus giving a too-large
value of the observed slope of EðκðtÞÞ in a finite-time simulation.)

1. Auerswald P, Kauffman S, Lobo J, Shell K (2000) The production recipes approach to
modeling technological innovation: An application to learning by doing. J Econ Dyn
Control 24:389–450.

2. Press W, Teukolsky S, Vetterling W, Flannery B (1999) Numerical Recipes in C
(Cambridge University Press, Cambridge, UK).

3. Galambos J (1987) The Asymptotic Theory of Extreme Order Statistics (R.E. Krieger,
Malabar, FL).

4. AbramowitzM, Stegun IE (1964)Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables (Dover, New York).

5. Muth JF (1986) Search theory and the manufacturing progress function. Manage Sci

32:948–962.

6. Z ˘nidaric ˘ M (2009) Asymptotic expansion for inverse moments of binomial and

Poisson distributions. Open Stat Probab J 1:7–10.

McNerney et al. www.pnas.org/cgi/doi/10.1073/pnas.1017298108 6 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1017298108


Fig. S1. Comparison of EðapÞ and EðaÞp for p ¼ 4 on a double logarithmic scale for 104 realizations of the cost reduction process for the DSM in Fig. 5B of the
main article for clusters i ¼ 1, 5, 7. The quantities Eðapi Þ and EðaiÞp have the same time dependence and differ only by a multiplicative constant.

Fig. S2. Comparison of [S32] prefactor (top curve) and Eq. S25 prefactor (bottom curve) as a function of x ¼ γd.

Fig. S3. (Top Left) Evolution of c1ðtÞ and c7ðtÞ during a single realization. (For a discussion of the cause of the spikes, see the text.) (Top Right) Evolution of
EðciðtÞÞ for i ¼ 1;2;…;7, averaged over 104 realizations. The paths of components 1–4 and those of components 5 and 6 are nearly coincident. (Bottom Left) The
DSM from Fig. 5B of the main article. (Bottom Right) List of component outsets, insets, out-degrees, and improvement rates.

McNerney et al. www.pnas.org/cgi/doi/10.1073/pnas.1017298108 7 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1017298108


Fig. S4. The asymptotic slope of EðκðtÞÞ versus −1∕d� on a double logarithmic scale. Each blue dot averages over 300 simulations of one DSM. 10 randomDSMs
were generated for each d�.

Table S1. Values of transformation constants

Series a b c d

Coal plants −9.0 1.4 −9.0 2.0
Ethanol −16.2 2.0 −6.0 3.0
PV cells 0.62 1.0 −3.0 1.2
Transistors −0.26 0.38 −0.64 0.2

McNerney et al. www.pnas.org/cgi/doi/10.1073/pnas.1017298108 8 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1017298108

