Supporting Information

Smith et al. 10.1073/pnas.1104526108

SI Text

Solid-State NMR Experimental Details. Solid-state ¹H, ¹³C, and ²⁷Al NMR experiments were conducted on a Bruker AVANCE III spectrometer (18.8 T) operating at frequencies of 800.43 MHz for ¹H, 201.26 MHz for ¹³C, and 208.56 MHz for ²⁷Al and under conditions of magic angle spinning (MAS) at 298 K. Solid-state ¹H, ¹³C, and ²⁹Si NMR experiments were conducted at 298 K on a Bruker AVANCE-II spectrometer (11.7 T) operating at frequencies of 500.24 MHz for ¹H, 125.78 MHz for ¹³C, and 99.38 MHz for ²⁹Si. Two-dimensional ²⁷Al{¹H}, ²⁹Si{¹H}, and ¹³C{¹H} heteronuclear correlation (HETCOR) experiments were conducted at 298 K under MAS conditions with cross-polarization contact times of 0.5, 1.0, and 1.5 ms, respectively, at 11.7 or 18.8 T for tricalcium silicate and tricalcium aluminate, respectively. The ¹H, ¹³C, and ²⁹Si chemical shifts were referenced to tetramethylsilane using tetrakis(trimethylsilyl)silane [(CH₃)₃Si]₄Si as a secondary standard, and the ²⁷Al chemical shifts were referenced to an aqueous solution of 0.5 M aluminum nitrate $[Al(NO_3)_3]$.

Solid-state 1D single-pulse ¹H, ¹³C, and ²⁹Si MAS measurements were performed at 11.7 T, 298 K, and under 10-kHz MAS conditions using a Bruker 4-mm H-X double-resonance probehead and zirconia rotors with Kel-F® caps. One-dimensional single-pulse ¹³C experiments were conducted using a 90° pulse length of 4.0 μ s (3.0 dB), under conditions of proton decoupling (3.4 μ s 90° ¹H pulses, 4.0 dB), and using a recycle delay of 60 s. One-dimensional single-pulse ²⁹Si experiments were conducted using a 90° pulse length of 3.7 μ s (3.0 dB), under conditions of proton decoupling (3.4 μ s 90° ¹H pulses, 4.0 dB), and using a recycle delay of 100 s. One-dimensional single-pulse ¹H experiments were performed using a 90° pulse length of 3.4 μ s (4.0 dB) and a recycle delay of 2 s.

Solid-state 1D single-pulse ¹H, ¹³C, and ²⁷Al measurements were performed at 18.8 T, 298 K, and under 20-kHz MAS conditions using a Bruker 3.2-mm H-X-Y triple-resonance probehead with zirconia rotors and Kel-F® caps. One-dimensional single-pulse ¹³C experiments were conducted using a 90° pulse length of 4.0 µs (-0.19 dB), under conditions of proton decoupling (3.4 μ s 90° ¹H pulses, -0.19 dB), and using a recycle delay of 60 s. One-dimensional single-pulse ²⁷Al experiments were conducted using a high-power 1.0-us pulse length (-0.19 dB) for ²⁷Al, corresponding to a 30° tip angle, and a recycle delay of 10 s. The high magnetic field mitigates the effects of second-order quadrupolar interactions and improves signal sensitivity and resolution of the ²⁷Al signals. The single-pulse ²⁷Al NMR measurements were calibrated using a dense 4.7-mg piece of AlN as an external reference for spin counting and establish that >95% of the ²⁷Al species are NMR visible. One-dimensional single-pulse ¹H experiments were performed using a 90° pulse length of $3.4 \,\mu s$ (-0.19 dB) and a recycle delay of 2 s.

All solid-state HETCOR NMR spectra were acquired using frequency-switched Lee–Goldberg (FSLG) homonuclear decoupling during the ¹H evolution period and a radio-frequency field of 70 kHz to enhance resolution in the ¹H dimension. All 2D ¹³C{¹H} HETCOR spectra were acquired with a 1.5-ms contact time and FSLG homonuclear decoupling. The 2D ²⁷Al{¹H} HETCOR spectra were acquired with a 500-µs contact time and a ¹H spin-diffusion time of 10 µs to probe immediate molecular proximities. The 2D ²⁹Si{¹H} HETCOR spectra were acquired with a 1-ms ¹H contact pulse to enable efficient ¹H-²⁹Si cross-polarization. The 2D ¹³C{¹H}, ²⁷Al{¹H}, ²⁹Si{¹H} experiments were acquired with 64 t_1 increments of 24 µs, 3024 transients, and using a recycle delay of 1 s that resulted in an experimental time of 27 h for each 2D experiment.

NMR lineshape analyses were conducted using the software "dmfit #20090330," with lineshapes fit according to signal amplitude, position, and width (1). One-dimensional single-pulse ²⁷Al and ²⁹Si MAS spectra were deconvoluted by collectively fitting peak positions with Gaussian lineshapes that were subsequently kept the same across spectra obtained for similar samples, but with different saccharide species present.

Surface Forces Apparatus Experimental Details. Surface forces measurements were performed using a surface forces apparatus (SFA) 2000 to determine the normal force-distance profiles during approach of the mica surfaces (2). A 1–5-µm-thick mica sheet was glued onto a cylindrical silica disk of radius R = 1.5 cm, and then two curved and Ag-backed mica surfaces were mounted in the SFA chamber in a crossed-cylinder geometry. Aqueous solutions were prepared by titrating distilled water with NaOH to pH 12.7 and dissolving glucose or sucrose to form 0.2 wt% solutions. The solutions were comparable to those associated with hydrating aluminate and silicate powders, except for the presence of the Na⁺ cations, instead of Ca²⁺, which avoided precipitation of Ca(OH)₂ that would have interfered with the SFA measurements. After 1 h, approximately 200 µL of the alkaline aqueous solution, with or without saccharide, was injected between the mica surfaces when separated at a relatively large distance (approximately 1 µm) and allowed to equilibrate for 30 min before the initial approach ($v_{approach} \sim 10 \text{ nm/s}$). All experiments were performed at 25 °C.

Scanning Electron Microscopy Experimental Details. Scanning electron micrographs were conducted using a FEI XL40 Sirion FEG digital electron scanning microscope at a magnification of $5000 \times$ and an electron beam voltage of 10 kV.

^{1.} Massiot D, et al. (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76.

Israelachvili J, et al. (2010) Recent advances in the surface forces apparatus (SFA) technique. Rep Prog Phys 73:12850–12853.

Fig. S1. Solid-state 1D ²⁷Al MAS NMR spectra acquired at 18.8 T, 298 K and 20 kHz MAS for hydrated tricalcium aluminate (4 h, 95 °C) in the presence of CaSO₄ · 2H₂O (50% by weight of tricalcium aluminate) and containing: (A) no saccharide, (B) 1% glucose, (C) 1% maltodextrin, or (D) 1% sucrose by weight of tricalcium aluminate. The conversion of NMR-visible ²⁷Al species is determined by integrating and comparing the relative ²⁷Al^{VI} and ²⁷Al^{VI} peak areas, as shown above and tabulated in Table 1.

Fig. 52. Solid-state 2D ²⁷Al{¹H} HETCOR NMR spectrum acquired at 18.8 T, 298 K, and 10 kHz MAS for hydrated tricalcium aluminate (4 h, 95 °C) without saccharides in the presence of CaSO₄ \cdot 2H₂O (50% by weight of tricalcium aluminate). A short spin diffusion time of t_{sd} = 10 µs was used to probe the immediate molecular proximities (<1 nm) of different resolved ²⁷Al and ¹H species. One-dimensional single-pulse ²⁷Al and ¹H spectra are shown along the horizontal and vertical axes, respectively, for comparison with the 1D projections of the 2D spectrum. The much higher resolution of the 2D spectrum allows the ²⁷Al signals to be assigned (1, 2) to tricalcium aluminate hexahydrate (Ca₃Al₂O₆ \cdot 6H₂O, 11.0 ppm), ettringite (10.0 ppm), calcium aluminate onosulfate (9.3 ppm), and dicalcium aluminate otahydrate (Ca₂Al₂O₅ \cdot 8H₂O, 8.6 ppm). Strong correlated 2D signal intensity observed between the ²⁷Al signals at 11.0, 10.0, 9.3, and 8.6 ppm and the ¹H signals at 1.0, 1.4, 1.7 and 2.5 ppm, respectively, correspond to hydroxyl groups bound to ²⁷Al species in the different aluminate hydration products. Gaussian fits to these ²⁷Al^{VI} signals, which are otherwise only partially resolved in the 1D single-pulse ²⁷Al MAS spectrum, allow their relative populations to be estimated.

1 Rawal A, et al. (2010) Molecular silicate and aluminate species in anhydrous and hydrated cements. J Am Chem Soc 132:321-7337.

2 Skibsted J, Henderson E, Jakobsen HJ (1993) Characterization of calcium aluminate phases in cements by ²⁷Al MAS NMR spectroscopy. *Inorg Chem* 32:1013–1027.

Fig. S3. Solid-state 1D ²⁷Al MAS NMR spectra acquired at 18.8 T, 298 K, and 20 kHz MAS for hydrated tricalcium aluminate (4 h, 95 °C) in the presence of CaSO₄ · 2H₂O (50% by weight of tricalcium aluminate) and containing: (*A*) no saccharide, (*B*) 1% glucose, (*C*) 1% maltodextrin, or (*D*) 1% sucrose by weight of tricalcium aluminate. The ²⁷Al peaks were fit to Gaussian lineshapes at the same peak locations as resolved in the 2D ²⁷Al^{{1}H} HETCOR spectrum in Fig. S2, allowing the spectra to be deconvoluted and relative ²⁷Al^{VI} populations estimated, as shown above and tabulated in Table 1.

Fig. S4. Solid-state 2D ¹³C{¹H} HETCOR NMR spectrum acquired at 11.7 T, 298 K and 10 kHz MAS for crystalline sucrose. Intensity correlations are observed between ¹³C signals and ¹H signals centered at 3.6 ppm due to intramolecular -CH- and -COH interactions. Intensity correlations between ¹³C signals and ¹H signals at 4.7 ppm establish the presence of adsorbed water.

Fig. S5. Solid-state 1D single-pulse ²⁹Si MAS NMR spectra acquired at 11.7 T, 298 K and 10 kHz MAS for hydrated tricalcium silicate (4 h, 95 °C) containing: (*A*) no saccharide, (*B*) 1% glucose, (*C*) 1% maltodextrin, or (*D*) 1% sucrose by weight of tricalcium silicate. The conversion of NMR-visible ²⁹Si species is quantified by integrating and comparing the relative Q^0 to Q^1 , Q^{2L} , and Q^2 ²⁹Si species peak areas, as shown above and tabulated in Table 2.

()

Fig. S6. Solid-state 2D ²⁹Si{¹H} HETCOR NMR spectrum acquired at 11.7 T, 298 K, and 6.5 kHz MAS, for hydrated tricalcium silicate (4 h, 95 °C) without saccharides. A 1-ms contact time was used to probe the immediate molecular proximities (<1 nm) of different resolved ²⁹Si and ¹H species. One-dimensional single-pulse ²⁹Si and ¹H MAS spectra are shown along the horizontal and vertical axes, respectively, for comparison with the 1D projections of the 2D spectrum. Gaussian fits to the ²⁹Si MAS signals for the Q¹, Q^{2L}, and Q² ²⁹Si species are shown along the top horizontal axis. Strong correlated 2D signal intensity observed between the ²⁹Si signals at -79, -82, and -85 ppm and the ¹H signals at 1.3, 0.9, and 1.3 ppm, respectively, correspond to Q¹, Q^{2L}, and Q² hydroxyl species in calcium-silicate-hydrate. Additional intensity correlations observed between the ²⁹Si signals at -79 and -85 ppm and the ¹H signal at 4.7 ppm indicate that some adsorbed water is in molecular proximity to the Q¹ and Q² silicate species.