Ni-Catalyzed Ketene Cycloaddition: A System that Resists the Formation of Decarbonylation Side Products

Puneet Kumar, Dawn M. Troast, Rodrigo Cella, and Janis Louie*

SUPPORTING INFORMATION

General Experimental:

All reactions were conducted under an atmosphere of N_2 using standard Schlenk techniques or in a N_2 filled glove-box unless otherwise noted. Toluene was dried over neutral alumina under N_2 using a Grubbs type solvent purification system. THF was freshly distilled from Na/benzophenone. Ni(cod)₂ was purchased from Strem and used without further purification. The ketenes \mathbf{a} , \mathbf{b} , \mathbf{b} , \mathbf{c} , \mathbf{c} \mathbf{d} , \mathbf{d} \mathbf{e} , \mathbf{f} , \mathbf{d} \mathbf{g} , \mathbf{e} \mathbf{h} , \mathbf{f} \mathbf{i} , \mathbf{f} \mathbf{j} , \mathbf{f} and diynes \mathbf{f} , \mathbf{f} \mathbf{g} , \mathbf{f} \mathbf{f} , and \mathbf{f} and \mathbf{f} \mathbf{f} and \mathbf{f} were prepared according to literature procedures. All other reagents were purchased and used without further purification unless otherwise noted.

¹H and ¹³C Nuclear Magnetic Resonance spectra of pure compounds were acquired at 300 and 125 MHz, respectively unless otherwise noted. All spectra are referenced to a singlet at 7.27 ppm for ¹H and to the center line of a triplet at 77.23 ppm for ¹³C. The abbreviations s, d, dd, dt, dq, t, q, and quint stand for singlet, doublet, doublet of doublets, doublet of triplets, doublet of quartets, triplet, quartet, and quintet, in that order. All ¹³C NMR spectra were proton decoupled. Gas Chromatography was performed using the following conditions: initial oven temperature: 100 °C; temperature ramp rate 50 °C/min.; final temperature: 300 °C held for 7 minutes; detector temperature: 250 °C.

Ligand Screening:

In a nitrogen filled glovebox, a stock solution of diyne (1, 1 equiv., 0.05M) in benzene was prepared along with decane as standard in a clean and pre-dried scintillation vial. The stock solution of ketene (a, 1.2 equiv.) in benzene was also prepared in a separate vial. In separate vials, stock solutions of catalyst were prepared by mixing Ni(cod)₂ and ligands (see Table 1 for the ratio). 5 mol% Catalyst was added to the vial containing diyne and ketene. The vials were

taken out of the glove box and stirred at 60 °C for overnight; after which, all the reaction vials were opened to air and then analyzed by GC.

Table 1: N -Cata yzed Cyc cadd ton of D ynes and Ketenes^c

			1	1a
Entry	L gand (L _r)	NL_r	% Canv ^t	% Y ∈ d ^t
1	Pr ^c	12	100	12
2	S Pr ^c	12	63	3
3	PPh₃	12	100	39
4	PCy ₃	12	72	20
5	MePPh₂	12	100	54
6	CyPPh₂	12	100	31
7	CPPE	11	32	2
8	DCPE	11	39	-
9	CPPF	11	100	>99 (86 %), ^d
10	CPPB	11	100	86 (86)% ^d

^cReaction conditions 5 mol% Ni–catalyst, diyne (1 equiv, 0 05M), ketene (1 2 equiv), benzene, 60 °C, 12 h, ^b GC yield analyzed using decane as an internal standard ^cThe catalyst solutions were equilibrated for at least 6 h before use ^dIsolated yields

General Procedure for Cycloaddition:

In a nitrogen-filled glove box, a 5 mol% catalyst solution (prepared from $Ni(cod)_2$ and DPPB in 1:1 ratio in toluene) was added to the vial containing diyne (1 equiv., 0.1 M) and ketene (1.2 equiv.) in toluene. The vial was taken out of the glove box and stirred at 60 °C for 5h, opened to air, concentrated *in vacuo*, and purified by silica gel flash column chromatography.

Dimethyl 5-ethyl-4,7-dimethyl-6-oxo-5-phenyl-5,6-dihydro-1H-indene-2,2(3H)-dicarboxylate (1a):

The general procedure was used with 41.8 mg (0.18 mmol, 0.1 M) of diyne **1**, 31.0 mg (0.21 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound **1a** as bright yellow sticky oil, 82% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.26-7.10 (m, 5H), 3.79 (s, 3H), 3.77 (s, 3H), 3.32 (s, 2H), 3.24 (d, J= 7.2 Hz, 2H), 2.63 (dq, J_I= 7.5 Hz, J₂= 14.9 Hz, 1H), 1.95 (dq, J_I= 7.5 Hz, J₂= 14.9 Hz, 1H), 1.79 (s, 3H), 1.61 (s, 3H), 0.64 (t, J= 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 203.3, 171.6, 154.6, 142.2, 141.6, 132.1, 128.8, 127.1, 126.9, 124.7, 61.4, 58.3, 53.3, 53.2, 39.7, 38.0, 29.9, 16.4, 11.6, 8.8. IR (CH₂Cl₂, cm⁻¹): 2956, 1736, 1648, 1437, 1263, 1204, 1076. HRMS (ESI) calcd for C₂₃H₂₆O₅Na [M+Na]⁺ 405.1678, found 405.1682.

Dimethyl 4,7-dimethyl-6-oxo-5,5-diphenyl-5,6-dihydro-1H-indene-2,2(3H)-dicarboxylate (1b):

The general procedure was used with 50 mg (0.21 mmol, 0.1 M) of diyne 1, 49.3 mg (0.25 mmol) of ketene **b**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 20% ethyl acetate in hexanes to afford the title compound 1b as yellow sticky oil, 50% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.26 (m, 6H), 7.15 (m, 4H), 3.75 (s, 6H), 3.32 (s, 2H), 3.25 (s, 2H), 1.80 (s, 3H), 1.56 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 203.3, 171.7, 153.5, 141.8, 141.5, 131.4, 129.9, 128.3, 127.3, 124.3, 68.3, 58.2, 53.4, 39.6, 38.1, 18.9, 12.0. IR (CH₂Cl₂, cm⁻¹): 2954, 2922, 1736, 1652, 1616, 1438, 1258, 1203, 1072. HRMS (ESI) calcd for $C_{27}H_{26}O_5Na$ [M+Na]⁺ 453.1678, found 453.1693.

Dimethyl 5-isopropyl-4,7-dimethyl-6-oxo-5-phenyl-5,6-dihydro-1H-indene-2,2(3H)-dicarboxylate (1c):

The general procedure was used with 119.0 mg (0.50 mmol, 0.1 M) of divne **1**, 160 mg (1.0 mmol) of ketene **c**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound **1c** as bright yellow liquid, 50% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.20 (m, 3H), 7.09 (d, J= 7.2 Hz, 2H), 3.77 (s, 3H), 3.76 (s, 3H), 3.29 (d, J= 6.3 Hz, 2H), 3.20 (s, 2H), 2.92 (septet, J= 6.9 Hz, 1H), 1.79 (s, 3H), 1.67 (s, 3H), 0.95 (d, J= 7.2 Hz, 3H), 0.86 (d, J= 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 203.7, 171.7, 171.68, 153.7, 141.7, 141.4, 132.4, 128.8, 128.4, 126.7, 125.2, 65.7, 58.3, 53.3,

53.27, 39.6, 38.2, 35.4, 18.8, 17.5, 11.6. IR (CH_2Cl_2 , cm^{-1}): 2959, 1737, 1438, 1265, 1074. HRMS (ESI) calcd for $C_{24}H_{28}O_5K$ [M+K]⁺ 435.1574, found 435.1586.

Dimethyl 5-ethyl-6-oxo-4,5,7-triphenyl-5,6-dihydro-1H-indene-2,2(3H)-dicarboxylate (2a):

sticky oil, 65% yield.

The general procedure was used with 65.4 mg (0.18 mmol, 0.1 M) of diyne **2**, 31.8 mg (0.22 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound **2a** as bright yellow

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.30 (m, 8H), 7.20 (m, 5H), 6.75 (d, J= 8.1 Hz, 2H), 3.77 (s, 3H), 3.72 (s, 3H), 3.23 (m, 4H), 2.72 (dq, J_I = 7.5 Hz, J_2 = 14.7 Hz, 1H), 1.75 (dq, J_I = 7.2 Hz, J_2 = 14.4 Hz, 1H), 0.84 (t, J= 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 200.7, 171.4, 171.3, 155.1, 147.5, 140.6, 138.0, 134.3, 134.2, 130.4, 129.8, 129.1, 128.5, 128.1, 128.0, 127.9, 127.5, 127.2, 62.3, 58.6, 53.3, 53.2, 40.9, 39.8, 28.6, 9.4. IR (CH₂Cl₂, cm⁻¹): 2956, 1736, 1655, 1594, 1492, 1441, 1265, 1204, 1075. HRMS (ESI) calcd for C₃₃H₃₀O₅Na [M+Na]⁺ 529.1991, found 529.2004.

Dimethyl 5-ethyl-6-oxo-5-phenyl-5,6-dihydro-1H-indene-2,2(3H)-dicarboxylate (3a):

The general procedure was used with 39.3 mg (0.18 mmol, 0.1 M) of diyne **3**, 33.1 mg (0.22 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound **3a** as slightly yellow oil, 54% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.25 (m, 5H), 6.25 (s, 1H), 5.95 (s, 1H), 4.24 (m, 4H), 3.30 (m, 4H), 2.50 (dq, J_I = 4.5 Hz, 1H), 1.91 (dq, J_I = 4.5 Hz, 1H), 1.27 (m, 6H), 0.78 (t, J= 4.5 Hz, 3H); ¹³C NMR (75 MHz , CDCl₃): δ (ppm) 202.8, 170.7, 159.8, 140.9, 137.1, 135.0, 128.8, 127.4, 127.0, 119.5, 62.2, 59.2, 58.5, 40.3, 38.4, 32.0, 14.2, 9.4. IR (CH₂Cl₂, cm⁻¹): 2975, 1732, 1649, 1446, 1368, 1251, 1190, 1069, 860, 697. HRMS (ESI) calcd for C₂₃H₂₆O₅Na [M+Na]⁺ 405.1678, found 405.1692.

6-ethyl-6-phenyl-2,3-dihydro-1H-inden-5(6H)-one (4a):

The general procedure was used with 37.0 mg (0.40 mmol, 0.1 M) of diyne 4, 70.4 mg (0.48 mmol) of ketene a, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 5-10% ethyl acetate in hexanes to afford the title compound 4a as slightly yellow oil, 35% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.26 (m, 5H), 6.23 (s, 1H), 5.95 (s, 1H), 2.68 (m, 4H), 2.47 (dq, J_I = 7.5 Hz, 1H), 1.94 (m, 3H), 0.81 (t, J= 7.5, 3H). ¹³C NMR (75 MHz , CDCl₃): δ (ppm) 203.6, 164.5, 141.6, 138.3, 135.9, 128.7, 127.2, 127.1, 119.0, 58.4, 33.5, 32.1, 30.8, 24.9, 9.4. IR (CH₂Cl₂, cm⁻¹): 2964, 1675, 1646, 1597, 1492, 1444, 1369, 1301, 1221, 1168, 1034, 857, 758, 696. HRMS (ESI) calcd for C₁₇H₁₈ONa [M+Na]⁺ 261.1255, found 261.1270.

6-ethyl-4,7-dimethyl-6-phenyl-2-tosyl-2,3-dihydro-1H-isoindol-5(6H)-one (5a):

The general procedure was used with 49.1 mg (0.18 mmol, 0.1 M) of diyne 5, 31.3 mg (0.22 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15-30% ethyl acetate in hexanes to afford the title compound 5**a** as a white solid, 50% yield.

Melting Point: 155-158 °C (Decomp.). ¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.80 (d, J= 8.1 Hz, 2H), 7.39 (d, J= 8.1 Hz, 2H), 7.21 (m, 3H), 7.05 (m, 2H), 4.31 (s, 2H), 4.25 (d, J= 10.8 Hz, 2H), 2.61 (dq, J_I = 7.2 Hz, J_2 = 14.7 Hz, 1H), 2.45 (s, 3H), 1.94 (dq, J_I =7.2 Hz, J_2 = 14.7 Hz, 1H), 1.72(s, 3H), 1.57 (s, 3H), 0.58 (t, J= , 3H). ¹³C NMR (75 MHz , CDCl₃): δ (ppm) 202.7, 150.0, 144.4, 142.8, 140.8, 133.2, 130.2, 128.99, 128.95, 127.9, 127.4, 126.7, 123.8, 61.6, 52.0, 50.9, 30.0, 21.8, 16.5, 11.5, 8.9. IR (CH₂Cl₂, cm⁻¹): 2926, 1651, 1619, 1493, 1448, 1346, 1272, 1164, 1096, 1061. HRMS (ESI) calcd for C₂₅H₂₇NO₃SK [M+K]⁺ 460.1349, found 460.1355.

4,7-dimethyl-6-phenyl-6-propyl-2-tosyl-2,3-dihydro-1H-isoindol-5(6H)-one (5d):

The general procedure was used with 50.6 mg (0.18 mmol, 0.1 M) of diyne 5, 35.4 mg (0.22 mmol) of ketene **d**, and 5 mol % of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15-30% ethyl acetate in hexanes to afford the title

compound **5d** as white solid, 55% yield.

Melting Point: 157-160 °C (Decomp.). 1 H NMR (300 MHz,CDCl₃): δ (ppm) 7.81 (d, J= 8.1 Hz, 2H), 7.40 (d, J= 8.4 Hz, 2H), 7.22 (m, 3H), 7.07 (m, 2H), 4.24 (m, 4H), 2.55 (m, 1H), 2.48 (s, 3H), 1.88 (m, 1H), 1.73 (s, 3H), 1.58 (s, 3H), 0.87 (m, 5H). 13 C NMR (75 MHz , CDCl₃): δ (ppm) 202.6, 149.9, 144.4, 143.2, 140.9, 135.4, 133.4, 130.2, 129.0, 128.7, 128.0, 127.5, 126.8, 123.6, 61.2, 52.0, 50.9, 39.5, 21.8, 17.9, 16.6, 14.7, 11.5. IR (CH₂Cl₂, cm⁻¹): 2981, 2936, 1734, 1644, 1511, 1447, 1369, 1269, 1206, 1094, 1048, 914. HRMS (ESI) calcd for C₂₆H₂₉O₃SNa [M+Na]⁺ 458.1766, found 458.1786.

6-ethyl-4,7-dimethyl-6-phenyl-3,6-dihydroisobenzofuran-5(1H)-one (6a):

The general procedure was used with 74.2 mg (0.60 mmol, 0.1 M) of diyne **6**, 106.5 mg (0.72 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 5-30% ethyl acetate in hexanes to afford the title compound **6a** as yellow sticky oil, 33% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.22 (m, 5H), 4.78 (m, 4H), 2.67 (dq, J_I =4.5 Hz, 1H), 2.00 (dq, J_I =4.5 Hz, 1H), 1.76 (s, 3H), 1.60 (s, 3H), 0.70 (t, J=4.5 Hz, 3H). ¹³C NMR (75 MHz , CDCl₃): δ (ppm) 203.4, 153.8, 141.3, 140.2, 132.0, 128.9, 127.3, 126.9, 121.7, 71.5, 71.0, 61.4, 29.9, 16.5, 11.6, 8.9. IR (CH₂Cl₂, cm⁻¹): 2919, 1653, 1623, 1446, 1054, 698. HRMS (ESI) calcd for C₁₈H₂₀O₂Na [M+Na]⁺ 291.1361, found 291.1374.

$Tetraethyl \qquad \hbox{6-ethyl-5,8-dimethyl-7-oxo-6-phenyl-6,7-dihydronaphthalene-2,2,3,3} (1H,4H)-tetracatboxylate~(7a):$

The general procedure was used with 55.3 mg (0.13 mmol, 0.1 M) of diyne 7, 22.9 mg (0.16 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound 7**a** as bright yellow sticky oil, 91%

yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.21-7.09 (m, 5H), 4.27-4.19 (m, 8H), 3.24 (s, 2H), 3.19 (d, J= 11.1 Hz, 2H), 2.65 (dq, J₁=7.2 Hz, J₂=14.5 Hz, 1H), 1.90 (dq, J₁=7.2 Hz, J₂= 14.5 Hz,

3H), 1.81 (s, 3H), 1.61 (s, 3H), 1.26 (m, J= 7.2 Hz, 12H), 0.62 (t, J= 7.2 Hz, 3H). ¹³C NMR (75 MHz , CDCl₃): δ (ppm) 202.0, 170.0, 169.9, 169.8, 169.7, 147.0, 145.6, 141.5, 128.8, 127.1, 127.0, 126.9, 125.3, 62.26, 62.23, 62.21, 61.6, 57.6, 57.2, 34.3, 32.3, 30.3, 16.6, 13.99, 13.98, 13.95, 10.7, 8.7. IR (CH₂Cl₂, cm⁻¹):2981, 1732, 1645, 1446, 1368, 1268, 1205, 1048. HRMS (ESI) calcd for $C_{32}H_{40}O_9Na$ [M+Na]⁺ 591.2570, found 591.2586.

Tetraethyl 6-ethyl-6-(4-methoxyphenyl)-5,8-dimethyl-7-oxo-6,7-dihydronaphthalene-2,2,3,3(1H,4H)-tetracarboxylate (7e):

The general procedure was used with 54.1 mg (0.13 mmol, 0.1 M) of diyne 7, 27.06 mg (0.15 mmol) of ketene e, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound 7e as bright yellow sticky

oil, 81% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.05 (d, J= 9Hz, 2H), 6.77 (d, J= 9 Hz, 2H), 4.25 (m, 8H), 3.75 (s, 3H), 3.26 (s, 2H), 3.21 (d, J= 12 Hz, 2H), 2.63 (dq, J_I =7.2 Hz, J_2 = 15 Hz, 1H), 1.94 (dq, J_I =7.2 Hz, J_2 = 14.5 Hz, 1H), 1.83 (s, 3H), 1.64 (s, 3H), 1.28 (m, 12H), 0.63 (t, J= 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 202.4, 170.0, 169.89, 169.84, 169.8, 158.6, 146.8, 145.8, 133.5, 127.9, 127.0, 125.1, 114.2, 62.29, 62.26, 60.9, 57.6, 57.2, 55.4, 34.3, 32.2, 30.4, 16.6, 14.0, 10.7, 8.8. IR (CH₂Cl₂, cm⁻¹): 2981, 1732, 1644, 1447, 1369, 1460, 1368, 1250, 1205, 1093, 1036. HRMS (ESI) calcd for C₃₃H₄₂O₁₀Na [M+Na]⁺ 621.2676, found 621.2689.

Tetraethyl 6-ethyl-5,8-dimethyl-7-oxo-6-(p-tolyl)-6,7-dihydronaphthalene-2,2,3,3(1H,4H)-tetracarboxylate (7f):

The general procedure was used with 46.4 mg (0.11 mmol, 0.1 M) of diyne 7, 20.8 mg (0.13 mmol) of ketene **f**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound 7**f** as bright yellow sticky oil, 80%

yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.03 (d, J= 3Hz, 4H), 4.26 (m, 8H), 3.26 (s, 4H), 2.66 (dq, J_I = 7.2 Hz, J_2 = 14.7 Hz, 1H), 2.42 (s, 3H), 1.96 (dq, J_I = 7.5 Hz, J_2 = 14.8 Hz, 1H), 1.83 (s, 3H), 1.65 (s, 3H), 1.29 (m, 12H), 0.64 (t, J= 7.2Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 202.3, 170.0, 169.9, 169.89, 169.8, 146.9, 145.8, 138.5, 136.8, 129.6, 127.0, 126.8, 125.2, 62.3, 62.28, 61.2, 57.6, 57.2, 34.3, 30.3, 21.2, 16.6, 14.05, 14.05, 14.03, 14.01, 10.8, 8.8. IR (CH₂Cl₂, cm⁻¹): 2982, 2935, 1733, 1644, 1269, 1206, 1049, 1048. HRMS (ESI) calcd for C₃₃H₄₂O₉Na [M+Na]⁺ 605.2727, found 605.2733.

Preparation of tetraethyl 6-ethyl-6-(4-fluorophenyl)-5,8-dimethyl-7-oxo-6,7-dihydronaphthalene-2,2,3,3(1H,4H)-tetracarboxylate (7g):

The general procedure was used with 50 mg (0.118 mmol, 0.1 M) of diyne 7, 23.4 mg (0.14 mmol) of ketene **g**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound 7**g** as bright yellow sticky oil, >99%

yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.11 (m, 2H), 6.93 (m, 2H), 4.28 (m, 8H), 3.23 (m, 4H), 2.63 (dq, J_I = 7.2 Hz, 1H), 1.95 (dq, J_I = 7.5 Hz, 1H), 1.84 (s, 3H), 1.63 (s, 3H), 1.29 (m, 12H), 0.64 (t, J= 7.5Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 201.9, 170.0, 169.9, 169.76, 169.7, 163.5, 160.3, 147.1, 145.2, 137.2, 128.6, 128.5, 127.1, 125.5, 115.8, 115.5, 62.3, 60.9, 57.6, 57.1, 34.3, 32.2, 30.6, 16.5, 14.0, 10.7, 8.7. IR (CH₂Cl₂, cm⁻¹): 2983, 2938, 1748, 1644, 1269, 1206, 1055, 1048. HRMS (ESI) calcd for C₃₂H₃₉O₉FNa [M+Na]⁺ 609.2476, found 609.2477.

Preparation of tetraethyl 5,6,8-trimethyl-7-oxo-6-phenyl-6,7-dihydronaphthalene-2,2,3,3(1H,4H)-tetracarboxylate (7h):

The general procedure was used with 100 mg (0.24 mmol, 0.1 M) of diyne **7**, 37.4 mg (0.28 mmol) of ketene **h**, and 5 mol% of catalyst, in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound **7h** as bright yellow sticky oil, 65%.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.23 (m, 3H), 7.12 (m, 2H), 4.26 (m, 8H), 3.27 (s, 2H), 3.18 (m, 2H), 1.84 (s, 3H), 1.65 (s, 3H), 1.60 (s, 3H), 1.27 (m, 12H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 202.0, 169.9, 169.8, 169.78, 146.8, 146.5, 141.4, 128.7, 127.0, 126.8, 125.9, 122.9, 62.2, 62.1, 57.6, 57.2, 56.9, 34.3, 32.2, 30.4, 29.8, 22.8, 17.0, 13.9, 10.9. IR (CH₂Cl₂, cm⁻¹): 2983, 1732, 1647, 1445, 1367, 1269, 1205, 1094, 1038. HRMS (ESI) calcd for $C_{31}H_{38}O_9Na$ [M+Na]⁺ 577.2414, found 577.2419.

Tetraethyl 5,8-dimethyl-7-oxo-6-phenyl-6-propyl-6,7-dihydronaphthalene-2,2,3,3(1H,4H)-tetracarboxylate (7d):

The general procedure was used with 209.1 mg (0.49 mmol, 0.1 M) of diyne **7**, 95.0 mg (0.59 mmol) of ketene **d**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound **7d** as bright yellow sticky oil, 76% yield.

 1 H NMR (300 MHz,CDCl₃): δ (ppm) 7.19 (m, 5H), 4.25 (m, 8H), 3.18 (m, 4H), 2.59 (m, 1H), 1.91 (m, 1H), 1.82 (s, 3H), 1.62 (s, 3H), 1.27 (m, 12H), 0.97 (m, 2H), 0.85 (m, 3H). 13 C NMR (75 MHz , CDCl₃): δ (ppm) 202.0, 170.0, 169.86, 169.82, 169.8, 146.8, 146.0, 141.5, 128.8, 128.7, 127.1, 126.8, 124.8, 62.3, 62.2, 61.2, 57.6, 57.3, 39.7, 34.3, 32.1, 17.6, 16.7, 14.7, 14.0, 10.7. IR (CH₂Cl₂, cm⁻¹): 2982, 1735, 1646, 1446, 1368, 1267, 1208, 1096, 1033. HRMS (ESI) calcd for $C_{33}H_{42}O_9Na$ [M+Na] $^+$ 605.2727, found 605.2726.

Tetraethyl tetracarboxylate (7i):

5, 8-dimethyl-6-((trimethyl silyl) oxy) naphthalene-2, 2, 3, 3(1H, 4H)-4H)-4H(trimethyl silyl) oxy) naphthalene-2, 2, 3, 3(1H, 4H)-4H(trimethyl silyl) oxy) naphthalene-2, 3, 3(1H, 4H)-4H(trimethyl silyl) oxy) naphthalene-2, 3, 3(1H, 4H)-4H(trimethyl silyl) oxy) naphthalene-2, 3, 3(1H, 4H)-4H(trimethyl silyl) oxy) naphthalene-3, 3(1H, 4H)-4H(trimethyl silyl) oxy) n

The general procedure was used with 104.5 mg (0.25 mmol, 0.1 M) of diyne **7**, 41.7 mg (0.30 mmol) of ketene **i**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 10-15% ethyl acetate in hexanes to afford the title compound **7i** as colorless oil, 63% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 6.45 (s, 1H), 4.15 (m, 8H), 3.33 (s, 2H), 3.25 (s, 2H), 2.15 (s, 3H), 2.05 (s, 3H), 1.16 (t, J_I = 7.2 Hz, 12H), 0.19 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 193.7, 170.4, 170.36, 151.0, 133.5, 132.7, 124.3, 123.5, 119.1, 76.1, 61.84, 61.8, 57.612, 57.3, 33.3, 32.4, 19.8, 13.9, 12.0, 7.9, 0.6. IR (CH₂Cl₂, cm⁻¹): 2982, 1736, 1579, 1475, 1367,

1257, 1203, 1096, 1052, 913, 843. HRMS (ESI) calcd for $C_{27}H_{40}O_9SiNa~[M+Na]^+$ 559.2339, found 559.2340.

Tetraethyl 6-hydroxy-5,8-dimethylnaphthalene-2,2,3,3(1H,4H)-tetracarboxylate (7i'):³

On eluting the column with 15-20% ethyl acetate in hexanes the title compound 7i' was obtained as a white solid, 19% yield.

Melting Point: 120-123 °C (Lit:³ 121.5-122 °C). ¹H NMR (300 MHz,CDCl₃): δ (ppm) 6.41 (s, 1H), 5.29 (s, 1H), 4.19 (m, 8H), 3.36 (s, 2H), 3.29 (s, 2H), 2.12 (s, 3H), 2.07 (s, 3H), 1.21 (t, J_I = 7.2 Hz, 12H). ¹³C

NMR (75 MHz , CDCl₃): δ (ppm) 170.5, 170.4, 151.6, 133.7, 132.4, 123.2, 118.8, 115.2, 61.99, 61.95, 57.5, 57.3, 33.2, 32.4, 19.6, 13.9, 11.0. IR (CH₂Cl₂, cm⁻¹): 3452, 2983, 1733, 1463, 1270, 1205, 1085, 1052. HRMS (ESI) calcd for $C_{24}H_{32}O_9Na$ [M+Na]⁺ 487.1944, found 487.1953.

Preparation of tetraethyl 1',4'-dimethyl-3'-oxo-3'H-spiro[cycloheptane-1,2'-naphthalene]-6',6',7',7'(5'H,8'H)-tetracarboxylate (7j):

The general procedure was used with 40.2 mg (0.095 mmol, 0.1 M) of diyne 7, 14.1 mg (0.11 mmol) of ketene **j**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound 7**j** as pale oil, 76% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 4.20 (m, 8H), 3.15 (s, 2H), 3.04 (s, 2H), 1.91 (s, 3H), 1.86 (s, 3H), 1.59 (m, 12H), 1.25 (m, 12H). ¹³C NMR (75 MHz , CDCl₃): δ (ppm) 204.2, 169.96, 169.93, 149.0, 143.6, 125.8, 120.6, 62.2, 62.1, 57.7, 57.6, 57.2, 35.2, 33.9, 32.2, 31.9, 29.8, 24.9, 15.8, 14.02, 14.00, 11.4. IR (CH₂Cl₂, cm⁻¹): 2956, 1736, 1648, 1437, 1263, 1204, 1076. HRMS (ESI) calcd for $C_{31}H_{38}O_9Na$ [M+Na]⁺ 569.2727, found 569.2737.

Tetraethyl 6-ethyl-7-oxo-6-phenyl-6,7-dihydronaphthalene-2,2,3,3(1H,4H)-tetracarboxylate (8a):

The general procedure was used with 48.2 mg (0.12 mmol, 0.1 M) of diyne **8**, 21.4 mg (0.14 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column

chromatography using 15% ethyl acetate in hexanes to afford the title compound **8a** as yellow sticky oil, 78% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.24 (m, 5H), 6.21 (s, 1H), 5.85 (s, 1H), 4.23 (m, 8H), 3.30 (m, 4H), 2.48 (dq, J= 7.2 Hz, 1H), 1.90 (dq, J_I= 7.2 Hz, 1H), 1.27 (m, 12H), 0.78 (t, J= 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 202.3, 169.56, 169.5, 169.4, 169.3, 151.7, 141.6, 140.5, 128.8, 128.2, 127.4, 126.9, 123.0, 62.4, 62.34, 62.31, 58.9, 58.2, 57.3, 35.4, 34.2, 31.8, 14.0, 9.4. IR (CH₂Cl₂, cm⁻¹): 2981, 1733, 1662, 1445, 1367, 1268, 1093, 1044, 863, 689. HRMS (ESI) calcd for C₃₀H₃₆O₉Na [M+Na]⁺ 563.2257, found 563.2253.

3-ethyl-3-phenyl-5,6,7,8-tetrahydronaphthalen-2(3H)-one (9a):

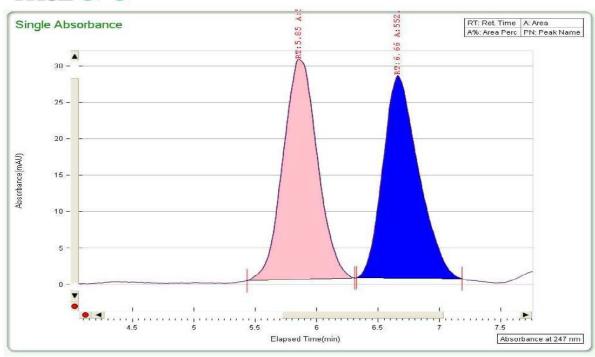
The general procedure was used with 42.9 mg (0.40 mmol, 0.1 M) of diyne **9**, 70.8 mg (0.48 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 5-10% ethyl acetate in hexanes to afford the title compound **9a** as bright yellow oil, 33% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.26 (m, 5H), 6.14(s, 1H), 5.80 (s, 1H), 2.58 (m, 4H), 2.45 (dq, J_I = 7.5 Hz, 1H), 1.93 (dq, J_I = 7.5 Hz, 1H), 1.75 (m, 4H), 0.81(t, J= 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 203.2, 157.0, 141.2, 140.37, 132.4, 128.7, 127.2, 127.1, 122.9, 58.5, 32.1, 30.8, 29.1, 23.1, 22.1, 9.5. IR (CH₂Cl₂, cm⁻¹): 2934, 1658, 1492, 1448, 1382, 1231, 853, 764, 697. HRMS (ESI) calcd for C₁₈H₂₀ONa [M+Na]⁺ 275.1412, found 275.1419.

Tetraethyl 7-ethyl-5-methyl-6-oxo-7-phenyl-6,7-dihydronaphthalene-2,2,3,3(1H,4H)-tetracarboxylate (10a):

The general procedure was used with 50.7 mg (0.12 mmol, 0.1 M) of diyne **10**, 21.7 mg (0.14 mmol) of ketene **a**, and 5 mol% of catalyst in toluene. The reaction mixture was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound **10a** as yellow sticky oil, 66% yield.

¹H NMR (300 MHz,CDCl₃): δ (ppm) 7.25 (m, 5H), 6.12 (s, 1H), 4.25 (m, 8H), 3.30 (m, 4H), 2.48 (dq, J= 7.2 Hz, 1H), 1.90 (dq, J_I= 7.2 Hz, 1H), 1.83 (s, 3H), 1.28 (m, 12H), 0.75 (t, J= 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 202.0, 169.9, 169.6, 169.5, 145.2, 140.9, 138.5,

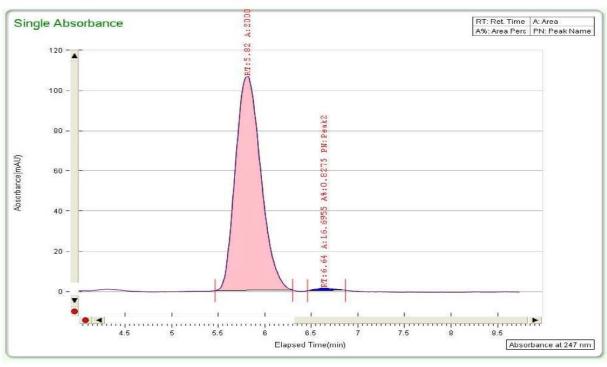

128.9, 128.3, 128.1, 127.3, 127.0, 62.3, 62.2, 57.68, 57.62, 57.5, 34.8, 34.0, 32.1, 14.0, 10.9, 9.4. IR (CH_2Cl_2 , cm^{-1}): 2981, 1733, 1645, 1445, 1368, 1269, 1092, 1044, 914, 863, 689. HRMS (ESI) calcd for $C_{31}H_{38}O_9Na$ [M+Na]⁺ 577.2414, found 577.2411.

Regioselectivity was assigned on the basis of (a). nOe of proton on C-1 with protons on C-2 (only one H), C-3, C-4, C-5, and C6; (b). nOe of proton on C-8 with protons on C-7.

General Procedure for the Asymmetric Cycloaddition:

In a nitrogen-filled glove box, a 5 mol% catalyst solution (prepared from Ni(cod)₂ and (*R*)-BINAP in 1:1 ratio in toluene) was added to the solution of 55.3 mg (0.13 mmol) of diyne 7, 22.9 mg (0.16 mmol) of ketene **a**. The resulting reaction mixture was then stirred at 80 °C for 5h or 100 °C for 12h, opened to air and concentrated *in vacuo*. The remaining residue was purified via flash column chromatography using 15% ethyl acetate in hexanes to afford the title compound **7a*** as bright yellow sticky oil, 38% (99% ee @ 80°C) and 58% (95% ee @ 100°C) yields. SFC (supercritical fluid chromatography) analysis was performed at 40 °C, using a Thar instrument fitted with a chiral stationary phase (Cellucoat).

Tharsfo

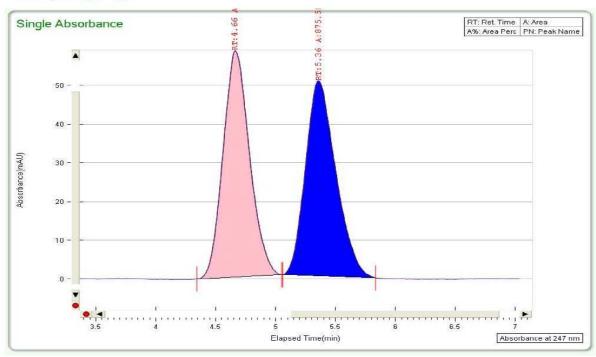


General Info			Report Date		1/14/2010	
Log Author			Me	thod Name	ISO 3 3mLmin.met	
Log Date 9/24/2008 9:38:09 AM			Notes			
Report By	current_[Jser				
Injection	Info			Temp	-40	
Inj Vol	5			Flow	3	
Solvent	Methano	ol		<pre>% Modifier</pre>	3	
Column	Celluca	oat		Pressure	201	
Sample	Rac-128	3				
Well loca	tion P1: 1F					
Peak Info						
Peak No	% Area	Area	RT (min)	He	ight (mV)	K'
1	51.3617	583.7361	5.85	30	.2302	0.0101
2	48.6383	552.7839	6.66	2.7	.8523	0.0115
Total:	100	1136.52				

TharSFC

C:\Program Files\SuperChrom\logs\data\RC\Rac-128_9-24-2008_9_38_09 AM_1.tta

Tharsfc

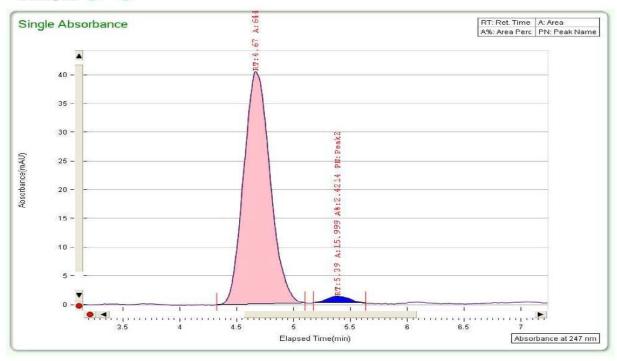


General Info Log Author				port Date thod Name	1/14/2010 ISO 3 3mLmin.met	
Log Date Report By	9/24/200	9/24/2008 9:48:33 AM current_User			Notes	
Injection	Info			Temp	-40.2	
Inj Vol	5			Flow	3	
Solvent	Methano	51		% Modifier	3	
Column	Celluc	oat		Pressure	200	
Sample Binap-74						
Well locat	ion P1: 2F					
Peak Info						
Peak No	% Area	Area	RT (min)	H	eight (mV)	K'
1	99.1725	2000.9569	5.82	1	06.5301	0.0099
2	0.8275	16.6955	6.64	1	.2383	0.0113
Total:	100	2017,6524				

TharSFC

C:\Program Files\SuperChrom\logs\data\RC\Binap-74_9-24-2008_9_48_33 AM_1.tta

Tharsec



General Ir Log Author Log Date Report By	•	8 6:39:10 PM User		Me	port Date thod Name tes	1/14/2010 ISO_3_3mLmin.met
Injection	Info			Temp	29.4	
Inj Vol	5			Flow	3	
Solvent	Methan	01		% Modifier	3	
Column	Column	7		Pressure	199	
Sample	RC-86-	Rac				
Well locat	ion P1: 1F					
Peak Info						
Peak No	% Area	Area	RT (min)	H	eight (mV)	K'
1	50.3668	888.5299	4.66	5	8.5394	0.0042
2	49.6332	875.5878	5.36	5	0.4699	0.0048
Total:	100	1764.1177				

TharSFC

C:\Program Files\SuperChrom\logs\data\RC\RC-86-Rac_10-3-2008_6_39_10 PM_1.tta

Tharsec

General Info			Rep	1/14/2010			
Log Author			Met)	ISO_3_3mLmin.met			
Log Date	10/3/2008 6:13:40 PM			Notes			
Report By	current_	User					
Injection	Info			Temp	29.7		
Inj Vol	5			Flow	3		
Solvent	Methanol			% Modifier	3		
Column	Column	Column 7			200		
Sample RC-86-Toluene							
Well location P1: 3F							
Peak Info							
Peak No	% Area	Area	RT (min)	Height (mV)		K'	
1	97.5786	644.7462	4.67	40.4	1509	0.0043	
2	2.4214	15.999	5.39	1.1	757	0.0049	
Total:	100	660.7452					

TharSFC

C:\Program Files\SuperChrom\logs\data\RC\RC-86-Toluene_10-3-2008_6_13_40 PM_1.tta

References:

- (1) (a) Hodous, B. L.; Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1999, 121, 2637. (b) Goll, J. M.; Fillion, E. Organometallics, 2008, 27, 3622. (c) Dai, X.; T., T.; Romero, J. A. C.; Fu, G. C. Angew. Chem. Int. Ed. 2007, 46, 4367. (d) Huang, Xue-Liang; He, Lin; Shao, Pan-Lin; Ye, Song Angew. Chem. Int. Ed. 2009, 48, 192. (e) Duguet, N.; Slawin, A.; Smith, A. Org. Lett., 2009, 11, 3858. (f) Evans, D. A.; Janey, J. M. Org. Lett. 2001, 3, 2125. (g) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 1578.
- (2) (a) Louie, J.; Gibby, J.E.; Farnworth, M. V.; Tekavec, T. N. J. Am. Chem. Soc. 2002, 124, 15188.
 (b) Lian, J.; Chen, P.; Lin, Y.; Ting, H.; Liu, R. J. Am. Chem. Soc. 2006, 128, 11372.
 (c) Wang, X.; Chakrapani, H.; Madine, J. W.; Keyerleber, M. A.; Widenhoefer, R. A. J. Org. Chem. 2002, 67, 2778.
 (d) Duong, H. A.; Cross, M. J.; Louie, J. J. Am. Chem. Soc. 2004, 126, 11438.
 (e) McCormick, M. M.; Duong, H. A.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030.
- (3) Hara, H.; Hirano, M.; Tanaka, K. Org. Lett. 2009, 11, 1337.