Appendix B. Derivation of Formula 5.2.1
Given assumptions B.4 of the text, Eq. 5.1.3 becomes
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Let us suppose that the ith acoustic eigenvalue (see section 5.1)
tends to a;qd for gd << 1 (i = 1,...n — 1). To evaluate
expression B.2, we invoke assumption B.7 of the text and
assume that n is not too large; then, the inequality |K,(w)| >>
ndey. is fulfilled for most of the relevant range of w. This allows
us to split the integral in Eq. B.2 into two parts, J; and J»,
corresponding to 0 = g = g, and g, = g =< %, where we choose
the cutoff g, so that ng.d << 1 but q;|K,|d/esc >=> |, and to
approximate the ith term in the integrand of J; by n = 'avdq?/ (1
+ a4 dq?K,(w)/esc)> (i = 1...n — 1) and in the integrand of
Jabye K, *{n"'f; '(q)} (i =1 ...n). The single optical term
(i = n) contributes toJ; only a term of relative order g.d, which
may consistently be neglected (through compare section 6).
The crucial observation, now, is thati
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from which it follows, taking the limit g — 0, that 3" ' o; ' =
n — 1. Explicit evaluation of J; and J, using Eq. B.3 then leads
to the result (to within terms of relative order (™! = &,.d/|K])
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The term B, is numerically small (B, = 0, 0.13,

0.18...0.3,... forn = 2, 3, 4 ... ). If we neglect it, we
immediately obtain from Eq. B.4 formula 5.2.1 of the text.

it is straightforward to prove Eq. B.3 case by case forn = 6 andn =
. I am indebted to Misha Turlakov for a proof in the general case.



