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SUPPLEMENT TO “PERFORMANCE GUARANTEES FOR
INDIVIDUALIZED TREATMENT RULES”

By Min Qian∗ and Susan A. Murphy∗

University of Michigan

This is a supplement to the paper “Performance guarantees for
individualized treatment rules” [4]. Section S.1 discusses the problem
with over-fitting due to the potentially large number of pretreatment
variables (and/or complex approximation space for Q0). Section S.2
provides modifications of the l1-PLS estimator θ̂n when some coef-
ficients are not penalized and discusses how to obtain a prediction
error bound in this case. Section S.3 provides extra four simulation
examples based on data from the Nefazodone-CBASP trial [1]. Sec-
tion S.4 provides proofs of Lemmas A.1-A.5.

S.1. The over-fitting problem. In this section, we discuss the prob-
lem with over-fitting due to the potentially large number of pretreatment
variables (and/or complex approximation space for Q0) mentioned in Sec-
tion 4.

Consider the setting in which we know that Q0 is linear in the {X,A}
variables and suppose that most coefficients are nonzero (some may be quite
small). Then the least squares estimator using the best correct linear model
(i.e. the model that contains and only contains variables with truly nonzero
coefficients) may result in ITRs with poor Value as compared to the estima-
tor from a more sparse model. Intuitively this occurs when the dimension
of {X,A} is too large for the size of the data set. This is similar to the case
of stepwise model selection; a solution is to select the model that balances
the approximation error with the estimation error instead of keeping all of
the correct terms (Massart [3]). Indeed the l1-PLS method aims to estimate
a parameter possessing small approximation error (i.e. the excess prediction
error) and controlled sparsity (which is directly related to the estimation er-
ror). As a result, the ITR produced by l1-PLS will more reliably have higher
Value than the rule produced by the OLS (ordinary least squares) estimator
constructed when the correct model is known but is too non-sparse relative
to the size of the data set.

In the following we use a simple simulation to support this argument. First
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we generate X = (X1, . . . , X12), where X1, . . . , X12 are mutually indepen-
dent and eachXj is uniformly distributed on [−1, 1]. The treatment A is then
generated independently of X from {−1, 1} with probability 1/2 each. The
response R is generated from a normal distribution with mean Q0(X,A) =
(1, X−12, A,X−12A)ϑ and variance 1, where X−12 = (X1, . . . , X11) and ϑ ∈
R24 is a vector parameter. We consider ϑ = (1.458, −0.455, −0.311, −1.213,
−1.600, 0.665, −0.431, −0.265, −0.113, −0.814, −0.128, 0.210, 0.442, 0.324,
−0.090, 0.195,−0.047, 0.143,−0.008, 0.198−0.389, 0.409,−0.085,−0.251)T .
The effect size is 0.5. We approximate Q0 using modelQ = {(1, X,A,XA)θ :
θ ∈ R26}. Thus Q0 ∈ Q.

We simulate samples of sizes n = 30, 50 and 80. 1000 samples are gener-
ated for each n. For each sample, we apply the l1-PLS based method, where
the tuning parameter is selected using cross-validation with Value maximiza-
tion as described in Section 5. In addition, we compute the OLS estimator

over the best correct sub-model (i.e. θ̂
OLS∗

n = argminθ∈R26,θ13=θ26=0En[R−
(1, X,A,XA)θ]2) and the associated ITR d̂OLS∗

n (X) = argmaxa∈{−1,1}(1, X,

a,Xa)θ̂
OLS∗

n . An independent test set of size 10000 is generated to evaluate
the Value of each estimated ITR. Medians and median absolute deviations
(MAD) of the Value and the number of variables in each ITR over 1000
samples are presented in Table S.1. Value of the optimal ITR is also evalu-
ated and presented in the table. It is easy to see that in this case (i.e. the
approximation model for Q0 is sufficiently good and the best correct linear
sub-model is too non-sparse for the sample size), the l1-PLS estimator from
the full model tends to have better performance in Value maximization and
often yield much simpler decision rules than the OLS estimator from the
best correct sub-model.

S.2. Some modifications of the l1-PLS estimator θ̂n. As demon-
strated in van de Geer [5], sometimes it is natural not to penalize a subset
of coefficients (e.g. coefficients corresponding to the constant term and/or
to variables that are considered as definitely relevant). In this section, we
discuss several modifications of the l1-PLS estimator θ̂n in this case.

Suppose one decides not to penalize coefficients indexed by S ⊂ {1, . . . , Jn}.
A general modification is to exclude those terms from the penalty, i.e.

θ̂n = argmin
θ
En(R− Φn(X,A)θ)

2 + λn
∑

j∈{1,...,Jn}\S

σ̂j |θj |,

where σ̂j = (Enϕ
2
j )

1/2. It is easy to see that with this modification, an
analog of inequality (A.7) in Theorem A.1 can be obtained after only slight
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Median (MAD) for
Method Value of the ITR # variables used in the ITR

n = 30
l1-PLS 1.780 (0.138) 2 (2)
OLS∗ 1.636 (0.108) 12 (0)

n = 50
l1-PLS 1.889 (0.029) 3 (3)
OLS∗ 1.814 (0.058) 12 (0)

n = 80
l1-PLS 1.914 (0.016) 6 (5)
OLS∗ 1.887 (0.036) 12 (0)

(V (d0) = 1.9832)
Table S.1

Medians and MAD (in the parentheses) of the Value of each estimated ITR (left)
and the number of variables in each estimated ITR (including the main treatment
effect term, right) based on 1000 replications. (Value of the optimal ITR, V (d0), is
given at the bottom. OLS∗ denote the OLS estimator from the best correct linear

model.)

adjustments in the proof.
Now suppose there are only two treatments A = {1,−1}. A simple vector

of basis functions that one may consider is Φn(X,A) = (1, X,A,XA), where
X is a row vector of pretreatment variables. One may choose to leave the
intercept term not penalized. Furthermore, if one believes that the main
treatment effect exists, then the coefficient of A should not be penalized
either (see the Nefazodone-CBASP data example in section 5.2). In both
cases, one might want to change the weights σ̂j ’s used in the penalty. In the
following, we discuss these two special cases in a general framework.

1. When there is a constant term ϕ1 ≡ 1 and one decides not to penalize
θ1, it is natural to modify σ̂j to σ̂j , [Enϕ

2
j − (Enϕj)

2]1/2 (so σ̂1 = 0).
In this case, each Eϕj is estimated by Enϕj . van de Geer [5] pointed
out that “this additional source of randomness is in a sense of smaller
order” and “the modification does not bring in new theoretical com-
plications”. The modified assumptions and proof outline for obtaining
an analog of inequality (A.7) is provided below.

2. When Φn contains the main treatment effect terms and one decides
not to penalize those terms, one may modify σ̂j to an estimate of(∑

a∈A var(ϕj(X,A)|A = a)P (A = a)
)1/2

(i.e. pooled standard devi-
ation).
For example, suppose Q0(X, a) is modeled by Ψa(X)θa for each a ∈ A,
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where the first term of each Ψa is ψa,1 ≡ 1. Then the vector of basis
functions is Φn(X,A) = (Ψa(X)1A=a)a∈A and {ψa,11A=a : a ∈ A}
is the set of main treatment effect terms. Denote the index set of
the main treatment effect terms in Φn by S. If we use weights σ̂j ,(∑

a∈A ˆvar(ϕj(X,A)|A = a)En1A=a

)1/2
, where ˆvar(ϕj(X,A)|A = a)

is the sample variance of ϕj over the sub-sample that assigned treat-
ment a, then σ̂j = 0 for all j ∈ S. One can verify that choosing θ ∈ RJn

to minimize En(R − Φnθ)
2 + λn

∑Jn
j=1 σ̂j |θj | is equivalent to choosing

θj , j ∈ {1, . . . , Jn} \ S, to minimize En(R
′ −

∑
j∈{1,...,Jn}\S θjϕ

′
j)

2 +
λn

∑
j∈{1,...,Jn}\S σ̂j |θj | and setting θj , j ∈ S to be some appropri-

ate quantities, where R′ = R −
∑

a∈A(En1A=aR)1A=a/En1A=a (so
EnR

′ = 0) and each ϕ′j is a variation of ϕj (so that Enϕ
′
j = 0 and

En[(ϕ
′
j)

2] = σ̂2j ). This implies that the modification of σ̂j is appropri-
ate.
To obtain an analog of (A.7), we need to show the concentration of
sample means (of quantities such as R and ϕj) around the true means
within each treatment group and make some assumptions about the
randomization probability p(a|X). As we have discussed, these mod-
ifications only bring in further trivial technical complications rather
than theoretical innovations.

In the rest of the section, we present modified assumptions and outline
of the proof for obtaining an analog of (A.7) when ϕ1 ≡ 1 and θ1 is not
penalized.

In this case, σ̂j and σj are modified to σ̂j , [Enϕ
2
j − (Enϕj)

2]1/2 and

σj , [Eϕ2j − (Eϕj)
2]1/2, respectively, for j = 1, . . . , Jn.

For any 0 ≤ γ < 1/2 and η2,n ≥ 0, Θo
n is modified to

Θo
n
′ =

{
θ ∈ RJn : ∃ θo ∈ [θ∗

n] s.t. ∥Φn(θ − θo)∥∞ ≤ η2,n

and max
{
|θ1 − θo1|, max

j∈{2,...,Jn}

∣∣∣E[
Φn(θ − θo)

ϕj
σj

]∣∣∣} ≤ γλn

}
.

For any θ ∈ RJn and ρ ≥ 0, let

Mρλn(θ)
′ ∈ arg min

{M⊆{2,...,Jn}:
∑

j /∈M σj |θj |≤ρ(|M |+1)λn}
|M |.

Assumptions A.2(a) and Assumption A.3 are modified to

Assumption S.2(a) There exists some Un > 0 such that maxj=2,...,Jn ∥ϕj∥∞/σj
≤ Un.
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Assumption S.3 There exists a positive βn such that

E[Φ(θ̃ − θ)]2(|Mρλn(θ)
′|+ 1)

≥βn
[(

|θ̃1 − θ1|+
∑

j∈Mρλn(θ)
′

σj |θ̃j − θj |
)2

− ρ2(|Mρλn(θ)
′|+ 1)2λ2n

]
(S.1)

for all θ̃ and θ satisfying conditions similar to those in Assumption A.3.

For any fixed θ ∈ Θn, δ1, δ2 ∈ (0, 1), τ1, τ2 > 0, define the events

Ω′
1 = ∩Jn

j=2 {(1− δ1)σj ≤ σ̂j ≤ (1 + δ2)σj} ,

Ω2(θ)
′ =

{
max

j=2,...,Jn

∣∣∣(E − En)
ϕj
σj

∣∣∣ ≤ τ1
βn

|Mρλn(θ)
′|+ 1

and max
j,k=2,...,Jn

∣∣∣(E − En)
(ϕjϕk
σjσk

)∣∣∣ ≤ τ1
βn

|Mρλn(θ)
′|+ 1

}
,

Ω3(θ)
′ =

{∣∣En

[
(R− Φnθ)ϕ1

]∣∣ ≤ 2τ2 + δ2 + 1

2
λn

and max
j=2,...,Jn

∣∣∣En

[
(R− Φnθ)

ϕj
σj

]∣∣∣ ≤ τ2λn

}
.

Using the same arguments as those in the proof of Theorem A.1, an analog
of (A.7) can be obtained on the event Ω′

1 ∩Ω2(θ)
′ ∩Ω3(θ)

′ with appropriate
choices of δ1, δ2, τ1 and τ2.

Next one can show that Ω2(θ)
′ and Ω3(θ)

′ occur with high probabilities
under similar conditions as those in Lemmas A.4 and A.5. To show Ω′

1 occurs
with high probability, we define

Ω′
1,1 = ∩Jn

j=2

{
|Eϕj | − ν1

√
Eϕ2j ≤ |Enϕj | ≤ |Eϕj |+ ν2

√
Eϕ2j

}
Ω′
1,2 = ∩Jn

j=2{(1− κ1)Eϕ
2
j ≤ Enϕ

2
j ≤ (1 + κ2)Eϕ

2
j}

for some positive ν1, ν2, κ1 and κ2 to be chosen later. Under similar condi-
tions as those in Lemma A.3, it is easy to see that Ω′

1,1 and Ω′
1,2 hold with

high probabilities. In below we show that Ω′
1 ⊂ Ω′

1,1 ∩Ω′
1,2 with appropriate

choices of ν1, ν2, κ1 and κ2.
For j = 2, . . . , Jn, on the event Ω′

1,1 ∩ Ω′
1,2, we have

σ̂2j =Enϕ
2
j − (Enϕj)

2 ≥ (1− κ1)Eϕ
2
j −

(
|Eϕj |+ ν2

√
Eϕ2j

)2

=(1− δ1)
2σ2j + (2δ1 − δ21 − κ1)Eϕ

2
j + (1− δ1)

2(Eϕj)
2

−
(
|Eϕj |+ ν2

√
Eϕ2j

)2
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≥(1− δ1)
2σ2j + (2δ1 − δ21 − κ1 − ν22 − 2ν2)Eϕ

2
j − (2δ21 − δ21)(Eϕj)

2.

Taking κ1 and ν2 so that κ1+ν
2
2+2ν2 ≤ (2δ1−δ21)minj=1,...,Jn [1−(Eϕj)

2/Eϕ2j ],
we obtain σ̂j ≥ (1− δ1)σj .

Next we show that σ̂j ≤ (1 − δ1)σj on the event Ω′
1,1 ∩ Ω′

1,2. Note that
when Eϕj = 0,

σ̂2j = Enϕ
2
j − (Enϕj)

2 ≤ (1 + κ2)Eϕ
2
j ≤ (1 + δ2)

2σ2j

for any κ2 ≤ δ22 + 2δ2.

Consider Eϕj ̸= 0. When ν1 ≤ |Eϕj |/
√
Eϕ2j ,

σ̂2j =Enϕ
2
j − (Enϕj)

2 ≤ (1 + κ2)Eϕ
2
j −

(
|Eϕj | − ν1

√
Eϕ2j

)2

=(1 + δ2)
2σ2j + (κ2 − 2δ2 − δ22)Eϕ

2
j + (1 + δ2)

2(Eϕj)
2

−
(
|Eϕj | − ν1

√
Eϕ2j

)2

=(1 + δ2)
2σ2j + (δ22 + 2δ2)(Eϕj)

2 − (δ22 + 2δ2 − κ2 − 2ν1 + ν21)Eϕ
2
j

Taking κ2 and ν1 so that κ2+2ν1−ν21 ≤ (δ22+2δ2)minj=1,...,Jn [1−(Eϕj)
2/Eϕ2j ],

we obtain σ̂j ≤ (1 + δ2)σj .

S.3. Extra simulation examples. In this section, we consider extra
four simulation examples (i.e. examples 5-8 below) in addition to the ex-
amples used in Section 5.1. To make the simulations more realistic, these
examples are based on data from the Nefazodone-CBASP trial [1] (see Sec-
tion 5.2 for description of the trial).

In the simulation study, we consider 50 pretreatment variables collected
from the trial (i.e. X ∈ R50). Each variable is standardized using the sam-
ple mean and standard deviation. The Nefazodone-CBASP data provides
an empirical distribution for the standardized pretreatment variables. This
is the distribution we use to generate X. Treatment A is generated inde-
pendently of X from {−1, 1} with probability 1/2 each. To generate R, the
response HRSD score is reverse coded so that higher scores are desirable. We
regress the reverse coded HRSD score on (1, X) and denote the estimated
regression coefficients by ϑ(1). Then the response R is generated from a nor-
mal distribution with mean Q0(X,A) = (1, X)ϑ(1) + T0(X,A) and variance
9. We consider 4 examples for T0. There is no treatment effect in example 5.
The covariates and parameters involved in examples 6-8 produce a medium
effect size.

5. T0(X,A) = 0.
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6. T0(X,A) = (1, X̃)ϑ(2)A, where X̃ = (X6, X21, X22, X27, X38) and
θ(2) = (−1.222, −0.568, 0.416, −0.008, −0.776, 0.614)T . Note that
the analysis model contains the the correct model for T0.

7. T0(X,A) = |(1, X̃)ϑ(2)|A, where X̃ = (X8, X9, X29, X40, X46) and
ϑ(2) = (−0.875, −0.289, 0.121, 1.052, 0.344, −0.424)T . In this case,
treatment 1 is always better than −1.

8. T0(X,A) = sign((1, X̃sub)ϑ
(2),1)|(1, X̃)ϑ(2),2|A, where X̃ = (X44, X17,

X31, X35, X16), X̃sub contains the first 3 covariates in X̃, ϑ(2),1 =
(−0.841, 0.747, 0.141, 0.298)T and ϑ(2),2 = (−3.136, 0.793, −5.266,
−1.787,−0.268, 2.324)T . Note that the analysis model does not contain
the correct model for T0.

We approximate Q0 by model Q = {(1, X,A,XA)θ : θ ∈ R102}.
For each example, we simulate 1000 data sets of size n = 500. The Value

of each estimated ITR is evaluated via Monte Carlo using a test set of size
10, 000. The Value of the optimal ITR is also evaluated using the test set.
Simulation results are presented in Table S.2. These simulations give us the
same conclusion as those in Section 5.1.

S.4. Proofs of Lemmas A.1-A.5. In this section, we prove Lemmas
A.1 - A.5 given in Appendix A.2.

Proof of Lemma A.1.
First note that the l1-PLS estimator θ̂n satisfies the following first order

condition:

−2En(R− Φnθ̂n)ϕj + λnσ̂jsgn(θ̂n,j) = 0 for j = 1, . . . , Jn,

where sgn(θj) = 1 if θj > 0, sgn(θj) = −1 if θj < 0 and sgn(θj) ∈ [−1, 1] if
θj = 0 for any θj ∈ R. This implies

−2En[(R− Φnθ̂n)Φnθ] + λn

Jn∑
j=1

σ̂jsgn(θ̂n,j)θj = 0

for any θ ∈ RJn . In particular, −2En[(R−Φnθ̂n)Φnθ̂n]+λn
∑Jn

j=1 σ̂j |θ̂n,j | =
0.

Therefore, for any θ ∈ RJn , we have

0 = 2En[(R− Φnθ̂n)Φn(θ̂n − θ)] + λn

Jn∑
j=1

σ̂jsgn(θ̂n,j)θj − λn

Jn∑
j=1

σ̂j |θ̂n,j |

≤ 2En[(R− Φnθ̂n)Φn(θ̂n − θ)] + λn

Jn∑
j=1

σ̂j |θj | − λn

Jn∑
j=1

σ̂j |θ̂n,j |. (S.1)
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Median and MAD (in the parentheses) for
Method Value of the # of variables needed

decision rules for treatment assignment

Example 5 (V (d0) = 28.854, i.e. average of R over the test set)
l1-PLS 28.842 (0.023) 4 (4)
OLS 28.853 (0.035) 51 (0)
PP 28.855 (0.035) 49 (1)

Example 6 (V (d0) = 30.2354)
l1-PLS 30.104 (0.034) 11 (7)
OLS 29.984 (0.050) 51 (0)
PP(CV) 30.008 (0.050) 50 (1)

Example 7 (V (d0) = 30.044)
l1-PLS 30.042 (0.002) 7 (7)
OLS 29.797 (0.053) 51 (0)
PP 29.840 (0.051) 49 (1)

Example 8 (V (d0) = 33.275)
l1-PLS 32.227 (0.426) 4 (2)
OLS 31.252 (0.219) 51 (0)
PP 31.359 (0.251) 42 (3)

Table S.2
Comparison of the l1-PLS based method with the OLS method and the PP method

(examples 5 - 8): Medians and MAD (in the parentheses) of the Value of the estimated
decision rules (left) and the number of variables needed for treatment assignment

(including the main treatment effect term, right) based on 1000 replications (n = 500).
(The Value of the optimal treatment rule for each example is given as well. Note that in
example 5, all decision rules should produce the same Value. The small differences in

Value observed in example 5 are due only to Monte Carlo error.)

Fix n. If θ = 0, then on the event Ω1 ∩ Ω3(θ) we have

0 ≤2En[(R− Φnθ)Φnθ̂n]− 2En(Φnθ̂n)
2 − λn

Jn∑
j=1

σ̂j |θ̂n,j |

≤2 max
j=1,...,Jn

∣∣∣En

[
(R− Φnθ)

ϕj
σj

]∣∣∣( Jn∑
j=1

σj |θ̂n,j |
)
− 2(1 + γ)

3
λn

Jn∑
j=1

σj |θ̂n,j |

≤2γ − 1

3
λn

Jn∑
j=1

σj |θ̂n,j | ≤ 0.

Since γ ∈ [0, 1/2), θ̂n = 0. Thus (A.8) and (A.9) hold.
Otherwise, for any fixed θ ∈ Θn\{0}, the index setMρλn(θ) is non-empty.

Following (S.1), on the event Ω1 ∩ Ω3(θ), we have
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0 ≤ 2 max
j=1,...,Jn

∣∣∣En

[
(R− Φnθ)

ϕj
σj

]∣∣∣( Jn∑
j=1

σj |θ̂n,j − θj |
)
− 2En[Φn(θ̂n − θ)]2

+ λn
∑

j∈Mρλn(θ)

σ̂j |θ̂n,j − θj |+ λn
∑

j∈{1,...,Jn}\Mρλn(θ)

σ̂j(|θj | − |θ̂n,j |)

≤ 2γ + 5

3
λn

( ∑
j∈Mρλn(θ)

σj |θ̂n,j − θj |+ ρ|Mρλn(θ)|λn
)

− 1− 2γ

3
λn

∑
j∈{1,...,Jn}\Mρλn (θ)

σj |θ̂n,j | − 2En[Φn(θ̂n − θ)]2.

This implies∑
j∈{1,...,Jn}\Mρλn (θ)

σj |θ̂n,j | ≤
2γ + 5

1− 2γ

( ∑
j∈Mρλn(θ)

σj |θ̂n,j − θj |+ ρ|Mρλn(θ)|λn
)

and En[Φn(θ̂n − θ)]2 ≤ 2γ + 5

6
λn

( ∑
j∈Mρλn(θ)

σj |θ̂n,j − θj |+ ρ|Mρλn(θ)|λn
)
.

(S.2)

Define the sets

Θ1(θ) =
{
θ̃ ∈ RJn :

∑
j∈{1,...,Jn}\Mρλn (θ)

σj |θ̃j |

≤ 2γ + 5

1− 2γ

( ∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)}
,

Θ2(θ) =
{
θ̃ ∈ RJn :

∑
j∈Mρλn (θ)

σj |θ̃j − θj |

>
[10(2γ + 5) + 3(21− 2γ)βnρ]|Mρλn(θ)|λn

3(19 + 2γ)βn

}
,

Θ3(θ) =
{
θ̃ ∈ RJn :

∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn >
10|Mρλn(θ)|λn

3βn

}
Thus θ̂n ∈ Θ1(θ) on the event Ω1 ∩ Ω3(θ). In addition, on the event Ω1 ∩
Ω2(θ) ∩ Ω3(θ),

sup
θ̃∈Θ1(θ)∩Θ2(θ)

{
2En[(R− Φnθ̃)Φn(θ̃ − θ)] + λn

Jn∑
j=1

σ̂j |θj | − λn

Jn∑
j=1

σ̂j |θ̃j |
}

≤ sup
θ̃∈Θ1(θ)∩Θ2(θ)

{2γ + 5

3
λn

( ∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)



10 QIAN AND MURPHY

+ 2 max
j=1,...,Jn

∣∣∣(E − En)
(ϕjϕk
σjσk

)∣∣∣( Jn∑
j=1

σj |θ̃j − θj |
)2

− 2E[Φn(θ̃ − θ)]2 − 1− 2γ

3
λn

∑
j∈{1,...,Jn}\Mρλn (θ)

σj |θ̃j |
}

≤ sup
θ̃∈Θ1(θ)∩Θ2(θ)

{2γ + 5

3
λn

( ∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)

+ 2βnρ
2|Mρλn(θ)|λ2n − 2βn

|Mρλn(θ)|

( ∑
j∈Mρλn(θ)

σj |θ̃j − θj |
)2

+
(1− 2γ)2βn
60|Mρλn(θ)|

( ∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)( Jn∑

j=1

σj |θ̃j − θj |
)

+
1− 2γ

3

[ (1− 2γ)βn
20|Mρλn(θ)|

( Jn∑
j=1

σj |θ̃j − θj |
)
− λn

]( ∑
j∈{1,...,Jn}\Mρλn(θ)

σj |θ̃j |
)}

≤ sup
θ̃∈Θ1(θ)∩Θ2(θ)

{2γ + 5

3
λn

( ∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)

+ 2βnρ
2|Mρλn(θ)|λ2n − 2βn

|Mρλn(θ)|

( ∑
j∈Mρλn(θ)

σj |θ̃j − θj |
)2

+
(1− 2γ)βn
10|Mρλn(θ)|

( ∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)2

+
1− 2γ

3

[ 3βn
10|Mρλn(θ)|

( ∑
j∈Mρλn(θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)
− λn

]
×

( ∑
j∈{1,...,Jn}\Mρλn (θ)

σj |θ̃j |
)}

≤ sup
θ̃∈Θ1(θ)∩Θ2(θ)∩Θ3(θ)C

{( ∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)

×
(2γ + 5

3
λn +

21− 2γ

10
βnρλn − (19 + 2γ)βn

10|Mρλn(θ)|
∑

j∈Mρλn (θ)

σj |θ̃j − θj |
)}

+ sup
θ̃∈Θ1(θ)∩Θ2(θ)∩Θ3(θ)

{( ∑
j∈Mρλn (θ)

σj |θ̃j − θj |+ ρ|Mρλn(θ)|λn
)

×
(13
5
βnρλn − 7βn

5|Mρλn(θ)|
∑

j∈Mρλn (θ)

σj |θ̃j − θj |
)}
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<0,

where the second inequality follows from Assumption A.3 and the definition
of Ω2(θ), the third inequality follows from the definition of Θ1(θ), the fourth
equality follows from the definition of Θ3(θ) and simple algebra, and the last
inequality follows from the definition of Θ2(θ), Θ3(θ) and the assumption
that ρβn ≤ 1.

Since θ̂n satisfies inequality (S.1), we have θ̂n ∈ Θ1(θ) ∩ Θ2(θ)
C on the

event Ω1 ∩ Ω2(θ) ∩ Ω3(θ). Algebra suffices to show (A.8).
Following (S.2) and the fact that θ̂n ∈ Θ2(θ)

C , we have

En[Φn(θ̂n − θ)]2 ≤ 5(12ρβn + 2γ + 5)(2γ + 5)

9(19 + 2γ)βn
|Mρλn(θ)|λ2n.

on the event Ω1∩Ω2(θ)∩Ω3(θ). Suppose (A.9) does not hold, i.e. E[Φn(θ̂n−
θ)]2 > 130(12ρβn + 2γ + 5)2|Mρλn(θ)|λ2n/[9(19 + 2γ)2βn]. Then

(E − En)[Φn(θ̂n − θ)]2

E[Φn(θ̂n − θ)]2
≤ (1− 2γ)2βn

120|Mρλn(θ)|
·

(∑Jn
j=1 σj |θ̂n,j − θj |

)2

E[Φn(θ̂n − θ)]2
≤ 3

13
,

where the first inequality follows from the definition of Ω2(θ) and the second
inequality follows from (A.8). This implies

E[Φn(θ̂n − θ)]2 ≤ 13

10
En[Φn(θ̂n − θ)]2 ≤ 13(12ρβn + 2γ + 5)2

18(19 + 2γ)βn
|Mρλn(θ)|λ2n,

which contradicts the condition. Thus (A.9) holds on the event Ω1∩Ω2(θ)∩
Ω3(θ). �
Proof of Lemma A.2.

Consider fixed n and fixed θ ∈ Θn. Since E[Φ
(2)
n (X,A)T |X] = 0 a.s., we

have E(ϕjϕj′) = 0 for any j ∈ {1, . . . , J (1)
n } and j′ ∈ {J (1)

n + 1, . . . , Jn}. On
the event Ω1 ∩ Ω2(θ) ∩ Ω3(θ), we have

En

[
(Φnθ − Φnθ̂n)(Φ

(2)
n θ̂

(2)
n − Φ(2)

n θ(2))
]

=(E − En)
[
(Φnθ̂n − Φnθ)(Φ

(2)
n θ̂

(2)
n − Φ(2)

n θ(2))
]
− E

[
Φ(2)
n (θ̂

(2)
n − θ(2))

]2
≤ max

j,j′∈{1,...,Jn}

∣∣∣(En − E)
(ϕjϕj′
σjσj′

)∣∣∣( Jn∑
j=1

σj |θ̂n,j − θj |
)( Jn∑

j=J
(1)
n +1

σj |θ̂n,j − θj |
)

− E
[
Φ(2)
n (θ̂

(2)
n − θ(2))

]2
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≤(1− 2γ)(12βnρ+ 2γ + 5)

6(2γ + 19)
λn

( Jn∑
j=J

(1)
n +1

σj |θ̂n,j − θj |
)
− E

[
Φ(2)
n (θ̂

(2)
n − θ(2))

]2
,

where the last inequality follows from the definition of Ω2(θ) and Lemma

A.1. Note that (S.1) holds for (θ̂
(1)
n ,θ(2)). Thus

0 ≤ 2En[(R−Φnθ̂n)Φ
(2)
n (θ̂

(2)
n −θ(2))]+λn

Jn∑
j=J

(1)
n +1

σ̂j |θj |−λn
Jn∑

j=J
(1)
n +1

σ̂j |θ̂n,j |.

If θ(2) = 0, then on the event Ω1 ∩ Ω2(θ) ∩ Ω3(θ),

0 ≤2γ − 1

3
λn

Jn∑
j=J

(1)
n +1

σj |θ̂n,j |+ 2En

[
(Φnθ − Φnθ̂n)Φ

(2)
n θ̂

(2)
n

]

≤(2γ − 1)(14− 12βnρ)

3(2γ + 19)
λn

Jn∑
j=J

(1)
n +1

σj |θ̂n,j | − 2E
[
Φ(2)
n θ̂

(2)
n

]2 ≤ 0.

This implies θ̂
(2)
n = 0. Thus (A.10) and (A.11) hold.

If θ(2) ̸= 0, then M
(2)
ρλn

(θ) is non-empty. On the event Ω1∩Ω2(θ)∩Ω3(θ),
we have

0 ≤2En[(R− Φnθ̂n)Φ
(2)
n (θ̂

(2)
n − θ(2))] + λn

Jn∑
j=J

(1)
n +1

σ̂j |θj | − λn

Jn∑
j=J

(1)
n +1

σ̂j |θ̂n,j |

≤4γ + 1

3
λn

( Jn∑
j=J

(1)
n +1

σj |θ̂n,j − θj |
)
+ λn

Jn∑
j=J

(1)
n +1

σ̂j |θj | − λn

Jn∑
j=J

(1)
n +1

σ̂j |θ̂n,j |

+
(1− 2γ)(12βnρ+ 2γ + 5)

3(2γ + 19)
λn

( Jn∑
j=J

(1)
n +1

σj |θ̂n,j − θj |
)

− 2E
[
Φ(2)
n (θ̂

(2)
n − θ(2))

]2
≤12(1− 2γ)βnρ+ 20(2γ + 5)

3(2γ + 19)
λn

( ∑
j∈M(2)

ρλn
(θ)

σj |θ̂n,j − θj |+ ρ|M (2)
ρλn

(θ)|λn
)

− 2(1− 2γ)(7− 6βnρ)

3(2γ + 19)
λn

∑
j∈{J(1)

n +1,...,Jn}\M(2)
ρλn

(θ)

σj |θ̂n,j |



INDIVIDUALIZED TREATMENT RULES 13

− 2E
[
Φ(2)
n (θ̂

(2)
n − θ(2))

]2
.

This implies

(1− 2γ)(7− 6βnρ)

3(2γ + 19)
λn

∑
j∈{J(1)

n +1,...,Jn}\M(2)
ρλn

(θ)

σj |θ̂n,j |+ E
[
Φ(2)
n (θ̂

(2)
n − θ(2))

]2
≤6(1− 2γ)βnρ+ 10(2γ + 5)

3(2γ + 19)
λn

( ∑
j∈M(2)

ρλn
(θ)

σj |θ̂n,j − θj |+ ρ|M (2)
ρλn

(θ)|λn
)

Using similar arguments as those in Lemma A.1, we obtain∑
j∈M(2)

ρλn
(θ)

σj |θ̂n,j − θj |+ ρ|M (2)
ρλn

(θ)|λn ≤ 10(12βnρ+ 2γ + 5)

3(2γ + 19)βn
|M (2)

ρλn
(θ)|λn.

Algebra suffices to show (A.10) and (A.11). �
To prove Lemmas A.3, A.4 and A.5, we first introduce the following Bern-

stein’s inequalities that will be repeatedly used.

Lemma S.1. (Bernstein’s inequalities; Massart [2]) Let ζ1, . . . , ζn be
independent and square integrable random variables such that E[ζi] = 0 for
all i = 1, . . . , n.

(a) Assume there exist some positive numbers b and ν such that ζi ≤ b
almost surely for all i = 1, . . . , n and

∑n
i=1Eζ

2
i ≤ ν. Then for any s > 0,

P
( n∑

i=1

ζi > s
)
≤ exp

(
− s2

2(ν + bs/3)

)
.

(b) Assume there exist some positive numbers b and ν such that
∑n

i=1E[(ζ li)+]
≤ l!νbl−2/2 for all integers l ≥ 2. Then for any s > 0,

P
( n∑

i=1

ζi > s
)
≤ exp

(
− s2

2(ν + bs)

)
.

Proof of Lemma A.3.
For each j = 1, . . . , Jn, we apply Lemma S.1(a) with ζi = ϕj(Xi, Ai)

2/σ2j−
1 and s = (7− 2γ)(1− 2γ)n/9. By Assumption A.2(a), we have ζi ≤ U2

n − 1
and

∑n
i=1Eζ

2
i ≤ n(U2

n − 1). Thus

P
(
σ̂j ≥

2(2− γ)

3
σj

)
≤ exp

(
− (7− 2γ)2(1− 2γ)2n

2(U2
n − 1)[81 + 3(7− 2γ)(1− 2γ)]

)
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≤ exp
(
− 25(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
.

Similarly, applying Lemma S.1(a) with ζi = 1 − ϕj(Xi, Ai)
2/σ2j and s =

(5 + 2γ)(1− 2γ)n/9, we have

P
(
σ̂j ≤

2(1 + γ)

3
σj

)
≤ exp

(
− (5 + 2γ)2(1− 2γ)2n

6[27(U2
n − 1) + (5 + 2γ)(1− 2γ)]

)
≤ exp

(
− 25(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
.

Using union bound argument and condition (A.6), we have

P(ΩC
1 ) ≤ 2Jn exp

(
− 25(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
≤ exp

(
− 13(1− 2γ)2n

6(27U2
n − 10γ − 22)

)
.�

Proof of Lemma A.4.
Note that ∥ϕjϕk/(σjσk)−E[ϕjϕk/(σjσk)]∥∞ ≤ 2U2

n andE[ϕjϕk/(σjσk)]
2 ≤

U2
n for all j, k.Applying Lemma S.1(a) with ζi = ±[ϕj(Xi, Ai)ϕk(Xi, Ai)/(σjσk)

−E(ϕjϕk)/(σjσk)] and s = (1 − 2γ)2βnn/[120|Mρλn(θ)|] and using union
bound argument, we obtain

P({Ω2(θ)}C)

≤Jn(Jn + 1) exp
(
− (1− 2γ)4β2nn

160U2
n[180|Mρλn(θ)|2 + (1− 2γ)2βn|Mρλn(θ)|]

)
≤1

3
exp(−t),

where the second inequality follows from the definition of Θn in (A.4). �
Proof of Lemma A.5.

For any θ ∈ Θn, there is a θ
o ∈ [θ∗

n] such that maxj |E[Φn(θ
o−θ)ϕj/σj ]| ≤

γλn. Since θo minimizes E(R − Φnθ)
2, we have E

[
(R − Φnθ

o)ϕj
]
= 0 for

j = 1, . . . , Jn. Thus

max
j

∣∣∣E[
(R− Φnθ)

ϕj
σj

]∣∣∣ = max
j

∣∣∣E[
(Φnθ

o − Φnθ)
ϕj
σj

]∣∣∣ ≤ γλn.

This implies

max
j

∣∣∣En

[
(R− Φnθ)

ϕj
σj

]∣∣∣
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≤max
j

∣∣∣(En − E)
[
ε
ϕj
σj

]∣∣∣+max
j

∣∣∣(En − E)
[
(Q0 − Φnθ)

ϕj
σj

]∣∣∣+ γλn.

For j = 1, . . . , Jn, by Assumptions A.1 and A.2(a), we have E(εiϕj/σj) =
0 and

∑n
i=1E|(εiϕj(Xi, Ai)/σj)

l| ≤ l!nσ2(cUn)
l−2/2 for all integers l ≥ 2.

Applying Lemma S.1(b) yields

P
(∣∣∣(En − E)

[
ε
ϕj
σj

]∣∣∣ > 1− 2γ

12
λn

)
≤ 2 exp

(
− (1− 2γ)2λ2nn

288σ2 + 24c(1− 2γ)Unλn

)
.

Similarly, the definition of Θn together with Assumption A.2 implies that, for
any θ ∈ Θn and j = 1, . . . , Jn,

∥∥(Q0−Φnθ)ϕj/σj−E
(
(Q0−Φnθ)ϕj/σj

)∥∥
∞ ≤

2(ηn,1+ηn,2)Un and E
[
(Q0−Φnθ)ϕj/σj

]2 ≤ (ηn,1+ηn,2)
2. Applying Lemma

S.1(a) yields

P
(∣∣∣(En − E)

[
(Q0 − Φnθ)

ϕj
σj

]∣∣∣ > 1− 2γ

12
λn

)
≤2 exp

(
− (1− 2γ)2λ2nn

288(η1,n + η2,n)2 + 16(1− 2γ)(η1,n + η2,n)Unλn

)
.

The result follows from the union bound argument and condition (A.5). �
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[2] Massart. P. (2003). Ecole d’Eté de Probabilités de Saint-Flour XXXIII, Concentra-
tion inequalities and model selection, Springer.

[3] Massart, P. (2005). A non asymptotic theory for model selection. Proceedings of the
4th European Congress of Mathematicians (Ed. Ari Laptev), European Mathematical
Society, 309–323.

[4] Qian, M. and Murphy, S. A. (xxxx). Performance guarantees for individualized
treatment rules. The Annals of Statistics, xx, xx–xx.

[5] van de Geer, S. (2008). High-dimensional generalized linear models and the Lasso.
The Annals of Statistics, 36(2), 614–645.

Min Qian
Susan A. Murphy
Department of Statistics
University of Michigan
439 West Hall, 1085 S. University Ave
Ann Arbor, MI, 48109
E-mail: minqian@umich.edu

samurphy@umich.edu


